Electronic Notes in Theoretical Computer Science 88 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume88.html 14 pages

Safety Property Verification
of Cyclic Synchronous Circuits

Koen Claessen 1

Department of Computing Science
Chalmers University of Technology
Gothenburg, Sweden

Abstract

Today’s most common formal verification tools for hardware are unable to deal with
circuits containing combinational loops. However, in the areas of hardware compi-
lation, circuit synthesis and circuit optimization, it is quite natural for a subclass
of these loops, the so-called constructive loops, to arise. These are loops that phys-
ically exist in a circuit, but are never logically taken. In this paper, we present a
method for safety property verification of circuits containing constructive combina-
tional loops, based on propositional theorem proving and temporal induction. It
can be used to just prove constructivess of circuits, but also to directly prove safety
properties of the circuits. Unlike previously proposed methods, no fixed point it-
eration is needed, we do not have to compute reachable states, and no cycle-free
representation of the circuit has to be computed.

1 Introduction

Synchronous circuits containing combinational loops often arise in in the ar-
eas of hardware compilation, circuit synthesis and circuit optimization. An
example is the synchronous language Esterel, which can directly be compiled
to hardware circuits that possibly contain cyclic logic [10]. Implementing the
same functionality without the cyclic logic often means a blow-up in circuit
size. Today’s most common circuit analysis and verification tools however
reject the use of combinational cycles in synchronous hardware. This makes
it difficult to use standard tools in order to formally verify properties of the
generated cyclic circuits.

However, often the produced cycles are so-called false cycles, in the sense that
they do not really cause a problem when implementing and running the circuit

1 Email: koen@cs.chalmers.se

(©2003 Published by Elsevier Science B. V.

CLAESSEN

- [— .

Fig. 1. A constructive cyclic circuit

electrically. An example taken from [7] (presented in Figure 1) consists of a
cyclic circuit with two combinational subcircuits F' and G. The circuit either
computes y = G(F(z)) or y = F(G(x)), depending on the selection signal
s. The circuit uses only one copy of F' and G each and therefore contains a
combinational cycle. However, the cycle is false in the sense that the output
y is always well-defined.

For a given cyclic circuit, a separate analysis of the circuit is needed to prove
that all present cycles are false, or, in the terminology of [10], that the circuit
is constructive. In 1994, Malik presented such an analysis for combinational
circuits [7], which was extended by Shiple et al. to be able to deal with sequen-
tial circuits [10]. Their analysis produces a new circuit, which is functionally
equivalent to the original circuit, but does not contain any cycles. This new
circuit can then be analyzed by other formal verification tools in order to check
formal properties of the circuit.

The mentioned analyses are both based on BDDs [3]. This has as a drawback
that circuits which are difficult to represent using BDDs are difficult to handle
using the method, since the method inherently relies on computing a BDD
which represents the function that the circuit implements. Also, the analyses
involve a fixed point computation over BDDs, which might introduce extra
costs.

In 1999, Namjoshi et al. presented a circuit analysis method that does not
require a fixed point iteration [8]. However, their method only works for
combinational circuits, and to make the method usable for sequential circuits
they resort to similar methods as the ones in [10]; decision diagrams are used
to calculate the reachable states in the system.

The main contribution of this paper is the following. We present a sound
and complete automatic analysis method for circuits containing combinational
loops that does not involve a fixed point iteration, calculating reachable states,
or computing a new cycle-free circuit, that proves constructiveness of circuits.
We use the basic idea from [8], but we use a propositional theorem prover

2

CLAESSEN

(sometimes called SAT-solver) instead of decision diagrams. Then, we use
temporal induction [9] to extend the method to sequential circuits.

As said, the method does not compute a non-cyclic equivalent circuit. Instead,
one can use the method directly to also prove possible safety properties of the
circuit.

The rest of the paper is organized as follows. The first three sections can be
seen as a tutorial on the subject and introduce background material, large
parts of which are also presented elsewhere; in Section 2, we introduce the
definition of circuits, and what their naive, classical semantics is; in Section 3,
we show how to verify safety properties of these circuits, under the classical
semantics, using a propositional theorem prover; in Section 4, we present
the constructive semantics of circuits, which corresponds more closely to what
happens in electrical circuits. Our main result is presented in Section 5, where
we show how safety properties of cyclic circuits can be proved, under the
constructive semantics. Finally, in Section 6 we discuss related work and
conclude.

2 Classical Semantics of Circuits

In this section, we introduce the model of combinational and sequential circuits
we use in the paper, and what their classical semantics is. We closely follow
the terminology from [1].

Combinational Circuits. A boolean formula is built up from variables,
x,y,z, and operators 0,1 (nullary), — (unary), and A,V,=, @ (binary). A
definition is written x = f, and consists of a boolean variable x and a formula
f. A combinational circuit is a finite set C' of definitions, such that, for every
variable z, there is at most one definition of the form x = f in C. The
restriction on multiple definitions is added because we do not want to talk
about circuits which contain points which are driven by multiple signals.

A variable z of a circuit C is called an input, if there is no definition of
the form = = f contained in C. A solution of a combinational circuit is a
valuation, i.e. an assignment of all variables to a boolean value 0 or 1, such
that all definitions are satisfied, using the usual interpretation of the boolean
operators.

Sequential Circuits. A delayed definition is written x := y, and consists of
two variables x and y. A sequential circuit (C, D) is a pair of a combinational
circuit C' and a finite set of delayed definitions D. Again, we apply the re-
striction that, for every variable x, there can be at most one definition of the
form x = f in C or a delayed definition of the form z := y in D. A variable
x is called an input of (C, D), if there is no definition in C' of the form z = f
and no delayed definition in D of the form z :=y.

3

CLAESSEN

In order to help defining the semantics of sequential circuits, we define the
following renaming operations. Let ¢ > 1 be a natural number. For a com-
binational circuit C, we write C[i] for the copy of C, with each variable z
replaced by a fresh variable z;. For a set of delayed definitions D, we write
Dii] for the combinational circuit {z; = y;_1 | © := y € D}. The initial
state of the circuit is dealt with by defining Dy as the combinational cir-
cuit {yo = 0 | x := y € D}. Lastly, for a valuation s over variables x, we
write s[i] for the valuation over labelled variables x;, for which it holds that

slil(xi) = s(x).
For a given sequential circuit (C, D), we define the combinational expansion,
written (C, D)[k], as the combinational circuit:

k

Jcliju Dl

=1

A sequence of valuations (sy,...,sy) is called a solution path of a sequential
circuit (C, D), if (s1[1] U s2[2] U -+ U si[k]) is a solution of the combinational
circuit Dy U (C, D)[k].

3 Proving Safety Properties

In this section, we show how to automatically prove safety properties of com-
binational and sequential circuits.

Safety Properties. For the purposes of this paper, a safety property is a
particular variable p in the circuit that is supposed to be always true for all
possible scenarios of a circuit. We say that, for a given combinational circuit
C, a safety property p is valid, if s(p) = 1, for all solutions s of C'. If we want
the safety property to be a more complicated property than just a variable,
namely a formula f, we can simply add p = f as a definition to C'. In the rest
of the paper, we will sometimes do this implicitly.

For a sequential circuit (C, D), we say that a safety property p is valid, if, for
all k, for all solution paths (s1,...,sx) of (C, D), and for all 1 < ¢ < k, it is
the case that s;(p) = 1.

Proving Combinational Properties. In order to check if a given property
p is valid for a given combinational circuit C', we can use a propositional logic
theorem prover, often called SAT-solver. There are many such theorem provers
available. Our choice of theorem prover is discussed in Section 6. To check
the validity of a safety property p, we simply prove:

(A1)~

4

CLAESSEN

As is well-known, proving the validity of combinational safety properties is
a co-NP-complete problem. Therefore, there are only worst-case exponential
time algorithms known that can do this.

Proving Sequential Properties. Next, we show how to check if a safety
property p is valid for a given sequential circuit (C, D). Here, we use the
method of temporal induction, as described in [9]. The idea is to prove the
property in two steps: the base case, and the induction step.

In the base case, we prove that the property holds in the initial state. This
corresponds to proving that p is a valid property of the combinational circuit
Dy U (C, D)[1]. We can use the above method to do that.

In the step case, we prove that if the property holds in a certain state, it will
also hold in the next state. This corresponds to proving that p; = ps is valid
in the combinational circuit (C, D)[2]. This can also be done with the method
described above.

Complete Induction. The method of temporal induction as described
above is sound, but not complete. This means that there are safety properties
which are valid but cannot be proved by the proposed method. In particular,
when the safety property p is very weak, assuming it as an induction hypothesis
is not enough for the induction step to be a valid formula.

In order to make temporal induction complete, we add the notion of induction
depth, which is a natural number d. We modify the base case such that it
proves the property for the first d time steps, so that we can assume that the
property holds for d steps in the induction step. Thus, the new base case is
proving p; A- - - Apg valid for the circuit DyU(C, D)[d]. The step case becomes
proving p; A -+ A pg = pa+1 valid for the circuit (C, D)[d + 1].

If a certain property is valid for the base case, but not the step case, we simply
increase the induction depth d and try again. If the base case does not hold,
we get a trace exhibiting the error back from the theorem prover.

However, it is possible that this process never terminates. This can happen
when the unreachable state space contains loops. To exclude the loops and to
make the method complete, we can add an extra assumption in the step case,
namely that all states used in it are unique. It is sound to assume this, since
if there is a solution path leading to a state where p is not true, there also
exists a solution path leading to that state which consists of unique states.
So, we define Diff(D, 4, j) to mean that the states in time instances i and j are

different:
Diff(D, i, j) = — < N wi= xj) .

r:=yeD

CLAESSEN

r=xANx =z r=xV r=0Azx
(a) (b) (c) (d)
Fig. 2. Four cyclic circuits

The new induction step then amounts to proving the following formula valid
for the circuit (C, D)[d + 1]:

(/\ Diff(D,i,j)) APL A NPg = Pd+1-

1<i<j<d+1

A more detailed description of temporal induction can be found in [9,2], where
the interested reader can find a soundness and completeness proof, and also
several ways to make temporal induction stronger.

4 Constructive Semantics of Circuits

In this section, we discuss what circuits mean when we implement them electri-
cally. The interesting case is when the combinational part of a circuit contains
a so-called cycle.

Cyclicity. For a given combinational circuit C, and variables x and y, we
say that x directly depends on vy, if y is contained in the right hand side of the
definition of x. By taking the transitive closure of this relation, we obtain the
relation x depends on y.

Now, a combinational circuit C' is called cyclic if there exists a variable x such
that x depends on itself. A sequential circuit (C, D) is cyclic if C' is cyclic.

Electrical Circuits. The circuits we have defined mathematically corre-
spond to an obvious electrical implementation: The logical connectives can be
implemented as the corresponding logical gates, points with the same variable
name are wired together, and delayed definitions can be implemented using
registers. For combinational acyclic circuits, we know that there exists ex-
actly one solution for each input vector. This is also the solution that the
corresponding electrical circuit computes.

For cyclic circuits, the classical semantics is too naive. To illustrate this, in
Figure 2 we present four examples of cyclic combinational circuits. None of
them have any inputs. Circuit (a) has two solutions (x = 0 and z = 1), circuit
(b) has no solutions, and circuit (¢) and (d) both have exactly one solution
(x =1, resp. z =0).

However, for most existing circuit technologies, such as the standard imple-
mentation of gates using CMOS transistors, only circuit (d) electrically com-
putes that solution. Circuit (a), (b) and (c) all lead to undriven outputs.

6

CLAESSEN

T | T |y |zANy|zVy|lz=y|xzDyY
T 1 0|0 0 0 1 0
1,0 0|1 0 1 1 1
1] L 10 0 1 0 1
11 1 1 1 0
L]0 0 L L L
0L 0 L 1 €
111 L 1 1 1
1L 1 1 1 L
1L 1 €L 1 €

Fig. 3. Parallel extensions of the operators

Electrical Semantics. In order to know what a cyclic circuit means elec-
trically, we have to be able to reason about undriven wires. We do this by
extending the boolean domain {0, 1} we have used so far to a ternary domain
{L,0,1}. We call the value L undefined, and 0 and 1 the defined values.

In order to talk about solutions of circuits using this new domain, we have to
extend our boolean operators to these domains as well. It turns out that the
electrical gates in most technologies behave as specified in Figure 3. We can
see that, for example, an and gate (A) produces the output 0 as soon as one
of its inputs is 0, even when the other input is undefined. Also note that the
xor gate (@) is a so-called strict operator; as soon as one of its arguments is
L, the output is L as well.

If we interpret our new ternary domain as a Scott domain with 1 as the
least element, the operators in Figure 3 are called the parallel extensions of
the corresponding boolean operators. We use the reflexive ordering from the
Scott domain in the remainder of this paper; furthermore, 1 < 0 and 1 <1,
but 0 and 1 are incomparable. We can easily see that the operators we are
using are all monotonic with respect to this ordering. The ordering naturally
extends to vectors and sequences of values: (x1,...,2,) < (y1,...,y,) if and
only if z; < y; for all 7.

Constructive Combinational Circuits. Extending the boolean domain
to a ternary domain possibly increases the number of solutions of a combina-
tional circuit. However, since our operators are monotonic, there always exists
a least solution. This follows from Tarski’s fixed point theorem, as described
in [7]. In the paper it is also argued that, given a combinational circuit, and
given defined values for all the inputs to the circuit, its electrical counterpart
always computes the least solution in the Scott domain!

7

CLAESSEN

However, we do not want the circuit to compute undriven values. Thus, we
make the following definition. A combinational circuit C'is called constructive,
if and only if, for all defined inputs, all values in the corresponding least
solution are defined [10].

We have now established the following. If a circuit is constructive, then we
know that its classical semantics corresponds to the constructive semantics,
i.e. how the circuit behaves electrically.

Constructive Sequential Circuits. Similarly, we can define what a con-
structive sequential circuit is. A sequential circuit (C, D) is constructive if,
for all k£, and for all defined input sequences of length k, all values in the least
solution path of length k are defined.

Note that, for non-constructive sequential circuits, least solution paths con-
taining 1 might not faithfully reflect what happens in the circuit electrically.
In fact, since it is very much unspecified what happens when a delay compo-
nent gets a L as input, it is difficult to model what happens electrically in
non-constructive sequential circuits. But for constructive sequential circuits,
our model is accurate.

Weakening. One extra remark can be made here: For a circuit to produce
meaningful results, we might want to weaken the definition of constructiveness
to only require certain points in the circuit (for example all outputs, and
inputs to all registers) to always have defined values, instead of the stronger
requirement of all points in the circuit being defined. In the remainder of
the paper, we assume the strongest definition of constructiveness, but we can
easily adapt the methods to deal with weaker definitions as well.

Unique Solutions. The constructive semantics is defined in terms of least
solutions. However, since the domain we are using has a specific shape, we
can derive a useful lemma: A combinational circuit C' is constructive, if and
only if, for all defined inputs, all values in all solutions are defined [8]. The
proof follows from the fact that, if all solutions are defined, so is the least
solution. And if the least solution is defined, there can only be one solution
(since the existence of any other defined solution would imply that there is a
least solution containing L), and so all solutions are defined.

We have a similar lemma for sequential circuits. A sequential circuit (C, D)
is constructive, if and only if, for all £, and for all defined input sequences of
length k, all values in all solution paths of length k are defined.

These lemmas are useful, because they eliminate the need for a fixpoint itera-
tion, and thus allow us to formulate the constructiveness condition as a safety
property of a circuit.

CLAESSEN

'\DI—I—\O‘H

Fig. 4. Dual rail encodings of the domains

5 Safety Properties of Cyclic Circuits

In this section, we show how to check safety properties of circuits containing
cycles, using the constructive semantics.

Safety and Constructiveness. In order to check a safety property of a
circuit with cycles, we should really check that the circuit is constructive first.
For example, since circuit (b) in Figure 2 contains a contradiction using the
classical semantics, it is possible to prove any safety property.

Thus, we make the following definition. Given a circuit, and a safety property
p, p is constructively valid if the circuit is constructive, and the property p is a
valid safety property for the circuit. So, in order to check if a safety property
is valid, we need to check if the circuit is constructive.

Dual Rail Encoding. Constructiveness of both sequential and combina-
tional circuits can be formulated as a safety property in the classical sense, of
a transformed version of the circuit. The constructiveness condition is, by the
lemma mentioned at the end of the previous section, already almost a safety
property. The only difference is the fact that it is formulated over a ternary
domain, instead of a boolean domain.

Thus, we encode the ternary domain by introducing two new boolean variables,
2? and 2!, for every ternary variable x. This is called dual rail encoding. In
Figure 4 we show how the values of the new variables correspond to the values
of . The variable 2! is 1 whenever z is provably 1, and 2" is 1 whenever z
is provably 0. Note that we have to introduce an extra ‘ghost’ value (1,1)
in the domain, which does not correspond to any real value. We will ignore
solutions containing this ghost value, since it does not correspond to anything
in our model.

Definition Encoding. When changing every ternary variable to two binary
variables, we have to change the definitions in the circuit accordingly. To do
this, we assume that all definitions only contain shallow formulas, i.e. formulas
containing at most one operator. This can always be obtained by introducing
extra variables. Figures 5 and 6 show how to convert such definitions to use
the dual rail variables. These definitions correspond to the tables in Figure 3.

9

CLAESSEN

r—y — aV—¢° r=—y — 20—y
pRg— 2l =P

r=yANz — a0=190v20 r=yVz — a20=9"A20
2=yl A2 2= yltv 2

r=y=2z — 2'=y'A2" r=y®z — a2=9y'ANLVyt A
rt =90V 2! =90 Azt vyt A0

Fig. 5. Dual rail encodings of combinational definitions

Ti=y — T’ =y

Fig. 6. Dual rail encoding of delayed definitions

The property that holds for the dual rail encodings of the operators is that a
solution of a definition in the ternary domain corresponds to a classical solution
of the transformed definition, according to the dual-rail domain encoding.

Note that every delayed definition is turned into one delayed definition, and
one normal definition. This means that the transformation does not increase
the number of state variables in a circuit. This is correct since we can assume
that the output of a delay component in a circuit is always defined. This
assumption is however only valid if we really prove that the input to a delay
component is always defined.

The classical solutions of the resulting circuit correspond to the constructive
solutions of the original circuit.

Constructiveness as a Safety Property. Now, we formulate the con-
structiveness condition as a classical safety property: For all defined inputs, all
solutions are defined. This is the same as showing that the following property
is a valid safety property for the transformed circuit. (We let I be the set of
all input variables, and V' be the set of all variables in the circuit.)

(A=) = (p)

We assume that the inputs are defined, using an xor (&) to assure that (i°, ')
is either (0,1) or (1,0). Then, we check if all variables are defined, using or
(V), to check that they are not (0,0). The reason we do not use xor (®)
for the other variables also, is because proving the property is easier when

10

CLAESSEN

weak properties occur on the right hand side of the implication, and strong
properties on the left hand side.

Note that this safety property can be used for both combinational and sequen-
tial circuits. Thus, to check if a given circuit is constructive, we transform the
circuit as mentioned above, and verify that the above safety property holds for
the transformed circuit. We can use any formal verification method for that,
provided it gives classical semantics to combinational cycles. For our purposes,
the method of temporal induction presented in Section 3 has worked well.

Safety Properties of Cyclic Circuits. As a bonus, instead of first showing
constructiveness of a circuit, and later proving the desired safety property, we
can do both at the same time. Given that we are interested in a safety property
p of a cyclic circuit, we can transform the circuit as above and prove:

(Ai0®i1> = (/\xo\/xl) /\p1
i€l zeV

This has an advantage especially when doing temporal induction proofs. The
success of an inductive proof depends on the stength of the inductive hypoth-
esis. In general, proving multiple properties inductively at the same time can
actually reduce the required induction depth. We have observed many cases
where the required induction depth of the constructiveness proof went down
when proving a strong safety property at the same time.

6 Discussion

Related Work. As mentioned in the introduction, the work that comes
closest to ours is the work presented in [8]. There are two main differences
between their work and ours: (1) We use a propositional theorem prover and
they use decision diagrams; (2) They compute the reachable states of the
system whereas we use temporal induction. Our experience with temporal
induction is that, for strong enough properties, the required induction depth
is very low, so the property becomes relatively easy to prove. Constructiveness
is a very strong property, since it expresses information about all points in the
circuit. In practice, we have found that we usually do not need an induction
depth of more than 1 or 2, leading to easy propositional formulas. Note that
the induction depth is only dependent on how much the reachability of states
affects the constructiveness of the circuit. If the circuit is constructive in all
states, even the unreachable ones (or if the circuit is combinational), induction
with depth 0 is always enough.

BDDs vs. propositional theorem proving. Both BDDs and propo-
sitional theorem proving methods have their own niches in which they work
well. BDDs have been used to show constructiveness of circuits with reason-

11

CLAESSEN

able success in the past, but we believe that propositional methods are better
suited for this job. We believe that the reason for this is that many mod-
ern propositional theorem provers are based on algorithms which can globally
propagate local information in a cheap way. Examples of such algorithms are
Stalmarck’s method [12] and algorithms that use learning [11]. In many cases,
propagation of information is all that is needed to show constructiveness,
because often constructiveness only depends on a small part of the control
logic of the circuit, and definedness of points is easily propagated to solve the
problem. In contrast, when using BDDs, one often has to represent logically
irrelevant parts of the circuit too.

Let us take a look at Malik’s example, presented in Figure 1 in the intro-
duction). Now, if x is a wide datapath, and correspondingly F' and G are
complicated functions with large datapaths, any BDD calculation will have
difficulties with even representing F' and G. However, reasoning about the
constructiveness of the circuit is not at all affected by what F' and G actually
implement; only the number of cycles in the circuit depends on the size of the
datapath of F' and GG. It becomes simply impossible to use BDDs when dealing
with this kind of circuit, for example when F' and G are multiplier-like circuits
[4]. In contrast, though most SAT-solvers also have problems with reasoning
about multipliers, the constructiveness analysis still only needs to propagate
definedness information through F' and G, and thus in theory could take linear
time. In practice however, our experiments show the time complexity to be
closer to quadratic time.

Another example, encountered in one of our experiments, contains a FIFO
buffer which is implemented in hardware in the usual way: a sequence of reg-
isters connected in a cycle, and a head and tail indexing mechanism. Now,
implementing a find functionality, which finds the first element in the FIFO
satsifying some property within one clock cycle, in the most efficient way pos-
sible, requires cycles in the combinational logic. (This is because the search
starts at the head and ends at the tail, which are dynamic indexes in a cyclic
structure.) Representing FIFOs using BDDs is not practically feasible for
large datapaths, since it is well-known that BDDs blow up for this case. How-
ever, the constructiveness of the combinational loops is not dependent on the
datapath at all. Increasing the datapath up to 232, our analysis was still ca-
pable of proving constructiveness in just a few seconds. Our own BDD-based
analyses were incapable of building the BDDs.

To sum up, our main point here is that propagation based theorem proving
methods are well-suited for solving this kind of problem.

Implementation. We implemented the proposed analysis in Lava [6], our
synchronous hardware description and verification workbench. Formulating
the constructiveness condition as a safety property has the advantage that
we can implement the analysis independently from the underlying verification

12

CLAESSEN

method. In Lava, we just implemented a circuit transformation that performs
the translation described in Section 5. The analysis can then be performed
by any built-in verification method using classical semantics, such as the ones
described in Section 3. The method we mostly use, as described, is induction
with increasing depth. We have since extensively used the analysis in our
hardware compilation framework [5].

Possible Improvements. One possibility for improvement which we have
not pursued is to investigate the circuit structurally, and only apply the analy-
sis on the strongly connected components, i.e. the parts of the circuit involved
in a cycle. In practice, this would amount to not applying the dual-rail encod-
ing on the paths that lead from the inputs to the parts of the circuit containing
cycles, and not on the paths leading from the cycles to the registers.

Another possibility for efficiency improvement would be to use a SAT-solver
that uses a 3-valued logic internally. Many SAT algorithms internally use a
structure which would make it easy to adapt them to a 3-valued world.

Limitations and Other Future Work. One limitation of the proposed
method is that it does not work when extending the ternary domain with
a fourth element, T, representing a short circuit, i.e. a point in the circuit
driven by both 0 and 1. As far as we know, computing constructiveness of
such circuits requires a fixpoint iteration, because the lemma mentioned at
the end of Section 4 does not hold for the corresponding domain. The BDD-
based methods in [7,10] still work in this case, because they are capable of
computing the least fixed point. Dealing with T remains a part of our future
work.

References

[1] Gérard Berry. The constructive semantics of Pure Esterel. Unfinished draft,
available from http://www.synalp.org/, 1999.

[2] Per Bjesse and Koen Claessen. SAT-based verification without state space
traversal. In Formal Methods in Computer Aided Design, 2000.

[3] R. E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, 35(8), 1986.

[4] R. E. Bryant. On the complexity of VLSI implementations and graph
representations of boolean functions with application to integer multiplication.
IEEE Transactions on Computers, 40(2), 1991.

[5] K. Claessen and G. Pace. An embedded language framework for hardware
compilation. In Designing Correct Circuits, 2002.

[6] K. Claessen and M. Sheeran. A tutorial on Lava: A hardware description

13

CLAESSEN

and verification system. Available from http://www.cs.chalmers.se/ koen/
Lava/, 2000.

[7] S. Malik. Analysis of cyclic combinational circuits. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 13(7), July 1994.

[8] K. S. Namjoshi and R. P. Kurshan. Efficient analysis of cyclic definitions. In
Computer Aided Verification. Springer, 1999.

[9] Mary Sheeran, Satnam Singh, and Gunnar Stalmarck. Checking safety
properties using induction and a SAT-solver. In FMCAD, LNCS 1954. Springer,
2000.

[10] T. Shiple, G. Berry, and H. Touati. Constructive analysis of cyclic circuits. In
FEuropean Design and Test Conference, 1996.

[11] Joao Marques Silva. The GRASP homepage. Available from http://
sat.inesc.pt/” jpms/grasp/, 2000.

[12] Gunnar Stalmarck. A System for Determining Propositional Logic Theorems
by Applying Values and Rules to Triplets that are Generated from a Formula,
1989. Swedish Patent No. 467 076 (approved 1992), U.S. Patent No. 5 276 897
(1994), European Patent No. 0403 454 (1995).

14

