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Abstract. Genetic regulatory networks have been modeled as discrete
transition systems by many approaches, benefiting from a large num-
ber of formal verification algorithms available for the analysis of discrete
transition systems. However, most of these approaches do not scale up
well. In this article, we explore the use of compositionality for the analy-
sis of genetic regulatory networks. We present a framework for modeling
genetic regulatory networks in a modular yet faithful manner based on
the mathematically well-founded formalism of differential inclusions. We
then propose a compositional algorithm to efficiently analyze reachabil-
ity properties of the model. A case study shows the potential of this
approach.

1 Introduction

A genetic regulatory network usually encompasses a multitude of complex, in-
teracting feedback loops. Being able to model and analyze its behavior is crucial
for understanding the interactions between the proteins, and their functions.
Genetic regulatory networks have been modeled as discrete transition systems
by many approaches, benefiting from a large number of formal verification algo-
rithms available for the analysis of discrete transition systems. However, most
of these approaches face the problem of state space explosion, as even models
of modest size (from a biological point of view) usually lead to large transition
systems, due to a combinatorial blow-up of the number of states. Even if the
modeling formalism allows for a compact representation of the state space, such
as Petri nets, subsequent analysis algorithms have to cope with the full state
space. In practice, non-compositional approaches for the analysis of genetic reg-
ulatory networks do not scale up well.

In order to deal with the problem of state space explosion, different techniques
have been developed in the formal verification community, such as partial order
reduction, abstraction, and compositional approaches. In this article, we explore
the use of compositionality for the analysis of genetic regulatory networks. Com-
positional analysis means that the behavior of a system consisting of different
components is analyzed by separately examining the behavior of the components
and how they interact, rather than by monolithically analyzing the behavior of
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the overall system. It therefore can be more efficient than non-compositional
analysis, and scale better.

A precondition for compositional algorithms to be applicable, is that the
model be structured. Therefore, this paper makes two contributions: first, we
present a modeling framework for genetic regulatory networks in which the dif-
ferent components of the system (in our case, proteins or sets of proteins) and the
way they constrain each other, are modeled separately and modularly. Second,
we propose a compositional algorithm allowing to efficiently analyze reachability
properties of the model.

Cellular functions are often distributed over groups of components that inter-
act within large networks. The components are organized in functional modules,
forming a hierarchical architecture [25, 27]. Therefore, the approach of composi-
tional analysis agrees with the modular structure of genetic regulatory networks,
and may take advantage of it by using compositionality on different levels of
modularity, for instance, between individual genes, sub-networks, or individual
cells.

However, compositionality is not everything. The model should also faithfully
represent the actual behavior of the modeled network. The approach we present
is based on the mathematically well-founded formalism of qualitative simulation
[14].

Related work. By now there is a large number of approaches to model and ana-
lyze genetic networks. An overview is given in the survey of [11]. The modeling
approaches adopt different mathematical frameworks, which vary in expressive-
ness and the availability and efficiency of verification algorithms. Most of the
algorithms “flatten” the model and work on the global state space, without com-
putationally taking advantage of the modularity of the problem. The approach
of [6] compositionally models gene networks in a stochastic framework.

There has been a wide variety of modeling approaches based on differential
equations since the work of [19]. However, simulation and verification of the con-
tinuous model can be expensive, and many properties are not even decidable in
this framework. Therefore, several ways have been investigated to discretize the
continuous model defined by differential equations while preserving properties
like soundness [14] and reachability [3]. [18] and [1] use predicate abstraction to
automatically compute backward reachable sets of piecewise affine hybrid au-
tomata, and find a conservative approximation of reachability for linear hybrid
systems, respectively. [26] addresses the bounded reachability problem of hybrid
automata.

In order to deal with complex networks, it may be a good choice to change
precision against efficiency, and directly model genetic networks in a discrete
framework, such as systems of logical equations [29, 5], Petri nets [22, 9, 28, 10],
or rule-based formalisms like term rewriting systems [15, 16]. Formal verification
can then be carried out enumeratively (for instance, [13, 2, 23]) or symbolically,
see for example [8].



Organization of the paper. In Section 2, we introduce the modeling framework.
We show how a genetic network can be modeled in a modular way in this frame-
work, and compare the model with the qualitative model of [7]. Section 3 presents
a reachability algorithm taking advantage of the modularity of the model. Sec-
tion 4 illustrates our results with a case study, and Section 5 concludes.

2 Component-based Modeling of Genetic Networks

This section briefly introduces the notions of piecewise linear system, and its
qualitative simulation as defined in [7]. We then define a modularized approxi-
mation of qualitative simulation, and compare both models.

2.1 Piecewise Linear Systems

The production of a protein in a cell is regulated by the current protein concen-
trations, which can activate or inhibit the production, for instance by binding to
the gene and disabling transcription. At the same time, proteins are degraded.
This behavior of a genetic network can be modeled by a system of differential
equations of the form

ẋ = f(x,u) − g(x,u)x (1)

where x is a vector of protein concentrations representing the current state, u
is a vector of input concentrations, and the vector-valued function f and matrix-
valued function g model the production rates, and degradation rates, respec-
tively.

The approach of [14, 7] considers an abstraction where the state space of each
variable xi is partitioned into a set of intervals Dr

i and a set of threshold values
Ds

i . This induces a partition of the continuous state space into a discrete set of
domains, in each of which Equation (1) is approximated with a system of linear
differential equations.

Definition 1 (Domain). Consider a Cartesian product θ = θ1 × ... × θn with
θi = {θ1

i , ..., θ
pi

i } an ordered set of thresholds, such that 0 < θ1
i < ... < θpi

i <
maxi. Let

Dr
i (θ) = {[0, θ1

i )} ∪ {(θj
i , θ

j+1
i ) | 1 6 j < pi} ∪ {(θpi

i , maxi]}

and Ds
i (θ) =

{

{θj
i } | 1 6 j 6 pi

}

. We omit the argument θ when it is clear from
the context. Let Di = Dr

i ∪Ds
i , and D = D1×D2× ...×Dn be the set of domains.

The domains in Dr = Dr
1 × Dr

2 × ... × Dr
n are called regulatory domains, the

domains Ds = D r Dr are called switching domains.

The state space [0, max1]× · · · × [0, maxn] is thus partitioned into the set of
domains D.

Definition 2 (Piecewise linear system). A piecewise linear system is a tuple
M = (X, θ, µ, ν) where



– X = {x1, ..., xn} a set of real-valued state variables;

– θ = θ1 × ...× θn, with θi = {θ1
i , ..., θ

pi

i } such that 0 < θ1
i < ... < θpi

i < maxi,
associates with each dimension an ordered set of thresholds;

– µ : Dr(θ) → IRn
>0 associates with each regulatory domain a vector of pro-

duction rates;

– ν : Dr(θ) → diag(IRn
>0) associates with each regulatory domain a diagonal

matrix of degradation rates.

Within a regulatory domain D ∈ Dr, the protein concentrations x evolve
according to the ratio of production rate and degradation rate:

ẋ = µ(D) − ν(D)x (2)

and thus converge monotonically towards the target equilibrium φ, solution of
0 = µ(D) − ν(D)x.

Definition 3 (φ). For any D ∈ Dr, let φ(D) denote the target equilibrium of
D such that

φi(D) = µi(D)/νi(D)

for any variable xi ∈ X.

Hypothesis: Throughout this paper we make the assumption that for any regu-
latory domain D, ∃D′ ∈ Dr . φ(D) ∈ D′, that is, all target equilibria lie within
regulatory domains, as in [14].

If φ(D) ∈ D then the systems stays in D, otherwise it eventually leaves D
and enters an adjacent switching domain. In switching domains, where µ and
ν are not defined, the behavior of M is defined using differential inclusions as
proposed by [17, 21].

Notations. Let reg be the predicate characterizing the set of regulatory domains.
For any i ∈ {1, ..., n}, let regi and switchi be predicates on D characterizing the
regulatory intervals and thresholds of Di, respectively: regi(D) ⇐⇒ Di ∈ Dr

i ,
and switchi(D) ⇐⇒ Di ∈ Ds

i for any D ∈ D. The order of a domain D is
the number of variables taking a threshold value in D. Let succi and preci be
the successor and predecessor function on the ordered set of intervals Di (in the
sense that for any D1, D2 ∈ Di, D1 < D2 if ∀x1 ∈ D1 ∀x2 ∈ D2 . x1 < x2). We
define succi

(

(θpi

i , maxi]
)

= preci

(

[0, θ1
i )

)

= ⊥.

Definition 4 (R(D)). For any domain D = (D1, ..., Dn) ∈ D, let R(D) be the
set of regulatory domains that have D in their boundary, such that R(D) = {D}
for D ∈ Dr:

R(D) =
{

(D′

1, ..., D
′

n) | regi(Di) ∧ D′

i = Di ∨

switchi(Di) ∧
(

D′

i = prec(Di) ∨ D′

i = succ(Di)
)}



Gouzé and Sari [21] define the possible behaviors by the differential inclusion
ẋ ∈ H(x) with

H(x) = c̄o
(

{µ(D′) − ν(D′)x | D′ ∈ R(D)}
)

where c̄o(E) is the smallest closed convex set containing the set E. For any
regulatory domain D ∈ Dr and x ∈ D, H(x) = {µ(D) − ν(D)x}, that is, the
behavior is consistent with Equation (2).

Definition 5 (Trajectory). A trajectory of M is a solution of ẋ ∈ H(x).

Qualitative model. The continuous behavior according to Definition 5 can be ap-
proximated by a discrete transition graph on the set of domains D [14, 7] (where
the qualitative model of [7] is more precise than [14]). This graph simulates the
behavior of the underlying genetic network.

Example 1. Consider the example of two proteins a and b inhibiting each other’s
production [14], as shown in Figure 1. The respective production rates of proteins
a and b are defined by

µa =

{

20 if 0 6 xa < θ2
a ∧ 0 6 xb < θ1

b

0 otherwise

µb =

{

20 if 0 6 xa < θ1
a ∧ 0 6 xb < θ2

b

0 otherwise

with θ1
a = θ1

b = 4 and θ2
a = θ2

b = 8. The degradation rate ν of both proteins
is always 2. The example is thus modeled by the piecewise linear system M =
(

{xa, xb}, {θ1
a, θ

2
a} × {θ1

b , θ
2
b}, (µa, µb)

t, diag(ν, ν)
)

.

a b

Fig. 1. Two proteins inhibiting each other.

2.2 Transition systems and Constraints

In the following, we present a simplified version of the component model adopted
in [20]. For a set of variables X , let V (X) denote the set of valuations of X , and
let P(X) = 2V (X) be the set of predicates on V (X).

Definition 6 (Transition system). A transition system B is a tuple (X, A, G,
F ) where

– X is a finite set of variables;



– A is a finite set of actions;
– G : A → P(X) associates with every action its guard specifying when the

action can occur;
– F : A →

(

V (X) → V (X)
)

associates with every action its transition func-
tion.

For convenience, we write Ga and F a for G(a) and F (a), respectively.

Definition 7 (Semantics of a transition system). A transition system B =
(X, A, G, F ) defines a transition relation →: V (X)×A×V (X) such that: ∀x,x′ ∈

V (X) ∀a ∈ A . x
a
→ x′ ⇐⇒ Ga(x) ∧ x′ = F a(x).

We write x → x′ for ∃a ∈ A . x
a
→ x′, and →∗ for the transitive and reflexive

closure of →. Given states x and x′, x′ is reachable from x if x →∗ x′.

Definition 8 (Predecessors). Given a transition system B = (X, A, G, F )
and a predicate P ∈ P(X), let the predicate prea(P ) characterize the prede-
cessors of P by action a: prea(P )(x) ⇐⇒ Ga(x) ∧ P

(

F a(x)
)

. Let pre(P ) =
∨

a∈A prea(P ), pre0(P ) = P , and prei+1(P ) = pre(prei(P )), i > 0.

The predicate prea(P ) (resp. pre(P )) characterizes the states from which
execution of a (resp. execution of some action) leads to a state satisfying P .

We define two operations on transition systems: composition and restriction.
The composition of transition systems is a transition system again, and so is the
restriction of a transition system.

Definition 9 (Composition). Let Bi = (X1, Ai, Gi, Fi), i = 1, 2, with X1 ∩
X2 = ∅ and A1 ∩ A2 = ∅. B1‖B2 is defined as the transition system (X1 ∪
X2, A1 ∪ A2, G1 ∪ G2, F1 ∪ F2).

This is the standard asynchronous product. Restrictions allow to constrain
the behavior of a transition system.

Definition 10 (Action constraint). Given a transition system B = (X, A, G,
F ), an action constraint is a tuple of predicates U = (U a)a∈A with Ua ∈ P(X).

Definition 11 (Restriction). The restriction of B = (X, A, G, F ) with an
action constraint U = (Ua)a∈A is the transition system B/U = (X, A, G′, F )
where for any a ∈ A, G′(a) = G(a) ∧ Ua is the (restricted) guard of a in B/U .

Example 2. Consider two transition systems Bi = ({xi}, {inci, deci}, Gi, Fi)
where xi are variables on {low, high}, Gi(inci) = (xi = low), Gi(deci) = (xi =
high), Fi(inci) = (xi := high), and Fi(deci) = (xi := low), i = 1, 2. The
composition is B1‖B2 = ({x1, x2}, {inc1, inc2, dec1, dec2}, G1 ∪ G2, F1 ∪ F2).

Further suppose that we want to prevent B1 from entering state x1 = high
if x2 = high, and vice versa. This can be done by restricting B1‖B2 with action
constraint U = (U inc1 , U inc2 , Udec1 , Udec2) where U inc1 = (x2 = low), U inc2 =
(x1 = low), and Udec1 = Udec2 = true. The restricted system is (B1‖B2)/U =
({x1, x2}, {inc1, inc2, dec1, dec2}, G′, F1 ∪ F2) with G′(inc1) = G1(inc1) ∧ (x2 =
low), G′(inc2) = G2(inc2) ∧ (x1 = low), G′(dec1) = G1(dec1), and G′(dec2) =
G1(dec2).



Definition 12 (incr, decr). Given a predicate P on D and i ∈ {1, ..., n}, we
define the predicates incri(P ) and decri(P ) such that for any domain D =
(D1, ..., Di, ..., Dn) ∈ D, incri(P )(D) = P

(

D1, ..., succi(Di), ..., Dn

)

if succi(Di)

6= ⊥, and incri(P )(D) = false otherwise. Similarly, let decri(P )(D) = P
(

D1,

..., preci(Di), ..., Dn

)

if preci(Di) 6= ⊥, and decri(P )(D) = false otherwise.

Intuitively, incri(P ) and decri(P ) denote the predicate P “shifted” by one
domain along the i-th dimension, towards lower and higher values, respectively.
For instance, consider predicate P = (xa = θ2

a) on the state space of Example 1.
Then, incra(P ) = (θ1

a < xa < θ2
a) and decrb(P ) = (xa = θ2

a ∧ θ1
b 6 xb 6 maxb).

2.3 Component Model of Genetic Networks

We now propose the construction of a component-based model from a piecewise
linear system.

Definition 13 (eq). Given θ = θ1 × ... × θn, we define predicates eq#
i on D,

i ∈ {1, ..., n}, # ∈ {<, 6, >, >} such that for any domain D = (D1, ..., Dn) ∈ D,

eq#
i (D) ⇐⇒ ∃D′ = (D′

1, ..., D
′

n) ∈ R(D) ∀x ∈ D′

i . φi(D
′)#x for # ∈ {<, >}

eq=
i (D) ⇐⇒ ∃D′ = (D′

1, ..., D
′

n) ∈ R(D) ∃x ∈ D′

i . φi(D
′) = x

and eq6
i = eq<

i ∨ eq=
i , eq>

i = eq=
i ∨ eq>

i .

The predicates eq#
i reflect the relative position of target equilibria of the

adjacent regulatory domains. The predicates eq<
i (D) and eq>

i (D) specify when
some adjacent regulatory domain has its target equilibrium “left” of Di and
“right” of Di, respectively.

Definition 14 (Č(M)). Given a piecewise linear system M = (X, θ, µ, ν) with
|X | = n, we define the transition system Č(M) = (B1‖B2‖...‖Bn)/U as follows.

– ∀i = 1, ..., n . Bi = counter(Di), where counter(Di) is a bounded counter
defined on Di(θ) by the transition system counter(Di) =

(

{leveli}, {inci,

deci}, {Ginci = leveli 6 θpi

i , Gdeci = leveli > θ1
i },

{

F inci =
(

leveli :=

succi(leveli)
)

, F deci =
(

leveli := preci(leveli)
)})

.
– U is an action constraint such that U(inci) = V >

i and U(deci) = V <
i with

V <
i =reg ∧ eq<

i ∨ decri(reg ∧ eq6
i ) (3)

V >
i =reg ∧ eq>

i ∨ incri(reg ∧ eq>
i ) (4)

Actions inci (deci) correspond to an increase (decrease) by one of the dis-
cretized concentration leveli of protein i. The predicates V <

i and V >
i specify

when a transition decrementing leveli and incrementing leveli, respectively, is
enabled. More precisely, the first term in the disjunctions of lines (3) and (4)
specifies that there is a transition from a regulatory domain to a first-order



switching domain in the direction of the target equilibrium of the source do-
main. The second term gives the conditions for transitions decreasing the order:
they must be compatible with the relative position of the target equilibrium of
the destination domain. Definition 14 limits the behavior of the model to transi-
tions between regulatory and first-order switching domains. The generalization
to the set of domains D is not presented here due to space limitation.

Remark 1. Since ‖ is associative, Definition 14 leaves open how the system is
actually partitioned into components (in the sense of sets of transition systems).
The two extreme cases are that each Bi is considered as one component, or that
B1‖B2‖...‖Bn is considered as one single component. This choice will usually
depend on the degree of interaction between the modeled proteins. Putting all
proteins in one component amounts to a non-modular model leading to non-
compositional analysis. Representing each protein with a separate component
may lead to a too heavy abstraction of the behavior. A good choice may gather
closely interacting proteins, for instance proteins in the same cell, in one com-
ponent, while modeling neighboring cells as separate components.

Notice that the above modeling framework enforces separation of concerns by
making a clear distinction between the behaviors of the individual components,
and constraints between the components.

Example 3. Figure 2 shows the transition relations of counter(Da), counter(Db),
and Č(M) for the piecewise linear system M of Example 1.

incb

incb

incb

incbdecb

decb

decb

decb

counter(Db)

xb

θ2
b

θ1
b

θ1
a θ2

a xa0

inca inca inca inca

deca decadecadeca

counter(Da)

Fig. 2. The transition relations of counter(Da), counter(Db), and Č(M).



Theorem 1 (Correctness). Consider a piecewise linear system M = (X, θ, µ,
ν). The behavior of Č(M) under-approximates qualitative simulation as defined
in [14, 7].

3 Compositional Reachability Analysis

Based on the transition system Č(M), the compositional algorithm shown below
can be used to check for reachability of a goal domain, or set of domains, from
an initial domain. The algorithm exhibits a path, if one is found, that solves the
reachability problem.

In the sequel we consider a system B = (X, A, G, F ) = (B1‖ . . . ‖BN)/U with
Bi = (Xi, Ai, Gi, Fi), i ∈ K = {1, . . . , N}, and U an action constraint. That is,
we suppose the n proteins to be modeled with N (1 6 N 6 n) components,
according to Remark 1. Given a conjunction c = c1 ∧ ... ∧ cN of predicates
ci ∈ P(Xi), i = 1, ..., N , let c[i] = ci denote the projection of c on Xi.

Let pathk : V (Xk) × P(Xk) → 2Ak be a function on component k telling
which action to take in order to get from some current component state towards
a state satisfying some predicate. This function can be computed locally: for any
predicate P ∈ P(Xk) and domain D, let

pathk(D[k], P ) = {a ∈ Ak | ∃i > 0 . prea

(

prei
k(P )

)

(D[k]) ∧

∀j ∈ {0, ..., i} . ¬prej
k(P )(D[k])}

That is, pathk(D[k], P ) contains an action a if and only if executing a from D[k]
will bring component k closer to P .

For a set of actions A, let enabling(A) be a list of predicates enabling some
action in A: ∀c ∈ enabling(A) . c =⇒

∨

a∈A G(a). We suppose each of these
predicates to be a conjunction of predicates on the components. Let ⊕ denote
list concatenation. Given a non-empty list l, we write l = e.l′ where e is the
first element, and l′ the rest of the list. Given a list A of actions and a domain
D, let first enabled(A, D) be the first action a of A such that G(a)(D), and
first enabled(A, D) = ⊥ if all actions are disabled.

Algorithm 1 is constructive, that is, it establishes reachability from some
initial domain Dinit to a set of domains P by constructing a path from Dinit to
P . Function move works as follows. It takes as arguments the current domain
D, a predicate to be reached in the form of a list d of conjunctions, and a list
good of all actions requested to be executed, and returns a new domain, the part
of the path constructed so far, and a boolean indicating whether a path was
found. The five cases are (1) if the current domain satisfies the predicate to be
reached, then we are done. (2) Otherwise, execute the first action in good that
is enabled. If there is none, compute the set goal of actions not considered so far
that bring the system closer to the first element c of d. (3) If goal is non-empty,
recursively call move so as to reach some domain D′ enabling some action in
goal, then call move once more to continue moving towards c. (4) If reaching c
fails, try the next conjunction of d. (5) If all above fails, then this call of move



Algorithm 1 Initial call to construct a path σ from domain Dinit to predicate
P : (D′, σ, success) = move(Dinit, P, 〈〉).

move (D, c.l, good) =
8

>

>

>

>

<

>

>

>

>

:

(D, 〈〉, true) if c(D) (1)
`

F (a)(D), 〈a〉, true
´

if ¬c(D) ∧ a 6= ⊥ (2)
(D′′, σ ⊕ σ′, true) if ¬c(D) ∧ a = ⊥ ∧ goal 6= ∅ ∧ ok ∧ ok′ (3)
move(D, l, good) if ¬c(D) ∧ a = ⊥ ∧ (goal = ∅ ∨ ¬(ok ∧ ok′)) ∧ l 6= 〈〉 (4)
(D, 〈〉, false) otherwise (5)

where

a = first enabled(good,D)

goal =
[

k

pathk(D[k], c[k]) r good

(D′

, σ, ok) = move
`

D, enabling(goal), good ⊕ goal
´

(D′′

, σ
′

, ok
′) = move(D′

, c, good)

failed. It can be shown that Algorithm 1 is guaranteed to terminate. It is not
guaranteed to find a path even if one exists, though. If a path is found on Č(M),
then Theorem 1 ensures that the same path exists in the qualitative model of
[7].

Algorithm 1 is compositional in the sense that it independently computes lo-
cal paths through the state spaces of the components (line goal =

⋃

k pathk(D[k],
c[k]) r good). A global path is then constructed from the local paths and the
constraints between the components: when an action a to be executed is blocked
by a constraint involving other components, the algorithm is called recursively
to move the blocking components into a domain where a is enabled.

Example 4 (Example 3 continued.). The functioning of Algorithm 1 is illustrated
by the path construction from domain Dinit = (θ1

a < xa < θ2
a ∧ θ1

b < xb < θ2
b ) to

domain Dgoal = (xa = θ2
a ∧ 0 6 xb < θ1

b ) representing a stable equilibrium. The
subsequent calls of move are

move (Dinit, 〈Dgoal〉, 〈〉)
a = ⊥, goal = {inca, decb}
move (Dinit, 〈θ1

a < xa < θ2
a, . . . 〉, 〈inca, decb〉)

= (D1 = (θ1
a < xa < θ2

a ∧ xb = θ1
b ), 〈decb〉, true) (2)

move (D1, 〈Dgoal〉, 〈〉)
a = ⊥, goal = {inca, decb}
move (D1, 〈θ

1
a < xa < θ2

a, . . . 〉, 〈inca, decb〉)
= (D2 = (θ1

a < xa < θ2
a ∧ 0 6 xb < θ1

b ), 〈decb〉, true) (2)
move (D2, 〈Dgoal〉, 〈〉)

a = ⊥, goal = {inca}
move (D2, 〈xa < θ2

a ∧ 0 6 xb < θ1
b 〉, 〈inca〉)

= (Dgoal, 〈inca〉, true) (2)
move (Dgoal, 〈Dgoal〉, 〈〉) = (Dgoal, 〈〉, true)



= (Dgoal, 〈inca〉, true) (3)
= (Dgoal, 〈decb, inca〉, true) (3)

= (Dgoal, 〈decb, decb, inca〉, true) (3)

Thus, Dgoal is reached from Dinit by decrementing levelb twice and then incre-
menting levela.

4 Case Study: Delta-Notch Cell Differentiation

Cell differentiation by delta-notch lateral inhibition is a well-studied genetic net-
work [24, 18]. Cell differentiation is an important step in embryonic development,
as it causes initially uniform cells to assume different functions.

For each cell we consider the concentrations of two trans-membrane proteins,
Delta and Notch. Following the model provided in [24], high concentrations of
Delta and Notch inhibit each other’s production within the same cell. High Delta
levels activate further Delta production in the same cell and Notch production
in the neighboring cells. Figure 3 illustrates these interactions.

Notch Notch Notch

Delta Delta Delta

Fig. 3. Interactions within and between neighbor cells.

For our case study, we consider a network consisting of 19 cells with the
layout shown in Figure 4, a network of 37 cells with a similar layout, and the
network of 49 cells shown in Figure 4.

For each protein we partition the continuous state space into two inter-
vals and one threshold value: D∆ = {[0, θ∆), {θ∆}, (θ∆, max∆]} and DN =
{[0, θN), {θN}, (θN , maxN ]}. Cells with low Delta and high Notch levels (0 6

∆ < θ∆, θN < Notch 6 maxN ) are undifferentiated, whereas cells with high
Delta and low Notch concentrations (θ∆ < ∆ 6 max∆, 0 6 Notch < θN ) are
differentiated. We are not interested in the actual production and degradation
rates of the proteins but require the target equilibria φ∆i

and φNotchi
to satisfy

0 6 φ∆i
< θ∆ if Notchi > θN

θ∆ < φ∆i
6 max∆ if Notchi < θN

0 6 φNotchi
< θN if max{∆j | j ∈ neighbors(i)} < θ∆

θN < φNotchi
6 maxN if max{∆j | j ∈ neighbors(i)} > θ∆

Considering only regulatory and first-order switching domains for a system
modeling n cells, the 2n-dimensional global state space encompasses 4n regula-



(∆1, N1) (∆2, N2)

(∆4, N4)

(∆3, N3)

(∆5, N5) (∆6, N6) (∆7, N7)

(∆8, N8) (∆9, N9)(∆10, N10)(∆11, N11)(∆12, N12)

(∆13, N13)(∆14, N14)(∆15, N15)(∆16, N16)

(∆17, N17)(∆18, N18)(∆19, N19)

Fig. 4. Model of 19 communicating cells (left); a stable equilibrium state involving 49
cells where dark cells are differentiated (right).

tory domains and 2n × 22n−1 first-order switching domains, that is, 5.5 × 1012

states for 19 cells, 7.2× 1023 states for 37 cells, and 1.6× 1031 states for 49 cells.

We have implemented Algorithm 1 in the compositional verification tool
Prometheus. To start, we choose to represent each cell by one component,
and check reachability of a given stable equilibrium from the initial state where
all cells are non differentiated. The results reported by Prometheus are con-
sistent with the actual, experimentally observed behavior [24]. For the case of
49 cells and the state shown in Figure 4, Prometheus finds a path of length 32
reaching the state.

Table 1 shows the execution times for the models of cell differentiation with
19, 37, and 49 cells, and for models of the nutritional stress response of E. coli [4]
and sporulation initiation of B. subtilis taken from [12]. The subsequent columns
show the number of domains of the model, and the times for constructing the
component model and a path to the final state using Algorithm 1. All measure-
ments have been made on the same machine, a Pentium4 at 3 GHz with 512 MB
of memory.

state space model reachability

E. coli 7.8 × 103 < 10 ms 0.02 s
B. subtilis 2.7 × 104 < 10 ms 0.28 s
Delta-Notch 19 5.5 × 1012 0.01 s 1.06 s
Delta-Notch 37 7.2 × 1023 0.05 s 10.8 s
Delta-Notch 49 1.6 × 1031 0.13 s 7.5 s

Table 1. Performance on different models.

In order to evaluate the performance increase due to compositionality, we
compare the compositional approach with a non-compositional reachability anal-



ysis, using the same framework. More precisely, we use Algorithm 1 to find a
path from the initial, undifferentiated state to the state of Figure 4, on different
instances of the Delta-Notch model with 49 cells. The only parameter that varies
is the size of the components, where extreme cases are given by the model of 98
components each modeling one protein, and the model consisting of one single
component. The measured performance is shown in Table 2. For this example,
the optimal degree of modularity lies around one component per cell. It should
be noted that the optimal partitioning of proteins into components depend on
the system, and cannot be easily generalized. For a higher degree of modularity
(1 component per protein), the algorithm performs somewhat slower, probably
due to an overhead in coordination between closely interacting components. As
the component size increases, complexity of the (non compositional) path con-
struction within the components exponentially blows up. Although the algorithm
used for path construction within a component is not designed to be optimal for
large state spaces, it allows to compare the complexity for different degrees of
granularity.

cells per component 0.5 1 3/4 7 9/10 49

reachability 10.7 s 7.5 s 8.4 s 35.5 s (*) (*)

Table 2. Benchmarks for different levels of modularity of Delta-Notch 49. (*): compu-
tation interrupted after 12 hours.

5 Discussion

We have presented a novel approach for component-based modeling and reacha-
bility analysis of genetic regulatory networks. The model discretizes the network
dynamics defined by a system of piecewise linear differential equations. On this
model, a compositional algorithm constructively analyzes reachability proper-
ties, allowing to deal with complex, high-dimensional systems. A case study and
several benchmarks show the potential of this approach. In spite of the conser-
vative approximation, our approach has yielded the expected results in the case
studies carried out so far, and confirmed its efficiency.

We intend to apply the technique to genetic networks involving a hierarchy
of communicating functional modules, and to models of not yet fully understood
networks. We are currently investigating compositional analysis of further prop-
erties like equilibria and cyclic behavior, based on the same component model.
In order to further improve precision, we intend to study the integration of
the qualitative model of [3] using piecewise affine differential equations in our
framework.

Acknowledgment. The author thanks Hidde de Jong for many fruitful discus-
sions and comments on earlier versions of this work.
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