
Electronic Notes in Theoretical Computer Science 88 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume88.html 15 pages

A–maze–ing Esterel

Joaquin Aguado and Michael Mendler 1,2

Fakultät für Wirtschaftsinformatik und Angewandte Informatik,

Universität Bamberg, Germany

Gerald Lüttgen 3

Department of Computer Science, The University of York, U.K.

Abstract

This paper shows that the kernel fragment of Esterel corresponding to combinational
circuits admits a natural game–theoretic interpretation. Technically, combinational
Esterel programs are mapped into finite two–player games in such a way that the
standard must– and cannot–analysis of signal statuses is reflected in the compu-
tation of winning strategies. The novel game–theoretic approach complements the
existing behavioral, operational, circuit–based, and model–theoretic accounts of Es-
terel’s semantics and offers a new didactic perspective for familiarizing students and
engineers with this intricate constructive semantics.

1 Introduction

The classical theory of games, originally developed in descriptive set theory,
has recently emerged as a surprisingly versatile mathematical tool in the se-
mantics of programming languages [1]. The power of the games model rests
on its ability to handle combinatorially complex situations, such as the alter-
nate nesting of quantifiers, in a natural and intuitive fashion [8]. Perhaps the
most prominent recent example of successful application is the game–theoretic
solution of the full–abstraction problem for the functional language PCF [5],
which had been open for a long time. This has led to new approaches in
the field of control–flow analysis [7], integrating imperative, object–oriented,
higher–order functional, and concurrent features.

Games are a convincing metaphor not only in functional programming but
also in the field of reactive–systems modeling. This is because the interaction

1 Email: joaquin.aguado@wiai.uni-bamberg.de.
2 Email: michael.mendler@wiai.uni-bamberg.de.
3 Email: luettgen@cs.york.ac.uk. Research supported by EPSRC grant GR/M99637.

c©2003 Published by Elsevier Science B. V.

Aguado, Lüttgen and Mendler

between a reactive system and its environment has a strong analogy in the
moves between a player and his or her opponent in a simple two–player maze
game. This interaction problem is then solved by providing a winning strategy
that in turn may be understood as a system reaction. In this paper we report
on a novel application of this metaphor to the specific interaction problem that
arises in synchronous programming under the synchrony hypothesis, namely
the characterization of present and absent signals within a system’s reaction
under a given environment. Using Berry’s language Esterel [3] as an example,
we prove that the underlying intricate constructive semantics of reactions can
be captured in a very natural game–theoretic manner.

Consider a two–player maze game, where the board consists of one–way
corridors that connect rooms and the game figure is just a single token. Cor-
ridors can be of two types: visible and secret. Placing the token in some
arbitrary room, the starting player, say Jaakko, may move the token from one
room to the next through arbitrarily many secret corridors; however, as soon
as Jaakko moves through a visible corridor, his turn ends. Control passes
on to the opponent, say Leon, who may continue in a similar fashion from
the current position of the token on the board. 4 If the token gets stuck in a
dungeon, i.e., a room with no outgoing corridors, the current player loses and
the opponent wins. Hence, the objective of the game is to drive the opponent
into a dungeon. Obviously, a game board can be modeled as a finite directed
graph, such as the one depicted in Fig. 1, where nodes are rooms, solid edges
represent visible corridors, and dashed edges represent secret corridors.

Given a game board and choosing an initial room for the token, this room
may now be classified according to whether the starting player Jaakko (i) has
the possibility always to win (if he plays cleverly), (ii) must always lose (no
matter how cleverly he plays), or (iii) can at best reach a draw by ensuring that
Leon can never force him into a dungeon. For instance, using the board Mex

illustrated in Fig. 1 and initially placing the token in room t5, Jaakko can move
the token to room t6 through a visible corridor, thereby handing over control
to Leon. Now Leon can only move the token into dungeon t0, again through a
visible corridor, such that control passes back to Jaakko who instantaneously
loses. This implies that room t5 is a losing position (for the starting player
Jaakko). However, if instead the token is initially placed in room t4, then
Jaakko has two strategies for winning. On the one hand, Jaakko may move
the token through a visible corridor to room t5 where, as we have just seen,
player Leon will necessarily lose after two more turns. On the other hand,
Jaakko may use the secret corridor to move the token into room a and in
the same turn further into dungeon t0 via a visible corridor, thus winning
the game. Jaakko is said to have a winning strategy from room t4, and t4 is
referred to as a winning position. However, a game may also end in a draw.

4 The players are named after the logicians Jaakko Hintikka, who pioneered the field of
semantic games for logic, and Leon Henkin, who first introduced game–theoretic interpre-
tations of quantifiers.

2

Aguado, Lüttgen and Mendler

t6

t7 d

f

t5

at0t3b

t2 ct1

t9

e

g

t8

t4

M1

M2

Fig. 1. Example game board Mex.

For example, suppose the token is placed initially in room t8. Then Jaakko
has several alternatives, but one of these leaves him in the hands of Leon.
Indeed, if Jaakko moves the token to room t6, Leon can place the token into
dungeon t0. Observe that if the token is instead placed in t9, the situation
is similar in the sense that moving the token in room t6 will result in losing
the game. Now, assuming that both players want to win and that they both
know that placing the token in room t6 is the worst option, it follows that
they will keep moving the token all the time through the dark–shaded part
of Fig. 1, i.e., through sub–maze M2. Since inside M2 it is always possible to
avoid room t6, the game can continue indefinitely in this fashion leading to a
draw, whence rooms e, g, t8 and t9 are referred to as a draw positions.

Maze Games and Esterel. The objective of this paper is to show that
programs written in the kernel fragment of Esterel corresponding to combina-
tional circuits can be understood very naturally as maze game boards, where
signals are represented by rooms. Intuitively, the presence and absence of sig-
nals in the reaction instant that is described by a combinational program P ,
is “negotiated” between the system (the starting player) and its environment
(the opponent). The system tries to prove a signal’s presence and the environ-
ment its absence. Thus, signal s must (cannot) be emitted in P if and only if
room s in the maze M associated with P is a winning (losing) position. If the
status of signal s is undefined, then and only then is room s a draw position.

Technically, strategies within M correspond to the must– and cannot–

analysis for P , which is at the heart of Esterel’s behavioral semantics [3]. A
simple way to make the connection is to read each visible (secret) corridor

3

Aguado, Lüttgen and Mendler

as a present–else statement (present–then statement). We then get an exact
correlation between Esterel’s declarative computation of must– and cannot–

sets of signals [3] and an inductive computation of winning and losing positions
in the game graph. We illustrate this correspondence using the sub–maze M1

in our example of Fig. 1. The program P1 associated with M1 is:

(present t3 else emit t2 end) ‖ (present b then emit t3 end) ‖

(present t6 else emit t3 end) ‖ (present t0 else emit t6 end) .

We reason along the fixed–point computation of P1’s declarative semantics and
start with the empty environment in which no signal is known to be present
or absent, whence must0 = cannot0 = ∅. Since no emit is unguarded, the
first iteration yields no present signals, i.e., must1 = ∅; but since there are no
emit statements for b or t0, we get cannot1 = {b, t0} immediately. In game
terms this corresponds to identifying both rooms b and t0 in M1 as positions
in which the starting player loses right away. The fact that t6 is connected
to t0 by a visible corridor means that the starting player now has a strategy
to win t6, because he or she can move into t0 where his or her opponent
loses. In the computation of Esterel’s declarative semantics for P1, this is
the second iteration step: since t0 is known as absent, the emit statement
in present t0 else emit t6 end is executed and t6 becomes present. We
thus get must2 = {t6} and cannot2 = {b, t0}. Additionally, we know that
the statement present b then emit t3 end is not executed in the current
instant. In the game, this amounts to marking the secret corridor from t3 to b

as useless for any winning strategy for t3. There is no point for any player in
going across to b since the player keeps his or her turn and thus loses in b. It
may still be possible to win by moving from t3 to t6. However, with the extra
information just obtained, namely that t6 is a winning position, we conclude
that t3 is in fact a losing position. For moving from t3 to t6 does not help
either since the opponent would get the turn in t6 and win. In the Esterel
approximation sequence, t3 indeed enters the cannot set in the third iteration
step: cannot3 = {b, t0, t3}. This is clear since t6 ∈ must2 and b ∈ cannot2,
whence the only two statements that could emit t3 in P1 are both switched
off. The must set does not change, whence must3 = must2 = {t6}. The
fourth iteration step identifies t2 as emitted from the fact that t3 ∈ cannot3.
For this means, the statement present t3 else emit t2 end is executed. In
game terms, room t2 is clearly a winning position as t3 is a losing position.
Hence, we obtain must4 = {t6, t2} and cannot4 = cannot3 = {b, t0, t3} as the
fixed point of Esterel’s constructive analysis for P1. To sum up, we see that
mustn+1 (cannotn+1) is the set of rooms that can be won (must be lost) by the
starting player in at most n moves.

The example in Fig. 1 also illustrates how constructiveness of Esterel re-
actions is reflected in the game model. We have seen above that the shaded
area M2 of Mex contains only draw positions. The associated Esterel pro-
gram P2 can be written as a parallel composition of eight present statements,
as suggested above, or equivalently in a more compact form as

4

Aguado, Lüttgen and Mendler

P2 := present g then present e then

(present g else emit e end) ‖

(present e else emit g end)

end end ,

where the two rooms t8 and t9 are no longer represented as signals but are
implicit in the nested present statements. As an aside, we will see below that
our intermediate states ti in game graphs are necessary to express conjunctive
behavior. The must– and cannot–analysis for P2 indeed leaves signals e and g

constructively undecided. To justify emission of either e or g, both e and g

would have to be present in the first place to activate the outmost present
statements, which is causally unreasonable. At the same time, they must be
absent to switch on the inner emit statements, which is contradictory overall.
We cannot justify the absence of e and g, causally, either. For example, in
order to deactivate the inner emits through one of the outer guarding present
conditions we would need that one of e and g is absent, which is also causally
problematic. There is a second possibility for the absence of e and g, namely
that the inner emit statements are both switched off. This however requires
both signals to be present, which is again a contradiction. Overall, there is
only one logically coherent solution, namely that both e and g are absent, yet
this solution is not causal. Since this is the only logically coherent solution, the
logical behavioral semantics of Esterel [3] would return this as the response,
whereas the constructive semantics rejects it. In our maze game, a logically
coherent solution amounts to a “speculative” assignment of 0 (losing) and 1
(winning) markings to rooms so that (i) a room is marked 1 exactly if one of
its successor rooms that is accessible via a visible corridor is marked 0, or if a
successor room connected via a secret corridor is marked 1; and (ii) a room is
marked 0 if all rooms connected via visible corridors are marked 1 and if all
rooms connected through a secret corridor are marked 0. In Fig. 1, e = g = 0
and t8 = t9 = 1 is the only logically coherent marking for M2. Although this
might suggest that both e and g are losing positions for the starting player, it
is clear that this cannot be realized by any finite strategy of the opponent.

2 Mazes and Maze–Game Semantics

This section formalizes our two–player maze games and also provides an al-
ternative denotational characterization of the operational notion of a winning

position. The reader may find some background material on classical games
in [10,12]. The only change in our setting over the classical definitions is that
we (i) allow for two types of transitions in game graphs, i.e., visible and secret
transitions, and (ii) admit draw positions. The latter feature is in contrast to
the classical games used in automata theory and descriptive–set theory [12],
where the absence of a winning strategy for one player automatically implies
the existence of a winning strategy for the other.

5

Aguado, Lüttgen and Mendler

Formalizing Mazes. Mazes are essentially finite graphs with two kinds
of directed edges, namely visible and secret edges. For our purposes, it is
convenient to formally represent these graphs as systems of unfolding rules

M := (x⇐mx)x∈V in a language of mazes, for some finite set V of variables
representing rooms and maze terms mx. Maze terms are defined in a process–
algebraic fashion, which provides us with sufficient structure for proving the
paper’s main results. The syntax of maze terms is given by the following BNF:

m ::= x | 0 | ι.m | τ.m | m + m .

Intuitively, 0 represents a dungeon, ι.m (τ.m) represents a room with a visible
(secret) corridor to room m, and m1 + m2 represents a room that merges
rooms m1 and m2, respectively. In the remainder, we let M stand for the set
of all maze terms.

For each room x in any given maze M we would like to determine whether
it is a winning position (for the starting player). The game–theoretic se-
mantics of maze M requires the introduction of a labeled transition system

〈M, {ι, τ},−→〉, where M is the set of states (or rooms), {ι, τ} is the al-
phabet with ι encoding a visible action and τ a secret action, and −→⊆
M× {ι, τ} ×M is the transition relation representing valid moves (or corri-

dors) between rooms. The transition relation is defined by the following rules,
where γ ranges over {ι, τ}:

−−

γ.m
γ

−→ m

m1
γ

−→ m′
1

m1 + m2
γ

−→ m′
1

m2
γ

−→ m′
2

m1 + m2
γ

−→ m′
2

m
γ

−→ m′

x
γ

−→ m′
x⇐m .

Essentially, this labeled transition system reflects the game graphs of Sec. 1,
with dungeons being traps that have no outgoing transition. In the following,
we write m−→ for ∃m′ ∃γ. m

γ
−→ m′. Note that operators “.”, “+”, and “⇐”

correspond to the process–algebraic operators prefix, choice, and recursion.

Example 2.1 Let us specify the maze in Fig. 1 relative to the program’s sig-
nals, also called named rooms, i.e., V = {a, b, c, d, e, f, g}. The other rooms
{t0, t1, . . . , t9} are referred to as unnamed rooms and are represented implic-
itly as sub–terms in the corresponding system of unfolding rules Mex :=
(x⇐mx)x∈V with a⇐ ι.0, b⇐ 0, c⇐ ι.(ι.a + ι.ι.(τ.b + ι.ι.0)), d⇐ ι.(τ.a +
ι.ι.ι.0) + ι.(ι.ι.0 + ι.e), e⇐ ι.(ι.e + ι.g + τ.g + ι.ι.0), f ⇐ ι.(τ.a + ι.ι.ι.0),
g⇐ ι.(ι.g+ι.e+τ.e+ι.ι.0). Observe that, for any x⇐mx, applying the opera-
tional rules to mx results in the part of the graph starting from room x. Specif-
ically, for f ⇐mf and mf = ι.(τ.a+ ι.ι.ι.0), the first ι in the term corresponds
to the visible corridor connecting f and the unnamed room t4 = τ.a + ι.ι.ι.0.
From t4, either a secret corridor τ can be taken to room a, or a path of three
visible corridors can be followed reaching dungeon t0.

Playing the Maze Game. We now turn our attention to the game–theoretic
semantics of our two–player maze game. For convenience, we will name the
players simply A and B. We begin by defining the notions dungeon, path, and

6

Aguado, Lüttgen and Mendler

turn. Firstly, room m is a dungeon if m 6−→. Secondly, a path π through a
maze M is a sequence of transitions (mi

γi−→ mi+1)0≤i<k, where k ∈
�
∪ {ω}

is referred to as the length |π| of π. We say that π is finite in case k < ω;
otherwise, π is infinite. A path π is maximal if it is either infinite, or if it
is finite and m|π| 6−→. We abbreviate π’s finite prefix (mi

γi

−→ mi+1)0≤i<j of
length j ∈

�
by πj. Finally, given a finite (prefix of a) path π and assuming

player A always starts off the game, we can determine the player turn(π)
whose turn it is in the final room m|π| as follows, where A := B and B := A:

turn(π) :=



















turn(π′) if |π| > 0 and π = π′·
τ

−→

turn(π′) if |π| > 0 and π = π′·
ι

−→

A otherwise, i.e., |π| = 0 .

A maze play is determined by the players’ strategies. A strategy is a func-
tion α : M → M such that, for all m ∈ M, either m is a dungeon or
∃γ. m

γ
−→ α(m). Note that a strategy of a player does not depend on the op-

ponent’s strategy or on a play’s history. Given strategies α and β for players A

and B, respectively, the play playM(α, β, m) in maze M starting in room m

with player A is a maximal path π = (mi
γi−→ mi+1)0≤i<k in M such that

m0 = m, mi+1 = α(mi) if turn(πi) = A, and mi+1 = β(mi) if turn(πi) = B.

The operational semantics of maze M = (x⇐mx)x∈V considers, for each
room x, whether player A or B has a winning strategy, or neither of them.
Intuitively, A (B) has a winning strategy, if he or she is always able to drive
player B (A) into a dungeon, no matter which strategy B (A) employs and
always assuming that player A starts off the game. Formally, player A has
a winning strategy for room x in M if ∃α ∀β . |playM(α, β, x)| < ω and B =
turn(playM(α, β, x)). Dually, player B has a winning strategy for room x in M

if ∃β ∀α . |playM(α, β, x)| < ω and A = turn(playM(α, β, x)). If the selected
starting player A has a winning strategy for room x, then x is simply called
a winning position. If player B has a winning strategy, then x is a losing

position. If both players can always avoid dungeons, thus engaging in infinite
plays, neither player wins and the play ends in a draw. Accordingly, a position
that is neither a winning nor a losing position is referred to as a draw position.

Example 2.2 Consider again maze Mex of Fig. 1. Suppose that the strat-
egy α of player A is chosen such that A moves the token, whenever possible,
to a named room from V through a secret corridor. Otherwise, he chooses
a room ti with the smallest i. The strategy β of player B is that B prefers
rooms of the form ti with the smallest i over any V. Yet, overall, B prefers
secret corridors whenever there is one. For example, α(d) = t4, α(t6) = t0,
β(t4) = a, β(a) = t0, β(t7) = t6. Thus, the play playMex

(α, β, d) is the

path d
ι

−→ t4
τ

−→ a
ι

−→ t0, along which A loses. In contrast, if player A

chooses t7 in the first turn, B would have selected the move to t6, from
where A moves to the dungeon t0 and player B loses. The play in that case

7

Aguado, Lüttgen and Mendler

would be d
ι

−→ t7
ι

−→ t6
ι

−→ t0. The best player B can do under this new
strategy of A is to set β(t7) = e, while otherwise keeping his preference for
secret corridors. In that case the play amounts to a draw along the infinite
path d

ι
−→ t7

ι
−→ e

ι
−→ t8

τ
−→ g

ι
−→ t9

τ
−→ e

ι
−→ t8 · · · .

Denotational Characterization. The semantics of mazes in terms of win-
ning and losing positions may also be captured denotationally. The denota-
tional approach relies on two predicates win and lose that take as parameters
a maze term m and an environment X. Adapting notational conventions from
Esterel, we define an environment X as a set of signed variables x+ and x−,
with the meaning that plus–tagged (minus–tagged) variables represent rooms
that are known to be winning (losing) positions. Since a single room cannot
be both a winning and a losing position, an environment must not contain
both x+ and x−, for any x. Predicate win (lose) now holds for m and X
if m corresponds to a winning (losing) position relative to X, respectively.
Formally, these predicates are defined as the least predicates respecting the
following rules:

lose(0, X) win(x,X) if x+ ∈ X lose(x,X) if x− ∈ X

win(ι.m,X) if lose(m,X) lose(ι.m,X) if win(m,X)

win(τ.m,X) if win(m,X) lose(τ.m,X) if lose(m,X)

win(m1 + m2, X) if win(m1, X) or win(m2, X)

lose(m1 + m2, X) if lose(m1, X) and lose(m2, X) .

Intuitively, the dungeon 0 is always a losing position. Room m1 + m2 is a
winning position if at least one of m1 or m2 is, since m1 + m2 essentially
gives a free choice to the leading player whether to continue with m1 or m2.
Dually, m1 + m2 is a losing position if both m1 and m2 are. Room ι.m

can only be left by the visible corridor ι to m, thereby giving control to the
opponent. Hence, ι.m is a winning (losing) position for the leading player
if m is a losing (winning) position for the opponent. Traversing a secret
corridor does not change a player’s turn, whence τ.m is a winning (losing)
position for the leading player if m is. Thus, by an appropriate choice of
visible and secret corridors out of a room x we can make the winning (losing)
predicate for x an arbitrary disjunctive (conjunctive) combination of negated
and non–negated winning conditions of the immediate successor rooms. This
is useful for normal–form representations and explains why we introduce secret
corridors into the games model. We now define a function on environments:

maze(M)(X) := win(M, X)+ ∪ lose(M, X)− .

Here, win(M, X) denotes {x∈V |win(mx, X), x⇐mx in M} and lose(M, X)
for {x∈V | lose(mx, X), x⇐mx in M}. Additionally, for any subset V ⊆ V of
variables, V + denotes the set {x+ | x ∈ V } and V − the set {x− | x ∈ V }. It can

8

Aguado, Lüttgen and Mendler

easily be proved that function maze(M) is monotonic. Hence, the least fixed
point µmaze(M) of maze(M) exists, which is taken to be the denotational
semantics of maze M . Moreover, because our universe of variables is finite,
one may iteratively compute µmaze(M) =

⋃

i∈ � maze(M)i(∅).

Example 2.3 Let us obtain the sets of winning, losing, and draw positions
for maze Mex of Fig. 1. Initially, the predicates that hold are lose(0, ∅)
and win(ι.0, ∅). Since a⇐ ι.0 and b⇐ 0 we get maze(Mex)(∅) = {a+, b−}.
In this environment, f ∈ lose(Mex, {a

+, b−}) since f ⇐ ι.(τ.a + ι.ι.ι.0) and
win(τ.a+ι.ι.ι.0, {a+, b−}), the latter essentially results from win(τ.a, {a+, b−}).
Next we derive c ∈ win(Mex, {a

+, b−}) from c⇐ ι.(ι.a + ι.ι.(τ.b + ι.ι.0)) and
the fact that win(a, {a+, b−}) and lose(b, {a+, b−}) both hold. This shows
maze(Mex)

2(∅) = {a+, c+, b−, f−}. Another iteration confirms this as least
fixed point, i.e., µmaze(Mex) = {a+, c+, b−, f−}.

Theorem 2.4 (Coincidence) Let M be a maze and x be a variable.

• x is a winning position in M if and only if x+ ∈ µmaze(M).

• x is a losing position in M if and only if x− ∈ µmaze(M).

The proof of this theorem can be adapted from results on finite symmetric
and memory–free games [10]. The only slight twist is that our setting allows
for two types of transitions in game graphs, namely visible and secret ones.

3 Esterel Reactions and Mazes

This section first formally presents the combinational fragment of Esterel
which we are concerned with and recalls its constructive behavioral semantics
as defined by Berry in [3]. We then give a translation of combinational Esterel
programs P into mazes M with the property that winning (losing) positions
in M correspond exactly to signals that must (cannot) be emitted in P .

Esterel Reactions. The syntax of the Esterel fragment, which specifies single
reactions and will be used in the remainder, is defined by the following BNF,
where s stands for a signal name taken from some (finite) universe S.

P ::= 0 nothing

| !s emit s

| s+?(P) present s then P

| s−?(P) present s else P

| P |P P||P

Esterel’s more general choice statement “present s then P1 else P2” can be
recovered in our syntax by the term s+?(P1) | s

−?(P2) [6]. In this paper we
omit the combinational operators for sequential composition and local signal
declaration, though we discuss in Sec. 4 various ways for including the latter.
A consequence of this omission is that the completion codes needed in the

9

Aguado, Lüttgen and Mendler

behavioral semantics’ definition for the full language [3] become obsolete. We
do away also with input signals i ∈ I = {i1, . . . , in} ⊆ S. This is possible since
the behavior of P under I is equivalent to the behavior of P | !ij1 | · · · | !ijm

,
where the indexes j1, . . . , jm ∈ {1, . . . , n} are exactly those for which signal ijk

is present in I [6]. Finally, we further assume that the finite set S of signals
includes all signals of the combinational Esterel programs that one wishes to
reason about. This restriction is a mere technical convenience and could be
dropped by maintaining for every program the finite set of relevant signals,
i.e., a “signal sort.”

Berry’s behavioral semantics for Esterel considers statuses of signals. Each
signal s ∈ S can either be known to be present, i.e., have status s+, or known to
be absent, i.e., have status s−, or have an unknown status. For any set S ⊆ S
we let S+ stand for {s+ | s ∈ S} and S− for {s− | s ∈ S}. Consistent sets E ⊆
S+∪S− of signal statuses such that 6 ∃s. s+ ∈ E and s− ∈ E are referred to as
events, with E denoting the set of all events. Given a combinational Esterel
program P and an event E, we define the sets must(P, E) and cannot(P, E)
of those signals that must and cannot be emitted in P , respectively, relative
to the knowledge of the signal statuses in E [3]:

must(0, E) := ∅ must(s+?(P), E) :=

{

must(P,E) if s+ ∈ E

∅ otherwise

must(!s,E) := {s} must(s−?(P), E) :=

{

must(P,E) if s− ∈ E

∅ otherwise

must(P1 |P2, E) := must(P1, E) ∪ must(P2, E)

cannot (0, E) := S cannot(s+?(P), E) :=

{

S if s− ∈ E

cannot(P,E) otherwise

cannot (!s,E) := S\{s} cannot(s−?(P), E) :=

{

S if s+ ∈ E

cannot(P,E) otherwise

cannot(P1 |P2, E) := cannot(P1, E) ∩ cannot(P2, E)

Note that both functions must and cannot are monotonic in E for subset
inclusion. Since (E ,⊆) is a finite ∩–semi–lattice, the function

esterel(P)(E) := must(P, E)+ ∪ cannot(P, E)−

has a least fixed point µesterel(P) =
⋃

i∈ � esterel(P)i(∅). This least fixed point
defines the behavioral semantics of P .

In [3] the construction of absent signals is based on the complement of
the cannot sets, called can sets. Our equivalent formulation brings out an
important structural invariant. Firstly, cannot(P, E) is the logical dual of
must(P, E), obtained by interchanging ∩ for ∪, ∅ for S, and {s} for S \ {s}.
Secondly, must and cannot are exclusive: must(P, E) ∩ cannot(P, E) = ∅, for
any event E. In general, however, must(P, E) ∪ cannot(P, E) 6= S, whence
must and cannot are not necessarily complements. This is analogous to the

10

Aguado, Lüttgen and Mendler

situation in two–player games: we will show below that must (cannot) corre-
sponds to the construction of winning (losing) positions for the starting player.
Elements neither in must(P, E) nor in cannot(P, E) indicate draw positions.

Representing Combinational Esterel Programs as Mazes. With each
Esterel program P we associate a maze 〈〈P 〉〉 := (a⇐〈〈P 〉〉a)a∈S that exactly
reflects the semantics of P . Here, signals play the role of variables representing
distinguished rooms, and the maze term 〈〈P 〉〉a describes the game conforming
to P that can be played starting in room a. Formally, 〈〈P 〉〉a is defined along
the structure of P as follows.

〈〈 0 〉〉a := 0 〈〈 s+?(P) 〉〉a := ι.(ι.s + ι.〈〈P 〉〉a)

〈〈 !s 〉〉a :=

{

ι.0 if s = a

0 otherwise

〈〈 s−?(P) 〉〉a := ι.(τ.s + ι.〈〈P 〉〉a)

〈〈P1 |P2 〉〉a := 〈〈P1 〉〉a + 〈〈P2 〉〉a .

Intuitively, program 0 that cannot emit any signal, must correspond to a
dungeon in which the leading player loses. The forced emission of signal a

and absence of signals s 6= a in program !a leads to immediate success for the
leading player in room a⇐ ι.0 —or unavoidable loss for the opponent— and
loss in any other room b⇐ 0. A program s+?(P) that is positively guarded by
signal s must emit signal a if, in room a, the leading player has both a winning
strategy for s and for room a in the maze corresponding to P . We encode this
conjunction into mazes by first giving control to the opponent, who in turn
freely decides whether the leading player must continue with his or her play
in s or in 〈〈P 〉〉a. Analogously, a program s−?(P) that is negatively guarded
by signal s must emit a if, in room a, the opponent player has a winning
strategy for s, and if the leading player has a winning strategy for 〈〈P 〉〉a.
Finally, an emission of signal a in a parallel composition may occur in either
component and is thus encoded by a free choice for the leading player. In
terms of maze graphs, parallel composition corresponds to forming the room–
wise union (overlay) of corridors. As an example, the translation 〈〈P 〉〉 of the
Esterel program Pex = !a |e+?(!d) |a−?(!d | !f) |a+?(b−?(!c)) |g+?(e+?(g−?(!e) |
e−?(!g))) (slightly optimised using the equivalence 〈〈Q 〉〉s ≡ 0 when s does not
occur in Q, as well as m+0 = m, ι.ι.m = m for all m) generates the unfolding
rules of Example 2.1 and thus the maze in Fig. 1.

Proposition 3.1 Let P be a combinational Esterel program and E an event.

(i) must(P, E) = {a ∈ S |win(〈〈P 〉〉a, E)}

(ii) cannot(P, E) = {a ∈ S | lose(〈〈P 〉〉a, E)}

This proposition states the desired one–to–one relation between the must– and
cannot–analysis in combinational Esterel programs and the determination of
winning and losing positions in their corresponding mazes. Its proof can be
conducted by induction on the structure of Esterel programs. As a conse-
quence of the proposition, the functions esterel(P) and maze(〈〈P 〉〉) coincide.

11

Aguado, Lüttgen and Mendler

This immediately proves the following main theorem of this paper.

Theorem 3.2 (Game–Theoretic Characterization) For every combina-

tional Esterel program P , we have µesterel(P) = µmaze(〈〈P 〉〉).

We conclude this section by revisiting several of the pathological examples
from Berry’s book [3]. For each of these combinational Esterel programs Pi

(indexed as in Berry’s book), we take S to be the set of all signals occurring
in Pi. The programs, except for P6, are illustrated as mazes in Figure 2.

P0

s s s

P3P4

Fig. 2. “Pathological” Esterel examples.

• P4 := s+?(!s): According to our definitions we obtain M4 := 〈〈P4 〉〉 =
(s⇐〈〈P4 〉〉s) and m4,s := 〈〈P4 〉〉s = ι.(ι.s + ι.ι.0). Hence, for any event E ∈ E :

win(m4,s, E) ⇐⇒ lose(ι.s + ι.ι.0, E)

⇐⇒ lose(ι.s, E) and lose(ι.ι.0, E)

⇐⇒ win(s, E) and lose(0, E)

⇐⇒ win(s, E) and true

⇐⇒ s+ ∈ E .

Similarly, lose(m4,s, E) ⇐⇒ s− ∈ E. This implies maze(M4)(∅) = ∅
according to the definition of function maze(M4), whence µmaze(M4) = ∅.

• P3 := s−?(!s): Here we have M3 := 〈〈P3 〉〉 = (s⇐〈〈P3 〉〉s) and m3,s :=
〈〈P3 〉〉s = ι.(τ.s + ι.ι.0). We may then derive, for any event E ∈ E :

win(m3,s, E) ⇐⇒ lose(τ.s + ι.ι.0, E)

⇐⇒ lose(τ.s, E) and lose(ι.ι.0, E)

⇐⇒ lose(s, E) and true

⇐⇒ s− ∈ E .

Moreover, lose(m3,s, E) ⇐⇒ s+ ∈ E. As in the case for M4, this implies
maze(M3)(∅) = ∅ and thus µmaze(M3) = ∅.

• P0 := s+?(!s) | s−?(!s) = P4 | P3: Hence, M0 := 〈〈P0 〉〉 = (s⇐〈〈P0 〉〉s) and
m0,s := 〈〈P0 〉〉s = 〈〈P4 〉〉s + 〈〈P3 〉〉s according to the definition of 〈〈 · 〉〉s. Given the
calculations for P4 and P3 we easily conclude:

win(m0,s, E) ⇐⇒ win(m4,s, E) or win(m3,s, E)

⇐⇒ s+ ∈ E or s− ∈ E

⇐⇒ lose(m0,s, E) .

It is easy to see that this yields again µmaze(M0) = ∅.

12

Aguado, Lüttgen and Mendler

• P6 := s+
0 ?(!s1) |s

+
1 ?(!s0): This combinational program gives rise to the maze

M6 := 〈〈P6 〉〉 = (s0 ⇐〈〈P6 〉〉s0
, s1 ⇐〈〈P6 〉〉s1

), for m6,s0
:= 〈〈P6 〉〉s0

= τ.ι.(ι.s0 +
ι.0)+ τ.ι.(ι.s1 + ι.ι.0) and m6,s1

:= 〈〈P6 〉〉s1
= τ.ι.(ι.s0 + ι.ι.0)+ τ.ι.(ι.s1 + ι.0).

One can then easily infer, for i ∈ {1, 2}, that win(m6,si
, E) ⇐⇒ s+

1−i ∈ E

and lose(m6,si
, E) ⇐⇒ s−1−i ∈ E. Again, this implies µmaze(M6) = ∅.

In all of the examples above, the relevant rooms s, or s0 and s1 in case of M6,
are neither winning nor losing positions for the starting player but draw po-
sitions. According to Thm. 3.2, all signal statuses are undetermined, and our
example programs would be rejected by current Esterel compilers [4]. The
game metaphor, thus, yields a natural explanation of constructiveness and
non–constructiveness.

4 Local Signal Declarations

This final section of our main development shows that the game semantics
can also support local signal declarations, which is another kernel operation of
Esterel [3]. A signal declaration P\s introduces a locally defined signal s that
is available for broadcast inside program P only. As an example consider the
program (P \s) |Q where P := s+?(!a) | !s and Q := s+?(!b). In Q, signal s

refers to a different incarnation than the one used inside P \s, whose scope is
restricted by the local signal declaration. Consequently, the internal emission
of s in P \s will trigger the emission of signal a in P but not that of signal b

in Q.

The simplest way of interpreting local signal declarations in terms of mazes
is to rename signal s in 〈〈P 〉〉 into some fresh signal name s′, and to make sure
that s′ is never used outside of 〈〈P \s 〉〉. While this “naming–apart” technique
is a simple solution for a compiler, there is an algebraically more satisfac-
tory way. Intuitively, 〈〈P \s 〉〉 is the same as solving the recursive unfoldings
characterizing maze 〈〈P 〉〉 with respect to signal s. If s⇐ms is the unfolding
rule defining s, the least fixed–point solution for s is µs.ms, where µ denotes
the standard fixed–point operator known from process algebra. This recursive
term for the game starting in room s is then used, or substituted, wherever s

is referenced in the unfoldings defined by 〈〈P 〉〉 for all the other rooms. Thus,
s is eliminated. In our example, 〈〈P 〉〉 is the system

a ⇐ ι.(ι.s + ι.ι.0) + 0 b ⇐ ι.(ι.s + ι.0) + 0 s ⇐ ι.(ι.s + ι.0) + ι.0 ,

from which we obtain the maze equations for 〈〈P \s 〉〉 by substituting the fixed
point µs. (ι.(ι.s + ι.0) + ι.0) for every reference to s in the other expansions.
The unfolding for s is “reset” to 0:

a ⇐ ι.(ι.(µs. (ι.(ι.s + ι.0) + ι.0)) + ι.ι.0) + 0 s ⇐ 0

b ⇐ ι.(ι.(µs. (ι.(ι.s + ι.0) + ι.0)) + ι.0) + 0 .

13

Aguado, Lüttgen and Mendler

In the new system of unfolding rules the behavior of the original signal s is
completely encapsulated, so that any extension can only refer to the named
rooms a and b. The signal name s remaining in the maze now refers to a fresh
signal that is per default not emitted and hence represented by a dungeon.
Obviously, the precise technical formalization of this idea requires the addition
of the fixed–point operator µs.m to our maze–term language.

Note that treating local signal declarations via fixed–point operators re-
quires a slightly more general translation of s+?(P) and s−?(Q) than the
one given above. This observation has already been made by Berry in [3].
Consider, e.g., a positive guard c+?(P \s) which makes winning inside P \s

dependent on winning signal c. This implies that any room in the maze of P\s
can only be won under the extra condition that c can be won as well. This
applies to all rooms inside P \s, even to the “local” room s. To give the op-
ponent a chance to force the starting player into room c at any point, we may
break up each transition P ′\s

ι
−→ P ′′\s inside P \s via an auxiliary room in

which the opponent can choose to challenge the starting player into room c or
accept to continue with P ′′\s. Formally, we may replace P ′\s

ι
−→ P ′′\s by

P ′\s
ι

−→ ι.c + τ.(P ′′\s), which can be done by appropriately modifying the
operational rules for maze terms, especially the rules for present statements.

5 Conclusions and Future Work

This paper presented a game–theoretic semantics for combinational Esterel
programs, i.e., for the kernel fragment of Esterel corresponding to combina-
tional circuits. Our approach translated combinational programs into finite
two–player games in such a way that Esterel’s must and cannot analysis of sig-
nal statuses [3] could be rephrased as the computation of winning strategies.
Our results complement the existing behavioral, operational, circuit–based,
and model–theoretic approaches to Esterel’s semantics [3,6]. In particular,
they offer a novel didactic perspective for familiarizing students and engineers
with this intricate constructive semantics, by giving emphasis to more intu-
ition (game graphs) and less mathematics (fixed points). It is worth pointing
out that our game–theoretic framework is not specific to Esterel but should
apply to other synchronous languages incorporating the semantic principles of
synchrony and causality as well, such as Pnueli and Shalev’s Statecharts [9].

Regarding future work, we firstly want to extend our work to larger frag-
ments of Esterel, especially those involving Esterel’s pause, wait, and loop

constructs [3]. This would allow for reasoning about sequences of reactions
rather than single reactions, and requires enriching the information content
held by states in our game graphs. It should also be investigated how our
game semantics relates to the operational semantics implemented in state-of-
the-art Esterel compilers. Secondly, we wish to study whether our approach
is amenable to a rigorous algebraic treatment. Although we presented mazes
in a process–algebraic fashion both in style of a term–based syntax and a

14

Aguado, Lüttgen and Mendler

transition–systems–based semantics, the associated algebraic theory has not
yet been fully developed. An algebraic semantics for mazes could be based on
a notion of behavioral equivalence, such as bisimulation. This would provide
a compositional semantics for our games and allow for the minimization of
mazes. Note that the translation from combinational Esterel programs into
mazes presented in this paper does not apply any optimizations. Thirdly, we
plan to develop a logical interpretation of our game semantics, similar to the
one of AJM’s games model in linear logic [2], thereby further exploring the
logic behind Esterel [6]. As part of this plan, the relationship between our term
language for mazes and Berry’s calculus of Constructive Boolean Logic [3,11]
deserves investigation.

References

[1] S. Abramsky. Games in the semantics of programming languages. In 11th

Amsterdam Colloquium, pages 1–5. Univ. of Amsterdam, 1997.

[2] P. Baillot, V. Danos, T. Ehrhard, and L. Regnier. Believe it or not, AJM’s
games model is a model of classical linear logic. In LICS ’97, pages 68–75.
IEEE Comp. Soc. Press, 1997.

[3] G. Berry. The constructive semantics of pure Esterel. CMA, Ecole des Mines,
INRIA, 1999. Draft version 3.0.

[4] Esterel Technologies. Esterel Studio. www.esterel-technologies.com, 2003.

[5] M. Hyland and L. Ong. On full abstraction for PCF: I, II and III. Inform. and

Comput., 163(2):285–408, 2000.

[6] G. Lüttgen and M. Mendler. Towards a model-theory for Esterel. In SLAP ’02,
volume 65,5 of ENTCS. Elsevier Science, 2002.

[7] P. Malacaria and C. Hankin. Generalised flowcharts and games. In ICALP ’98,
volume 1443 of LNCS, pages 363–374. Springer-Verlag, 1998.

[8] A. Pietarinen and G. Sandu. Games in philosophical logic. Nordic J.

Philosophical Logic, 4:143–173, 2000.

[9] A. Pnueli and M. Shalev. What is in a step: On the semantics of Statecharts.
In TACS ’91, volume 526 of LNCS, pages 244–264. Springer-Verlag, 1991.

[10] G. Schmidt and T. Ströhlein. On kernel of graphs and solutions of games: A
synopsis based on relations and fixpoints. SIAM J. Algebraic Discrete Methods,
6:54–65, 1985.

[11] T. Shiple, G. Berry, and H. Touati. Constructive analysis of cyclic circuits. In
EDTC ’96, pages 328–333. IEEE Comp. Soc. Press, 1996.

[12] W. Thomas. On the synthesis of strategies in infinite games. In STACS ’95,
volume 900 of LNCS, pages 1–13. Springer-Verlag, 1995.

15

