
Structured Gamma

Pascal Fradet and Daniel Le Métayer

Irisa/Inria, Campus de Beaulieu, 35042 Rennes, France

Abstract

The Gamma language is based on the chemical reaction metaphor which has a
number of benefits with respect to parallelism and program derivation. But the
original definition of Gamma does not provide any facility for data structuring or
for specifying particular control strategies. We address this issue by introducing a
notion of structured multiset which is a set of addresses satisfying specific relations.
The relations can be seen as a form of neighborhood between the molecules of the
solution; they can be used in the reaction condition of a program or transformed
by the action. A type is defined by a context-free graph grammar and a structured
multiset belongs to a type T if its underlying set of addresses satisfies the invariant
expressed by the grammar defining T . We define a type checking algorithm that
allows us to prove mechanically that a program maintains its data structure invari-
ant. We illustrate the significance of the approach for program refinement and we
describe its application to coordination.

Key words: multiset rewriting, graph grammar, type checking, program
refinement, coordination, software architecture.

1 Gamma: motivations and limitations

The fast evolution of hardware and the growing needs of end-users has placed
new requirements on the design of programming languages : sequentiality
should no longer be seen as the prime programming paradigm but just as one
of the possible forms of cooperation between individual entities. The Gamma
formalism was proposed ten years ago precisely to capture the intuition of
computation as the global evolution of a collection of atomic values interact-
ing freely. Gamma is a kernel language which can be introduced intuitively
through the chemical reaction metaphor. The unique data structure in Gamma
is the multiset which can be seen as a chemical solution. A program is a pair
(Condition, Action) called a reaction. Execution proceeds by replacing in the
multiset elements satisfying the condition by the products of the action. The

Preprint submitted to Elsevier Preprint 13 May 1997

result is obtained when a stable state is reached, that is to say, when no more
reactions can take place. The following is an example of a Gamma program
computing the maximum element of a non-empty set.

max = [x , y , x ≤ y |=⇒ y]

x ≤ y specifies a property to be satisfied by the selected elements x and y.
These elements are replaced in the set by the value y. Nothing is said in this
definition about the order of evaluation of the comparisons. If several disjoint
pairs of elements satisfy the condition, the reactions can be performed in par-
allel. Let us consider, as another introductory example, a sorting program. We
represent a sequence as a set of pairs (index,value) and the program exchanges
ill-ordered values until a stable state is reached and all values are well-ordered.

sort = [(i, x) , (j, y) , (i < j) , (x > y) |=⇒ (i, y) , (j, x)]

The interested reader may find in [3] a longer series of examples (string pro-
cessing problems, graph problems, geometry problems, . . .) illustrating the
Gamma style of programming and in [4] a review of contributions related to
the chemical reaction model.

The possibility of getting rid of artificial sequentiality in Gamma has two
important consequences:

• It confers a very high level nature to the language and allows the program-
mer to describe programs in a very abstract way. As a consequence, Gamma
can be used as an intermediate language that makes it easier to derive a
program from a specification by successive refinements [2].

• Because Gamma programs do not have any sequential bias, the language
naturally leads to the construction of parallel programs (in fact, it is much
harder to write a sequential program than a parallel program in Gamma). It
is also suitable as the basis of a “coordination language” for the description
of the overall interactions between individual entities in a large application
[20].

However, our experience with Gamma also highlighted some weaknesses of the
language. Let us now review the most important ones.

• The original definition of Gamma lacks any operation for combining pro-
grams.

• The language does not make it easy for the programmer to structure data
or to specify particular control strategies.

• Because of the combinatorial explosion imposed by its semantics, it is diffi-
cult to reach a decent level of efficiency in any general purpose implemen-
tation of the language.

2

For the sake of modularity it is desirable that a language offers a rich set of
operators for combining programs. It is also fundamental that these operators
enjoy a useful collection of algebraic laws in order to make it possible to
reason about programs. This issue was addressed in [13,14] which introduce
operators for the parallel and the sequential composition of programs and
study their properties and in [7,19] which define higher-order extensions of
Gamma. Another approach was taken in [6] where a notion of schedules is
proposed to control the execution of Gamma programs.

The lack of support for structuring data and the difficulty of imposing a par-
ticular control strategy should not be surprising since the original motivation
for the language was to be able to describe programs exhibiting as few or-
dering constraints as possible. An unfortunate consequence however is that
the programmer sometimes has to resort to artificial encodings to express his
algorithm. For instance, the exchange sort algorithm shown above is expressed
in terms of multisets of pairs (index,value). This limitation also introduces an
unnecessary factor of inefficiency in the implementation because the underly-
ing structure of the data (and control) is not exposed to the compiler. Such
information could be exploited to improve the implementation [9] but it can
usually not be recovered by an automatic analysis of the program.

So, the lack of structuring facility is detrimental both for reasoning about
programs and for implementing them. In this paper, we propose a solution
to this problem without jeopardizing the basic qualities of the language. Let
us point out in particular that it would not be acceptable to take the usual
view of recursive type definitions because this would lead to a recursive style
of programming and ruin the fundamental locality principle (because the data
structure would then be manipulated as a whole). Our proposal is based on
a notion of structured multiset which is a set of addresses satisfying specific
relations and associated with values. The relations express a form of neighbor-
hood between the molecules of the solution; they can be used in the reaction
condition of a program or transformed by the action. In our framework, a type
is defined in terms of rewrite rules on the relations of a multiset; a structured
multiset belongs to a type T if its underlying set of addresses satisfies the in-
variant expressed by the rewrite system defining T . The paper defines a type
checking algorithm that allows us to prove mechanically that a program main-
tains its data structure invariant. We illustrate the significance of the approach
for program refinement and we describe its application to coordination.

We define the notion of structured multiset and structured program in Sec-
tion 2. We describe the syntax and a formal semantics of this extension of
Gamma and suggest how Structured Gamma programs can be translated in a
straightforward way into original Gamma programs. The notion of structuring
types is introduced in Section 3 with a collection of examples illustrating the
programming style of Structured Gamma. In Section 4, we describe a check-

3

ing algorithm and show its correctness. The correctness property is akin to
the subject reduction property of type systems for functional languages. We
illustrate the type system and type checking algorithm with several examples.
Section 5 introduces the notions of type and program refinement which can
be used to derive efficient implementations from Gamma specifications. Sec-
tion 6 presents the application of structured multisets to coordination and the
conclusion suggests avenues for further research.

2 Syntax and semantics of Structured Gamma

A structured multiset is a set of addresses satisfying specific relations. As
an example, the list [5; 2; 7] can be represented by a structured multiset
whose set of addresses is {a1, a2, a3} and associated values (written ai) are
a1 = 5, a2 = 2, a3 = 7. Let next be a binary relation and end a unary
relation; the addresses satisfy

next a1 a2 , next a2 a3 , end a3

A Structured Gamma program is defined in terms of pairs of a condition and
an action which can:

• test/modify the relations on addresses,
• test/modify the values associated with addresses.

As an illustration, an exchange sort for lists can be written in Structured
Gamma as:

Sort = [next x y , x > y |=⇒ next x y , x := y , y := x]

The two selected addresses x and y must satisfy the relation next x y and
their values x and y are such that x > y. The action exchanges their values
and leaves the relation unchanged. To be complete, we should also declare that
the multiset rewritten by Sort is of type List and that the reaction preserves
the type of the multiset. These two points are treated respectively in Section
3 and Section 4.

In order to define the syntax and semantics of Structured Gamma, we consider
three basic domains:

• R: the set of relation symbols,
• A: the set of addresses,
• V: the set of values.

4

2.1 Syntax

The syntax of Structured Gamma programs is described by the following gram-
mar:

< Program > ::= ProgName = [< Reaction >]∗

< Reaction > ::= < Condition >|=⇒< Action >

< Condition > ::= r x1 · · ·xn | fBool(x1, · · · , xn) |

< Condition >, < Condition >

< Action > ::= r x1 · · ·xn | x := fV(x1, · · · , xn) | < Action >, < Action >

where r (∈ R) denotes a n-ary relation, xi is an address variable, xi is the
value at address xi and fX is a function from Vn to X.

As can be seen in the Sort example, x always refers to the value of address
x at selection time. This makes the evaluation order of the basic operations
of an action (in particular, assignments) semantically irrelevant. In order to
fit with this design choice, a Structured Gamma program must satisfy two
additional syntactic conditions:

• If x occurs in the reaction then x occurs in the condition.
• An action may not include two assignments to the same variable.

2.2 Semantics

We write A(M) to denote the set of addresses occurring in the multiset M and
“+” the multiset union. A structured multiset M can be seen as M = Rel+V al
where

• Rel is a multiset of relations represented as tuples (r, a1, · · · , an) (with r ∈ R
and ai ∈ A)

• V al is a set of values represented by triplets of the form (val, a, v) (with
a ∈ A and v ∈ V)

For example, the structured multiset shown at the beginning of this section
can be written:

{(next, a1, a2), (next, a2, a3), (end, a3), (val, a1, 5), (val, a2, 2), (val, a3, 7)}

A valid structured multiset is such that an address x does not have more than
one value (i.e. x occurs at most once in V al). On the other hand, there may

5

be several occurrences of the same tuple in Rel. Also, we do not enforce that

A(Rel) ⊆ A(V al) nor that A(V al) ⊆ A(Rel)

So, addresses are allowed not to possess a value or may have a value without
occurring in a relation. In the latter case however, they cannot be accessed by
a Structured Gamma program and may be garbage collected.

In order to define the semantics of programs, we associate three functions with
each reaction C |=⇒ A. They are presented in Figure 1.

T (C)(a1, · · · , ai, b1, · · · , bj) = (val, a1, a1) ∈ V al ∧ · · · ∧ (val, ai, ai) ∈ V al

∧ (val, b1, b1) ∈ V al ∧ · · · ∧ (val, bj , bj) ∈ V al

∧ bCc

C(C)(a1, · · · , ai, b1, · · · , bj) = {(val, a1, a1), · · · , (val, ai, ai),

(val, b1, b1), · · · , (val, bj, bj)} + dCe

A(A)(a1, · · · , ai, b1, · · · , bj , c1, · · · , ck) = {(val, a1, a1), · · · , (val, ai, ai)} + dAe

where b c is defined by:

bX1, X2c = bX1c ∧ bX2c

br x1 · · ·xnc = (r, x1, · · · , xn) ∈ Rel

bf(x1, · · · , xn)c = f(x1, · · · , xn)

d e is defined by:

dX1, X2e = dX1e + dX2e

dr x1 · · ·xne = {(r, x1, · · · , xn)}

df(x1, · · · , xn)e = ∅

dx := f(x1, · · · , xn)e = {(val, x, f(x1, · · · , xn))}
and
• {a1, · · · , ai} denotes the set of non-assigned variables whose value occurs

in the reaction,
• {b1, · · · , bj} denotes the set of assigned variables occurring in the condition

C,
• {c1, · · · , ck} denotes the set of variables occurring only in the action A.

Fig. 1. Semantic functions

The boolean function T (C) represents the condition of application of a reac-
tion. The function C(C) represents the tuples selected by the condition (i.e.

6

the relations and values occurring in C). The function A(A) represents the
tuples added by the action, that is to say: the relations occurring in A, the
values selected but unchanged by the reaction and the assigned values.

The semantics of a Structured Gamma program

P = [C1 |=⇒ A1, · · · , Cm |=⇒ Am]

applied to a multiset M is defined as the set of normal forms of the following
rewrite system:

M −→P GC(M)

if ∀{x1, · · · , xn} ⊆ A(M) ∀i ∈ [1 · · ·m] ¬T (Ci)(x1, · · · , xn)

M −→P M − C(Ci)(x1, · · · , xn) + A(Ai)(x1, · · · , xn, y1, · · · , yk)

with y1, · · · , yk 6∈ A(M)

and {x1, · · · , xn} ⊆ A(M), i ∈ [1 · · ·m] and T (Ci)(x1, · · · , xn)

If no tuple of addresses satisfies any condition then a normal form is found.
The result is the accessible structure described by the relations. The function
GC removes from V al the addresses not occurring in Rel. More formally:

GC(Rel + V al) = Rel + {(val, a, v) | (val, a, v) ∈ V al ∧ a ∈ A(Rel)}

We use the notation M
∗7−→P M ′ for M

∗−→P M ′ and M ′ is a normal form for
P .

Otherwise, a tuple of addresses (x1, · · · , xn) and a pair (Ci, Ai) such that
T (Ci)(x1, · · · , xn) are non-deterministically chosen. The multiset is transformed
by removing C(Ci)(x1, · · · , xn), allocating fresh addresses y1, · · · , yk and adding
A(Ai)(x1, · · · , xn, y1, · · · , yk).

Note that the semantics enforces that different variable names in the program
must be instantiated with different addresses. Sometimes, this requirement
may lead to unnecessary verbose programs. For example, if we want to ex-
press the rewriting of any instance of a relation tuple (r, x1, · · · , xn) in A, we
would like to write r x1 · · ·xn |=⇒ A assuming xi and xj may possibly denote
the same address rather than enumerating all the possible sharing patterns.
Let us note, however, that it is always possible to translate the rule above into
an equivalent set of rules where variables cannot be identified. So, a sensible
option would be to address the matter at the syntax level and add a spe-
cial notation to denote that some variables may be identified. For example,
r x 1 y 2 z 1 t 2 would mean that x and z may be equal, y and t may be equal

7

but x and z are different from y and t. This syntax could be automatically
translated into standard rules.

2.3 Correspondence between Structured Gamma and original Gamma

Compared to the original Gamma formalism, the basic model of computation
remains unchanged. It still consists in repeated applications of local actions in
a global data structure. Actually, our way to define the semantics of Structured
Gamma programs is very close to a translation into equivalent pure Gamma
programs.

Rather than providing a formal definition of the translation, we illustrate
it with the exchange sort program which is defined as follows in Structured
Gamma:

Sort = [next x y , x > y |=⇒ next x y , x := y , y := x]

and can be rewritten in pure Gamma as:

Sort = [(val, x, x) , (val, y, y) , (next, x, y) , x > y

|=⇒ (next, x, y) , (val, x, y) , (val, y, x)]

3 Structuring types

Structured multisets can be seen as a syntactic facility allowing the program-
mer to make the organization of the data explicit. We are now in a position to
introduce a new notion of type which characterizes the structure of a multiset.
We define a type in terms of rewrite rules on the relations of the multiset. A
structured multiset is said to belong to a type if its underlying set of addresses
can be produced by the rewrite system defining the type. We provide a formal
definition of types and we illustrate them with a collection of examples.

3.1 Syntax

The syntax of types is defined by the following grammar:

8

<TypeDecl> ::= TypeName = <Prod> , [<NonTerm> = <Prod>]∗

<NonTerm> ::= NonTerminalName x1 · · ·xn

<Prod> ::= r x1 · · ·xn | <NonTerm> | <Prod> , <Prod>

where r (∈ R) is an n-ary relation (n > 0), and xi is a variable denoting an
address.

A type definition resembles a context-free graph grammar. For example, lists
can be defined as

List = L x

L x = next x y , L y

L x = end x

3.2 Semantics

The definition of a type T can be associated with a Structured Gamma pro-
gram (written GenT) which can return any multiset of type T . It amounts to
considering ’=’ symbols as ’|=⇒’ and nonterminal names as relations. We keep
the same notation NTx1 · · ·xp to denote a nonterminal in a type definition or
a relation in the rewrite system associated with a type. The correct interpre-
tation is usually clear from the context. For example, the Structured Gamma
program associated with the type List is defined by:

GenList = [List |=⇒ L x

L x |=⇒ next x y , L y

L x |=⇒ end x]

This program applied to a multiset containing only the atom List can produce
all the finite lists .

We write | M | to denote the multiset restricted to relations; formally:

| Rel + V al |= Rel

Definition 1 A multiset M has type T (written M:T) iff {T} ∗7−→GenT | M |.

The inverse of GenT is a rewrite system (denoted by ;T) that provides a
useful alternative definition of types. In this paper, reasoning about types is
done using this rewrite system instead of Gen.

9

Definition 2 M −→GenT M ′ ⇔ M ′ ;T M

Proposition 3 A multiset M has type T iff | M | ∗
;T {T}.

For example, the rewrite system associated with the type List is written as
follows:

L x ;List List

next x y , L y ;List L x

end x ;List L x

This system rewrites any multiset of type List into the singleton {List}. Let
us point out that ;T reductions must enforce that if a variable of the lhs does
not occur in the rhs then it does not occur in the rest of the multiset. For
example, the rule next x y , L y ;List L x cannot be applied to a multiset
containing other occurrences of y. This requirement is dual to the constraint
in the semantics of Structured Gamma programs that enforces variables of the
rhs of a reaction not occurring in the lhs to be fresh. It is a global operation
and such rewriting systems are clearly not Structured Gamma programs.

3.3 Examples of types

Abstract types found in functional languages such as ML can be defined in a
natural way in Structured Gamma. For example, the type corresponding to
binary trees is

Bintree = B x

B x = node x y z , B y , B z

B x = leaf x

However, structuring types are expressive enough to describe not only tree
shaped but also graph structures. Actually, the main blessing of the framework
is to allow concise definitions of complicated pointer-like structures. To give a
few examples, it is quite easy to define common pointer structures such as

Doubly-linked lists:

������������	
� // ������������	
� //
oo ������������	
� //

oo ������������	
�oo

Doubly = L x

L x = next x y , pred y x , L y

L x = end x

10

Lists with connections to the last element:

������������	
� //
@AGF ED

��������������	
� //
@AGF ED

��������������	
� //
@AGF ED

��������������	
�������
Listlast = L x z

L x z = next x y , last x z , L y z

L x z = next x z , last x z , next z z

Binary trees with linked leaves:

Binlink = L x y z

L x y z = left x l , right x r , L l y u , L r v z , next u v

L x y z = left x l , right x z , L l y u , next u z

L x y z = left x y , right x r , L r v z , next y v

L x y z = left x y , right x z , next y z

������������	
�
zzvvv
vv
v

$$HH
HH

HH

������������	
�
zzvvv
vv
v

$$HH
HH

HH
������������	
�

������������	
�
$$HH

HH
HH

������������	
�
zzvvv
vv
v

$$HH
HH

HH

������������	
� // ������������	
�

OO

The grammars can be explained by attaching a meaning to each nonterminal.
For example, in the last example, the nonterminal L x y z denotes a binary
tree with linked leaves with root x, leftmost leaf y and rightmost leaf z.

Let us point out that the definition of a type T in terms of GenT implies
that different variables denote different addresses in type definitions (as for
program definitions). This choice entails the same drawbacks and calls for the
same solution as in the case of programs. For example, using the notation
hinted at in Section 2.2, circular lists can be defined by:

������������	
�
zzvvv
vv
v

������������	
�
��

������������	
�
ddHHHHHH

������������	
�
$$HH

HH
HH

������������	
�
OO

������������	
�
::vvvvvv

Circular = L x x

L x 1 y 1 = L x z , L z y

L x 1 y 1 = next x y

11

which is expanded into the following type in the pure Structured Gamma
syntax:

Circular = L x x

L x x = L x z , L z x

L x x = next x x

L x y = L x z , L z y

L x y = next x y

3.4 Programming using structuring types

Many programs are expressed more naturally in Structured Gamma than in
pure Gamma. The underlying structure of the multiset can be described by a
type whereas in pure Gamma we had to encode it using tuples and tags. Let
us give a few examples of Structured Gamma programs whose description in
pure Gamma is cumbersome. Note that the syntax of programs is extended
to account for typed programs (ProgName : TypeName = · · ·).

Iota takes a singleton [a] and yields the list [a; a − 1; · · · ; 1].

Iota : List = [end x , x > 1 |=⇒ next x y , end y , y := x − 1]

MultB takes a binary tree representing an arithmetic expression and yields a
leaf whose value is the evaluation of the original expression.

MultB : Bintree = [

node x y z , leaf y , leaf z , x =′ +′ |=⇒ leaf x , x := y + z

node x y z , leaf y , leaf z , x =′ −′ |=⇒ leaf x , x := y − z

node x y z , leaf y , leaf z , x =′ ∗′ |=⇒ leaf x , x := y ∗ z

node x y z , leaf y , leaf z , x =′ /′ |=⇒ leaf x , x := y/z]

Types can also be used to express precise control constraints. For example,
lists can be defined with two identified elements used as pointers to enforce a

12

specific reduction strategy.

Listm = L0 x

L0 x = m1 x , next x y , L1 y

L0 x = next x y , L0 y

L1 x = m2 x , L2 x

L1 x = next x y , L1 y

L2 x = next x y , L2 y

L2 x = end x

The type definition enforces that m1 identifies a list element located before
the element marked by m2. Assuming an initial list where m1 marks the first
element and m2 the second one, we can describe a sequential sort.

SeqSort : Listm = [

m1 x , m2 y , x > y |=⇒ m1 x , m2 y , x := y , y := x

m1 x , m2 y , next y z , x ≤ y |=⇒ m1 x , m2 z , next y z

m1 x , m2 y , end y , next x z , |=⇒ m1 z , m2 w , end y , next x z ,

next z w , x ≤ y next z w]

In fact, Listm can be shown more precisely to be a refinement of List. We
come back to this issue in Section 5.

To summarize, Structured Gamma retains the spirit of Gamma while providing
means to declare data structures and to enforce specific reduction strategies
(e.g. for efficiency purposes). We describe in the following section another
major benefit of Structured Gamma: the possibility for the programmer to
have his programs checked to ensure that the data structure is manipulated
in a consistent way.

4 Static type checking

The natural question following the introduction of a new type system con-
cerns the design of an associated type checking algorithm. In the context of
Structured Gamma, type checking must ensure that a program maintains the
underlying structure defined by a type. It amounts to the proof of an invariant
property. We first show that type checking reactions is an undecidable prob-

13

lem if types are defined by arbitrary context-free graph grammars. Then, we
propose a sound but incomplete checking algorithm based on the construction
of an abstract reduction graph which describes all the possible contexts X for
a condition C and type T such that X + C

∗
;T {T}. We describe its appli-

cation to some examples, suggesting that the algorithm is precise enough to
tackle most common cases.

In this section and in the appendix, we use C and A to denote the condi-
tion and the action of the program or their instantiation to a multiset. The
distinction is generally clear from the context.

4.1 The general problem

The reaction C |=⇒ A is well-typed for T if:

∀M (M + C) : T ⇒ (M + A) : T

Unfortunately, this property is undecidable if types are described by unre-
stricted context-free graph grammars (such as the structuring types defined
in Section 3).

First, let us show that any context-free (word) grammar can be encoded in our
formalism. Each letter (terminal) a can be represented by a binary relation a.
A word a1 · · ·an is represented by the set {a1 x1 x2 , · · · , an xn xn+1}, that
is to say, by the graph

• a1→ • · · · • an→ •

A context-free (word) grammar in Chomsky normal form can be represented
by a context-free graph grammar as follows:

A → B C is represented by A x y = B x z , C z y

A → a is represented by A x y = a x y

Since the equivalence and inclusion problem of context-free grammars is unde-
cidable, the same results holds in the more general framework of context-free
graph grammars.

14

Let us now consider the following type:

T = L x

L x = f x , L1 x

L x = g x , L2 x

L1 x = · · ·

L2 x = · · ·

Suppose that the relations f and g do not occur in the definitions of L1 and
L2. Then, the multisets (or contexts) X such that | X + {f x} | ∗

;T {T} are
exactly those generated by L1 x. Similarly, the only possible contexts for g x
are those generated by L2 x. Let us consider the reaction f x |=⇒ g x. Type
checking this reaction with respect to T would prove that L1 x generates a
language (i.e. a set of multisets) included in the language generated by L2 x,
which is an undecidable problem.

An approach to overcome this theoretical result is to restrict either the type
definitions or the form of reactions. There are many sub-classes of context-free
grammars that are known to have a decidable equivalence problem. It may
then be possible to find a formalism that is powerful enough to describe the
most common graph structures and for which type checking is decidable. In
[11], we propose a subclass of types and reactions for which a complete (and
practical) checking algorithm exists.

We take a different view here, considering checking as an analysis algorithm
which is by essence approximate and may declare illegal some valid programs.
Most reactions we have encountered so far are within the reach of this algo-
rithm but more experience is needed to decide if the theoretical limitations
have a significant impact in practice.

4.2 Overview of the checking process

First, let us note that values and assignments are not relevant for type check-
ing. So, in this section and the following, we consider multisets and rewriting
rules restricted to relations. Also, we assume that checking is done relatively
to a given type T .

A reduction step by a Structured Gamma program is of the form M +C −→P

M + A. The algorithm has to check that the application of every reaction of
the program leaves the type of the multiset unchanged. In other terms, for
any reaction C |=⇒ A and multiset M + C of type T , it checks that M + A is

15

of type T (i.e. M + A
∗
;T {T}).

The checking algorithm is based on the observation that if M + C has type
T , any reduction chain M + C

∗
;T {T} can be reorganized as

M + C
∗
;T X + C

∗
;T {T}

where

• no element of C is involved in the reduction chain M + C
∗
;T X + C

• each reduction of X +C
∗
;T {T} involves at least one element of a residual

of C. (A residual of C is either C or the result of a rewriting involving one
element of a residual of C.)

Such contexts X can be derived from C by considering all the possible reduc-
tions of the following form:

X0 + C ;T C1 X1 + C1 ;T C2 · · · Xn + Cn ;T {T} (1)

Each step is an application of a ;T rule involving at least one component of
Ci and Xi is a basic context. Basic contexts are the smallest (possibly empty)
multisets of relations needed to match the lhs of a reduction rule. They are
therefore completely reduced by the reduction rule. Let X = Xn + · · · + X0

then

X + C = Xn + · · ·+ X0 + C ;T Xn + · · ·+ X1 + C1 ;T · · · ;T {T}

so X + C
∗
;T {T}.

The checking algorithm computes all the possible contexts X for C by con-
sidering all possible reductions chains of the form (1). Then, it is sufficient to
check the property X + A

∗
;T {T} for all the possible contexts.

Since M +C has type T , there is a least one reduction chain M +C
∗
;T {T},

which can be written as

M + C
∗
;T X + C

∗
;T {T}

All contexts have been considered and the algorithm has checked that A +
X

∗
;T {T}, thus

M + A
∗
;T X + A

∗
;T {T} 1

1 The global conditions on the reduction M + A
∗
;T X + A are ensured by the

16

and the type of the multiset is maintained (i.e. M + A has type T).

To get round the problem posed by the unbounded length of chains of the
form (1), we consider residuals Ci up to renaming of variables. This point is
related to the fact that contexts are in general unbounded and, as pointed out
in the following section, this forces us to make conservative approximations.

4.3 A checking algorithm

A renaming is a one-to-one mapping and its domain is the set of variables
that differ from their image. We will use the following lemma

Lemma 4 Let σ be a renaming then C1 ;T C2 ⇔ σC1 ;T σC2

The type checking algorithm consists in examining in turn each reaction of
the program.

TypeCheck (P, T) = ∀(C, A) of P. Check (A, T, Build (C, {C}, T))

For each reaction C |=⇒ A, a reduction graph G, summarizing all possible
reduction chains from C to {T}, is built by Build. Then, Check verifies that
for any reduction chain and context X of the graph from C to {T}, A + X
reduces to {T}. These functions are described in Figure 2.

Build takes an initial graph made of the root C. The reduction graph is such
that nodes are distinct (even up to renaming of variables) residuals Ci and

edges are of the form Ci
X,σ−→ Cj. This notation indicates that Ci + X ;T σCj

where X is a basic context and σ is a variable renaming. Recall that ”;”
reductions have a global condition: variables suppressed by a reduction rule
should not occur in the rest of the multiset. To generate valid ; reduction
chains we enforce that variables occurring in a basic context are either variables
occurring in the current residual or fresh variables. This condition ensures that
we never reintroduce suppressed variables.

The structure of Build is a depth first traversal of all possible reduction chains.
The recursion stops when C is {T} or is already present in the graph. CX
is the set of basic contexts and residuals denoting all the different reductions
of C. Note that basic contexts Xi and residuals Ci may occur several times
in CX (there may be several possible reduction rules for the same term and
different terms can be reduced in the same residual). However, the set CX

validity of the reduction of M + C
∗
;T X + C and the fact that variables of A are

either variables of C or fresh variables.

17

Build (C, G, T)
if C = {T} then return G else
let CX = {(Ci, Xi) | C + Xi ;T Ci} in

/* CX is a finite set (up to fresh variable renaming)*/
for each (Ci, Xi) in CX do

if ∃Cj ∈ G and σj such that Ci = σjCj then G := G + C
Xi,σj−→ Cj

else G := G + Ci + C
Xi,id−→ Ci ; G := Build(Ci, G, T)

od
return G

Check (A, T, G)
let S = {(X0 + σ1X1 + · · ·+ σ1 ◦ · · · ◦ σn Xn, {T})

| C
X0,σ1−→ C1

X1,σ2−→ · · ·Cn
Xn,σn+1−→ {T} ∈ G}

and C = {(X0 + σ1X1 + · · · + σ1 ◦ · · · ◦ σi−1 Xi−1, σ1 ◦ · · · ◦ σi Ci)

| C
X0,σ1−→ C1

X1,σ2−→ · · · Xi−1,σi−→ Ci ∈ G and ∃Ci
X,σx−→ · · ·Ci ∈ G

and ∃Ci
Y,σy−→ · · · {T} ∈ G and 6 ∃ j < i | Cj

Z,σz−→ · · ·Cj ∈ G}
in ∀(X, Y) ∈ S ∪ C. Reduces to (A + X, Y, T)

Reduces to (X, Y, T)
if X=Y then True else
if X is irreducible then False else
let {X1,· · ·, Xn} be the set of all possible residuals of X by a ;T reduction

in
∨n

i=1 Reduces to (Xi, Y, T)

Fig. 2. Type checking functions

is finite since pairs (Ci, Xi) are considered up to renaming of fresh variables
introduced by Xi.

If a residual Ci is already present in the graph, that is, there is already a

node Cj such that Ci = σjCj , then the edge C
Xi,σj−→ Cj is added to the graph.

Otherwise, Ci becomes a new node and the edge C
Xi,id−→ Ci is added.

The function Check takes the graph as argument and performs the following
verifications:

• For every simple path (i.e. containing no cycle) from the root to {T} with
context X, it checks that A + X

∗
;T {T}.

Let us focus on the meaning of a path C
X0,σ1−→ C1

X1,σ2−→ · · ·Cn
Xn,σn+1−→ {T}.

By definition, we have C + X0 ;T σ1C1, · · · , Cn + Xn ;T {T} and by
lemma 4 we have

C + X0 + σ1X1 + · · · + σ1 ◦ · · · ◦ σn Xn
∗
;T {T}

18

So, the context X associated with the above path is X = X0 +σ1X1 + · · ·+
σ1 ◦ · · · ◦ σn Xn.

• For every simple path with context X from the root to a residual Ci be-
longing to a cycle, it checks that A + X

∗
;T Ci. In fact, it is sufficient to

check this property for the first residual belonging to a cycle occurring on
the path from the root and only for cycles from which a path to {T} exists.

The verifications that the action A with context X can be reduced to Y are
implemented by function Reduces to(A + X, Y, T). It simply tries all the ;T

reductions on the term A+X using a depth first strategy. If a path leading to
Y is found then True is returned. If Reduces to finds out that all the normal
forms of A + X by ”;T” are different from Y , it returns False which entails
the failure of the verification (TypeCheck(P, T) = False).

The treatment of cycles makes the algorithm incomplete. For each cycle on a
node Ci the algorithm enforces that A and the associated context X reduce
to Ci. While this is a sufficient condition it is not necessary. More precise
solutions exist but they are intricate and, of course, still incomplete.

The termination of TypeCheck is ensured by the following observations:

• The reduction graph is finite.
· The number of nodes is bounded. Since the rhs of the ;T rules are always

a single element (nonterminal) the number of relations in Ci’s never grows.
The number of relation names in a type and in a condition C as well as
the arity of relations are bounded so the number of different Ci (up to
renaming of variables different from V ar(C)) is bounded.

· The number of edges is bounded. For any term Ci there is only a finite
number of basic contexts matching a ; rule (up to renaming of fresh
variables), and for each basic context there is a finite number of different
; reductions.

• Reduces to terminates. It is possible to find a well-founded decreasing or-
dering for ; reductions. As usual with context-free grammars, it is always
possible to put the type definition in a Chomsky-like normal form such that
all ; rules would be one of the two following forms:

NT1 x1 · · ·xi , · · · , NTn y1 · · · yj ;T NTm z1 · · · zk

r x1 · · ·xi ;T NT y1 · · ·yj

Let nt(T) and nnt(T) denote the number of terminals and nonterminals of
T respectively, then T1 << T2 iff nt(T1) < nt(T2) or (nt(T1) = nt(T2) and
nnt(T1) < nnt(T2)) is a well-founded ordering.

The type checking is correct if it ensures that the type of a program is invariant
throughout the reduction. The proof amounts to showing a subject reduction

19

property.

Proposition 5 ∀P, M1 : T M1 −→P M2 and TypeCheck(P, T) ⇒ M2 : T

The proof can be found in the appendix.

4.4 Examples

Even if the theoretical complexity of the algorithm is prohibitive, the cost
seems reasonable in practice. We take here a few examples to illustrate the
type checking process at work.

Example 6 Let us take the Iota program working on type List.

Iota : List = [end x , x > 1 |=⇒ next x y , end y , y := x − 1]

Operations on values are not relevant for type checking and we consider the
single reduction rule

end x |=⇒ next x y , end y

The type definition and the associated ;List rewriting system are:

List = L x L x ;List List

L x = next x y , L y next x y , L y ;List L x

L x = end x end x ;List L x

The type checking amounts to the call

Check((next x y, end y), List, Build(end x, {end x}, List))

Build(end x, {end x}, List) builds the following reduction graph:

end x //(∅,id)
L x //(∅,id)

EDBC (next a x,[x 7→a])@AOO List

We are left with checking:

• Reduces to ((next x y , end y), List, List) which is true because of the
following reduction sequence
next x y , end y ;List next x y , L y ;List L x ;List List

20

• Reduces to ((next x y , end y), L x, List) which is true because of the
following reduction sequence
next x y , end y ;List next x y , L y ;List L x

So, TypeCheck(Iota, List) = True and we conclude that the “List” invariant
is maintained.

Example 7 Let us consider a program performing an insertion at the end of
a list with connections to the last element (as defined in Section 3.3).

Wrong : ListLast = [next x z , last x z , next z z |=⇒

next x z , next z t , last x t , last z t , next t t]

Obviously this program is ill-typed. If the list has more than two elements, the
first elements would still point to z whereas t is the new last element.

The rewriting system of Listlast is

L x z ;Listlast Listlast

next x y , last x z , L y z ;Listlast L x z

next x z , last x z , next z z ;Listlast L x z

The reduction graph is:

next x z , last x z , next z z //(∅,id)
L x z //(∅,id)

EDBC (next a x,last a z),[x 7→a])@AOO Listlast

The type checking fails because the action with the empty context does not meet
the condition on cycles, namely:

next x z , next z t , last x t , last z t , next t t 6;Listlast L x z

and the “Listlast” invariant is not maintained.

However, if we consider the insertion program:

Add : ListLast = [next x y , last x z |=⇒

next x t , next t y , last x z , last t z]

The reduction graph is:

next x y , last x z //(L y z,id)
L x z //(∅,id)

EDBC ((next a x,last a z),[x 7→a])@AOO Listlast

21

It is easy to check that

next x t , next t y , last x z , last t z , L y z
∗
;Listlast L x z

;Listlast Listlast

and TypeCheck yields True; the “Listlast” invariant is maintained.

5 Refinement of Structured Gamma programs

The introduction put forward two main motivations for the design of Struc-
tured Gamma:

• Providing a notation leading to higher-level descriptions of programs ma-
nipulating data structures and making it possible to reason about this struc-
ture.

• Exposing relevant information to derive more efficient implementations.

The first issue was tackled in the previous sections. Here, we show how Struc-
tured Gamma can serve as a basis for program refinements leading to efficient
implementations.

The basic source of inefficiency of any “naive” implementation of Gamma is
the combinatorial explosion entailed by the semantics of the language for the
selection of reacting elements. Let us consider, as an illustration, the following
“maximum segment sum” pure Gamma program.

maxss = [maxg ◦ maxl]

maxl = [(i, v, s) , (i′, v′, s′) , (i′ = i + 1) ,

(s + v′ > s′) |=⇒ (i, v, s) , (i′, v′, s + v′)]

maxg = [(i, v, s) , (i′, v′, s′) , (s′ ≥ s) |=⇒ (i′, v′, s′)]

The notation ”◦” is used to represent the sequential composition of programs
(as in ([13,14]). The input parameter is a sequence of integers. A segment is
a subsequence of consecutive elements and the sum of a segment is the sum
of its values. The program returns the maximum segment sum of the initial
sequence. The elements of the multiset are 3-tuples (i, v, s) where i is the
position of value v in the sequence and s is the maximum sum (computed so
far) of segments ending at position i. The s field of each 3-tuples is originally
set to the v field. The program maxl computes local maxima and maxg returns
the global maximum. The complexity (in terms of number of operations) of
maxg is linear, even on a naive implementation because any pair of elements

22

(or its mirror) leads to a reaction and the action strictly decreases the size of
the multiset. However the worst-case sequential complexity of an unoptimized
implementation of maxl is N3, with N the size of the multiset (i.e. input
sequence). This cost is reached by a strategy choosing the first element (i, v, s)
in decreasing order of i.

As pointed out in ([6,9]), the order in which elements are selected is crucial in-
deed and most of the refinements leading to efficient optimizations of Gamma
programs can be expressed as specific selection orderings. [9] introduces several
refinements and shows that they often lead to efficient well-known implemen-
tations of the corresponding algorithms. This result is quite satisfactory from
a formal point of view because it shows that there is a continuum from speci-
fications written in Gamma to lower-level and efficient program descriptions.
These refinements, however, had to be checked manually. Using Structured
Gamma as a basis, we can provide general conditions ensuring the correctness
of program refinements.

The basic idea, which was already alluded to in Section 3.4, consists in con-
sidering multiset (and type) refinements as the addition of extra relations
between addresses. These relations are used as further constraints on the con-
trol in order to impose a specific ordering for the selection of elements. We
first define the (semantic) notions of refinement on multisets. This notion of
refinement is then extended to structuring types and programs.

Definition 8 Let R be a set of relation names, M , and M ′ multisets, T and
T ′ types and P and P ′ Structured Gamma programs.

• The restriction of a multiset M’ with respect to R is defined as

M ′ \ R = M ′ − {r a1 · · · an | r ∈ R}.

• M ′ is a R-refinement of M (written M ′ >R M) iff M ′ \ R = M .
• T ′ is a R-refinement of T (written T ′ >R T) iff M ′ : T ′ ⇒ (M ′ \ R) : T.
• P ′ is a partial R-refinement of P (written P ′ >R P) iff

M ′ ∗−→P ′ N ′ ⇒ M ′ \ R
∗−→P N ′ \ R.

• P ′ is a total R-refinement of P (written P ′ �R P) iff

M ′ ∗7−→P ′ N ′ ⇒ M ′ \ R
∗7−→P N ′ \ R.

The difference between a partial refinement of programs and a total refinement
is that only the latter preserves termination.

Let us now illustrate this definition with some examples. The types Doubly,
Listlast and Listm defined in Section 3 are refinements of the type List (with
respect to {pred}, {last} and {m1,m2} respectively), but Circular is not

23

a refinement of List. As an illustration of the relevance of this definition
for deriving efficient implementations of Structured Gamma programs, let us
consider yet another refinement of List:

List1 = L1 x

L1 x = next x y , i x , L1 y

L1 x = L2 x

L2 x = next x y , a x , L2 y

L2 x = end x , a x

List1 is a list with two extra relations a and i, which can be seen as ”markers”
used to distinguish two elements of the list. It should be clear that List1 is a
R-refinement of List with R = {a, i}. We present now the translation of maxl

in Structured Gamma

maxl : List = [

next x y , (x.s + y.v > y.s) |=⇒ next x y , y := (y.v, x.s + y.v)]

and a new version maxl1 which takes advantage of the extra relations to add
restrictions on the control:

maxl1 : List1 = [

next x y , i x , a y , (x.s + y.v > y.s) |=⇒ next x y , i x , i y ,

y := (y.v, x.s + y.v)

next x y , i x , a y , (x.s + y.v ≤ y.s) |=⇒ next x y , i x , i y]

In this example, i is the relation characterizing inert elements (elements that
cannot be modified by a reaction) and a corresponds to active elements. It
can be shown that maxl1 is a partial R-refinement of maxl with R = {a, i}. A
program P ′ is a partial refinement of P if P can simulate all the “significant”
reactions of P ′. The intuition is that the reactions that affect only relations
in R are not significant for P . It may be the case however that P ′ is not
a proper implementation of P . The reason is that the termination condition
for P ′ may be “stronger” than the termination condition of P (because of
the extra relations). An extra condition has to be imposed to ensure that
maxl1 is a total refinement of maxl. This condition is also expressed in terms
of type refinements (roughly speaking, the initial multiset must be of type
List2 = next x y , i x , L2 y). The following theorem shows that partial

24

refinement can still serve as the basis of a correct program transformation:

Proposition 9 If P ′ >R P then

M ′ ∗7−→P ′ N ′ and N ′ \ R
∗7−→P N ⇒ M ′ \ R

∗7−→P N

The proof of this theorem follows directly from the definition of partial refine-
ment. The interesting consequence is that the property P ′ >R P allows us
to “replace” P by the sequential composition P ◦ P ′ (with an intermediate
conversion of the result N ′ of P ′ into N ′ \ R).

In the above example, the complexity of the implementation of maxl in Struc-
tured Gamma is quadratic provided that the type List is implemented in mem-
ory as a standard linked list with pointers. So, the translation into Structured
Gamma itself leads to a first improvement of the behavior of the program.
The complexity of maxl1 is linear, but it is only a partial refinement of maxl

and has to be composed with maxl for the transformation to be correct. If the
initial multiset has the correct type List2, then the result of maxl1 is also a
normal form for maxl and the execution of maxl is linear too: it amounts to
checking that a stable state has been reached. So partial refinement is strong
enough to reduce the complexity to N3 to 2N in this case. Proving total refine-
ment allows us to get rid of maxl and the resulting program is the expected
one-pass linear walk through the list.

As a final comment, let us emphasize the fact that simple syntactic criteria
can be used to check type and program (partial) refinement. Basically, a type
T ′ is a R-refinement of type T if the definition of T can be obtained (modulo
renaming of nonterminals and cancelling useless rules) by removing from the
definition of T ′ all the occurrences of (r x1 · · ·xn) with r ∈ R. The same idea
applies to programs. These purely syntactic criteria can be used to check all
the type and program refinements used in this section.

6 Application to coordination

The examples used to illustrate Structured Gamma so far were traditional
algorithmic problems. In this section, we take a rather different view at struc-
tured multisets which makes Structured Gamma suitable as a coordination
language. Coordination languages [5,15], software architecture languages [12]
and configuration languages [18] were proposed as a way to make large ap-
plications more manageable and more amenable to formal verifications. They
are based on the principle that the definition of a software application should
make a clear distinction between individual components and their interaction
in the overall software organization. In order to use Structured Gamma as a

25

coordination language, we interpret the addresses in the multisets as names
of individual entities to be coordinated. Their associated value defines their
behavior (in a given programming language that is independent of the co-
ordination language) and the relations correspond to communication links. A
structuring type provides a description of the shape of the overall architecture.
As an illustration, a client-server architecture can be specified by a structuring
type:

CS = N n

N n = cr c n , ca n c , c c , N n

N n = sr n s , sa s n , s s , N n

N n = m n , x x

cr c n and ca n c denote respectively a communication link from a client c to
the manager n (the client request channel), and the dual link from n to c (the
client answer channel). The case for servers is similar. Unary relations like c, s,
m and x characterize the role of an entity (respectively client, server, manager
and external entity here). The external entity stands for the external world;
it records requests for new clients wanting to be registered in the system.

As an illustration, the following (unconnected) graph represents an instance of
a client-server architecture with clients c1 and c2 and servers s1 and s2. Unary
relations are represented by circles and binary relations by arrows.

c c1GFED@ABC
%%

cr
KK

KK
K s s1GFED@ABC

yy sass
ss
s

x xGFED@ABC m nONMLHIJK
ee
ca

KKKKK

yy cass
ss
s

99
sr sssss

%%
sr
KK

KK
K

c c2GFED@ABC
99

cr sssss

s s2GFED@ABC
ee
sa

KKKKK

The architecture can be seen as the skeleton of an application. In order to
be executable, it must be ‘fleshed’, or completed with a mapping from nodes
to entities defined in a given language. In [20], we propose a language for
programming the individual entities. We provide a structural operational se-
mantics of this language and we show how it cooperates with the semantics of
coordination. The specification of the computation of an architecture instance
mirrors its hierarchical organization:

• The evolution of the local states of the entities follows the rules of the
operational semantics of their programming language.

• The coordinator is in charge of managing the architecture itself (creating
and removing entities and links).

26

Coming back to the client-server architecture, the following two rules specify
a correct coordinator:

x x , m n |=⇒ x x′ , m n , cr c n , ca n c , c c

m n , cr c n , ca n c , c c |=⇒ m n

The first rule is the addition of a new client and the second one represents
the removal of a client from the system. Note that these rules are completed
with side conditions on the states of the entities in the complete version of the
coordinator presented in [20]; otherwise, the coordinator could clearly lead to
infinite behaviors. In the first rule, the side condition bears on the state of the
external entity x which provides the information for deciding the creation of
a new client.

An important advantage of our approach is that coordinators can be checked
statically (using the algorithm of Section 4) to ensure that they preserve the
style of the architecture. The main departure with respect to previous pro-
posals for the formal definition of software architectures ([1,16]) is that we
consider the overall shape (or geometry) of the architecture as an object of its
own. This allows us to check relevant properties of the architecture very easily
(for instance, there is no direct communication link between a server and a
client in the above architecture). In contrast, [1] uses CSP programs to de-
fine the architecture, which leads to a description mixing the communication
protocol with the geometry of the communication.

7 Conclusion

Different notions of context-free graph grammars have been studied in the
literature. They are defined either in terms of node replacement [10] or in
terms of hyper-edge replacement [8]. The graph grammars described in this
paper are closely related to Raoult & Voisin’s (hyper-)graph rewriting [21].
They define a hyper-graph as a set of hyper-edges, written fx1 · · ·xn, where
f is a function symbol (the counterpart of our relations) and x1 · · ·xn are
variables denoting vertices (corresponding to addresses in our case). They
describe rewriting of sets of hyperedges and provide a criterion for confluence.

The main departure of our work with respect to most of the previous studies
of graph rewriting is the fact that we use graphs to represent data structures
rather than programs. The underlying theory is not affected, but this specific
point of view entails different kinds of problems (such as the type checking of
Section 4).

The types introduced in this paper are context-free graph grammars. This

27

makes the definition of square grids, for example, impossible. It is natural to
investigate the extension to types as context-sensitive grammars. With such
an extension, a square grid could be described as

Grid = E x y , S x z , L y z

L x y = E x z , S y t , L z t

L x y = end x , end y

E x y , S x z = east x y , south x z , E z t , S y t

end x , E x y 1 , = end x , east x y , end z ,

end z , S z t 1 south z t , end y , end t

The semantics of context-sensitive types is defined in the same way as the
semantics of context-free types (Section 3). The only difficulty lies in the
checking process since context-sensitive ;T reductions are not necessarily
decreasing with respect to the size of the term. It may be possible to restrict
type definitions such that a well-founded order can be found and our checking
algorithm adapted. We are currently working on this issue.

We think that the framework developed in this paper can be of interest for
applications in various areas. We have already presented program refinement
and coordination. Other applications are the specification of networks of pro-
cessors and the definition of type systems for imperative languages. We just
sketch the latter here.

The type systems currently available for imperative languages are too weak to
detect a significant class of programming errors. For example, they cannot ex-
press the property that a list is doubly-linked or circular. As we have shown in
this paper, such structures can be specified naturally using structuring types.
We provide in [11] a syntax for a smooth integration of structuring types in
C. The programmer can still express pointer manipulations with the expected
constant time execution and benefit from the additional guarantee that the
property specified by the structuring type is an invariant of the program. The
graph types approach [17] shares the same concern. In their framework, a graph
is defined using a canonical spanning tree (called the backbone) and auxiliary
pointers. Only the backbone can be manipulated by programs and some sim-
ple operations may implicitly involve non-constant updates of the auxiliary
pointers. In contrast, our types do not privilege any part of the graph and all
operations on the structure appear explicitly in the rewrite rules.

28

Acknowledgement

Thanks are due to the referees who provided helpful suggestions. This work
was supported by Esprit Basic Research project 9102 Coordination.

References

[1] R. Allen and D. Garlan. Formalizing architectural connection, in Proc. 16th
Int. Conf. Soft. Eng. (IEEE Computer Society, 1994) 71–80.

[2] J.-P. Banâtre and D. Le Métayer. The Gamma model and its discipline of
programming, Science of Computer Programming (Vol. 15, 1990) 55–77.

[3] J.-P. Banâtre and D. Le Métayer. Programming by multiset transformation,
Communications of the ACM (Vol. 36-1, January 1993) 98–111.

[4] J.-P. Banâtre and D. Le Métayer. Gamma and the chemical reaction model:
ten years after, Coordination programming: mechanisms, models and semantics
(Imperial College Press, 1996).

[5] N. Carriero and D. Gelernter. Linda in context, Communications of the ACM
(Vol. 32-4, April 1989) 444–458.

[6] M. Chaudron and E. de Jong. Towards a compositional method for
coordinating Gamma programs, in Proc. Coordination’96 Conference
(Springer Verlag, LNCS 1061,Cesena, 1996) 107–123.

[7] D. Cohen and J. Muylaert-Filho. Introducing a calculus for higher-order
multiset programming, in Proc. Coordination’96 Conference (Springer Verlag,
LNCS 1061,Cesena, 1996) 124–141.

[8] B. Courcelle. Graph rewriting: an algebraic and logic approach, Handbook
of Theoretical Computer Science, Chapter 5, J. van Leeuwen (ed.), Elsevier
Science Publishers, 1990.

[9] C. Creveuil. Techniques d’analyse et de mise en œuvre des programmes
Gamma, PhD Thesis, University of Rennes, 1991.

[10] P. Della Vigna and C. Ghezzi. Context-free graph grammars, Information and
Control (Vol. 37, 1978) 207–233.

[11] P. Fradet and D. Le Métayer. Shape types, in Proc. of Principles of
Programming Languages (ACM Press, Paris, Jan. 1997) 27–39.

[12] D. Garlan and D. Perry. Editor’s Introduction, IEEE Transactions on Software
Engineering, Special Issue on Software Architectures, (1995).

[13] C. Hankin, D. Le Métayer and D. Sands. A calculus of Gamma programs, in
Proc. of the 5th workshop on Languages and Compilers for Parallel Computing
(Yale, Springer Verlag, LNCS 757,1992) 342–355.

29

[14] C. Hankin, D. Le Métayer and D. Sands. A parallel programming style and
its algebra of programs, in Proc. of the PARLE conference (Munich, Springer
Verlag, LNCS 694, 1993) 367–378.

[15] A. A. Holzbacher. A software environment for concurrent coordinated
programming, Proc. First int. Conf. on Coordination Models, Languages and
Applications (Springer Verlag, LNCS 1061, April 1996) 249–266.

[16] P. Inverardi and A. Wolf. Formal specification and analysis of software
architectures using the chemical abstract machine model, IEEE Transactions
on Software Engineering (Vol. 21, No. 4, April 1995) 373–386.

[17] N. Klarlund and M. Schwartzbach. Graph types. In Proc. of Principles of
Programming Languages (ACM Press, Jan. 1993) 196–205.

[18] J. Kramer. Configuration programming. A framework for the development of
distributable systems, Proc. COMPEURO’90 (IEEE, 1990) 374–384.

[19] D. Le Métayer. Higher-order multiset programming, in Proc. of the DIMACS
workshop on specifications of parallel algorithms (American Mathematical
Society, Dimacs series in Discrete Mathematics, Vol. 18, 1994).

[20] D. Le Métayer. Software architecture styles as graph grammars, in Proc.
of the ACM SIGSOFT’96 4th Symposium on the Foundations of Software
Engineering, (1996) 15–23.

[21] J.-C. Raoult and F. Voisin. Set-theoretic graph rewriting, in Proc. int.
Workshop on Graph Transformations in Computer Science, (Springer Verlag,
LNCS 776, 1993) 312–325.

Appendix

Proof of Proposition 5

A rewriting M1 −→P M2 involves a rule C |=⇒ A and can be described as
M1 = M + C −→ M + A = M2. Since M + C is a multiset of type T then,
there is a reduction

M + C
∗
;T X0 + · · ·+ Xn + C

∗
;T {T}

with the reductions

C + X0 ;T C1 C1 + X1 ;T C2 · · · Cn + Xn ;T {T}

such as equation (1) in Section 4.2.

30

We consider two cases:

(1) All Ci are different (even up to renaming of variables).
Let us show that the reduction chain considered is represented (up to

renaming) in the reduction graph computed by Build(C, {C}, T). Note
that the type checking algorithm uses two renamings. The first one bounds
the number of edges (i.e. makes the set CX finite). We write αi to denote
this kind of renaming (αi is used implicitly in the definition of CX). The
second one bounds the number of nodes; it is denoted by σi.

Starting from C, Build considers all the pairs (C ′, X ′) such that C +
X ′ ;T C ′ up to renaming of fresh variables introduced by X ′. So, it must
be the case that a pair (α1X0, α1C1) has been considered in the reduction
C + α1X0 ;T α1C1. But α1C1 might have been already present in the

graph up to renaming. So, in general, there is an edge C
X′

0,σ1−→ C ′
1 in the

graph such that X ′
0 = α1X0 and σ1C

′
1 = α1C1.

Using the same reasoning, we are ensured that the graph includes the
edges

C ′
1

X′
1,σ2−→ C ′

2 with X ′
1 = α2 ◦ σ−1

1 ◦ α1 X1

· · ·

C ′
n

X′
n,σn+1−→ {T} with X ′

n = αn+1 ◦ σ−1
n ◦ · · · ◦ σ−1

1 ◦ α1 Xn

Note that the domain of αi comprises only fresh variables of Xi−1 and
that the domain of σj is included in the set of variables of Cj. Thus, if
j < i the domains of αi and σj are disjoint and the X ′

i can be rewritten
as

X ′
i = σ−1

i ◦ · · · ◦ σ−1
1 ◦ αi+1 ◦ · · · ◦ α1 Xi

Now, Check has verified that

A + X ′
0 + σ1X

′
1 + · · ·+ σ1 ◦ · · · ◦ σn X ′

n
∗
;T {T}

by replacing the X ′
i’s by their definition, we get

A + α1X0 + α2 ◦ α1X1 + · · · + αn+1 ◦ · · · ◦ α1 Xn
∗
;T {T}

The domains of αi’s are disjoint (they are renamings of fresh variables)
so any composition of αi’s can be replaced by a unique variable renaming
α whose domain is the set of fresh variables introduced by all the basic
contexts. Furthermore, the domain of α is also disjoint from V ar(A),
hence we have:

αA + αX0 + αX1 + · · ·+ αXn
∗
;T α{T}

31

which implies by lemma 4

A + X0 + X1 + · · · + Xn
∗
;T {T}

so M + A
∗
;T X0 + · · · + Xn + A

∗
;T {T}

(2) Otherwise, let Cj, Ck (j < k) be the first residuals such that σCj = Ck.
Using the same reasoning as before we can show that there is a path

in the graph

C
X′

0,σ1−→ C ′
1 · · ·

X′
j−1,σj−→ C ′

j · · ·
X′

k−1
,σk−→ C ′

k

such that

X ′
i = σ−1

i ◦ · · · ◦ σ−1
1 ◦ α Xi and C ′

i = σ−1
i ◦ · · · ◦ σ−1

1 ◦ α Ci

Since σCj = Ck and C ′
j and C ′

k are renamings of respectively Cj and Ck,
there is a renaming τ such that τC ′

j = C ′
k. This corresponds to a cycle

in a graph such that C ′
j leads to {T} and is the first node belonging to a

cycle on the path. So, Check has verified that

A + X ′
0 + · · ·+ σ1 ◦ · · · ◦ σj−1X

′
j−1

∗
;T σ1 ◦ · · ·σjC

′
j

According to the definition of X ′
i and C ′

i this can be rewritten as

αA + αX0 + · · · + αXj−1
∗
;T αCj

thus, by lemma 4,

A + X0 + · · · + Xj−1
∗
;T Cj

and, by hypothesis,

Cj + Xj + · · ·+ Xn
∗
;T {T}

so,

M + A
∗
;T X0 + · · ·+ Xn + A

∗
;T Cj + Xj + · · · + Xn

∗
;T {T}

Therefore, M + A has type T and the subject reduction property holds. 2

32

