
Composition for Component-Based Modeling

Gregor Gössler a, Joseph Sifakis b

aINRIA Rhône-Alpes, France

bVERIMAG, France

Abstract

We propose a framework for component-based modeling using an abstract layered
model for components. A component is the superposition of two models: a be-
havior model and an interaction model. Interaction models describe architectural
constraints induced by connectors between components.

We propose and analyze general requirements for component composition that
motivated and guided the development of the framework. We define an associative
and commutative composition operator on components encompassing heterogeneous
interaction. As a particular instance of the proposed framework, we consider com-
ponents where behavior models are transition systems and interaction models are
described by priority relations on interactions. This leads to a concept of “flexible”
composition different from usual composition in that it preserves deadlock-freedom
and is amenable to correctness by construction. Nevertheless, flexible composition
is a partial operation. Product systems should be interaction safe in the sense that
they do not violate constraints of the interaction model.

We propose results ensuring correctness by construction of a system from prop-
erties of its interaction model and of its components. The considered properties
include global deadlock-freedom, individual deadlock-freedom of components, and
interaction safety.

1 Introduction

Component-based engineering is essential for rigorous system design method-
ologies. It is founded on a paradigm which is common to all engineering disci-
plines: complex systems can be obtained by assembling components (building
blocks). Components are usually characterized by abstractions that ignore

Email addresses: goessler@inrialpes.fr (Gregor Gössler), sifakis@imag.fr
(Joseph Sifakis).

Article published in Science of Computer Programming 55(1-3), 2005

implementation details and describe properties relevant to their composition
e.g. transfer functions, interfaces. Composition is used to build complex com-
ponents from simpler ones. It can be formalized as an operation that takes
in components and their integration constraints. From these, it provides the
description of a new, more complex component.

Component-based engineering is widely used in VLSI circuit design method-
ologies, supported by a large number of tools. Software and system component-
based techniques have known significant development, especially due to the
use of object technologies supported by languages such as C++, Java, and
standards such as UML and CORBA. However, these techniques have not yet
achieved the same level of maturity as has been the case for hardware. For
software components, it is not easy to establish a precise characterization of
the service and functionality offered at their interface.

Existing software component technologies usually allow interaction by method
calls under asynchronous execution. We lack semantic frameworks for compo-
nent-based engineering encompassing meaningful integration of synchronous
and asynchronous components, as well as use of various interaction mecha-
nisms. This is the main obstacle to mastering the complexity of heteroge-
neous systems. It seriously limits the current state of the practice, as attested
by the lack of system development platforms consistently integrating design
activities, and the often prohibitive cost of validation.

The application of component-based design techniques raises two strongly
related and hard problems.

First, the development of theory for building complex heterogeneous systems.
Heterogeneity is in the different types of component interaction, such as strict
(blocking) or non strict, data driven or event driven, atomic or non atomic
and in the different execution models, such as synchronous or asynchronous.

Second, the development of theory for building systems which are correct by
construction, especially with respect to essential generic properties such as
deadlock-freedom and progress. In practical terms, this means that the theory
supplies rules for reasoning on the structure of a system and for ensuring that
such properties hold globally under some assumptions about its constituents
e.g. components, connectors. Tractable correctness by construction results can
provide significant guidance in the design process. Their lack leaves a posteriori
verification of the designed system as the only means to ensure its correctness.

In this paper, we propose a framework for component-based modeling that
brings some answers to the above issues. The framework uses an abstract lay-
ered model of components. It integrates and simplifies results about modeling
timed systems by using timed automata with dynamic priorities [6,1].

2

A component is the superposition of two models: a behavior model and an
interaction model.

• Behavior models describe the dynamic behavior of components.
• Interaction models describe architectural constraints on behavior. They are

defined as a set of connectors and their properties. A connector is a maxi-
mal set of compatible component actions. The simultaneous occurrence of
actions of a connector is an interaction.

An associative and commutative composition operator is defined on compo-
nents. The operator builds two-layered components by composing separately
the corresponding layers of its arguments. As a particular instance of the
proposed framework, we consider components where behaviors are transition
systems and interaction models are described by priority relations on inter-
actions. This leads to a general framework for “flexible” composition which
differs from existing ones such as process algebras [4,16,23,24], semantic frame-
works for synchronous languages [5,14,3,22], and Statecharts [15].

The proposed composition distinguishes clearly between two different and or-
thogonal aspects of systems modeling: behavior and interaction (architecture).
This distinction, apart from its methodological interest, allows solving tech-
nical problems such as associativity of a unique and powerful composition
operator. The proposed framework has concepts in common with Metropolis
[2] and Ptolemy [20] where a similar separation of concerns is advocated.

The proposed composition preserves deadlock-freedom. That is, if two compo-
nents can perform some action from any state then their product does so. This
is due to the fact that we replace restriction or other mechanisms often used
to ensure strong synchronization between components, by dynamic priorities.
Nevertheless, our composition is a partial operation: products must be inter-
action safe, that is, they do not violate strong synchronization assumptions.
In that respect, our approach is has some similarity to [8].

The paper is organized as follows.

Section 2 discusses three requirements for composition in component-based
modeling. The first is support for two main types of heterogeneity: heteroge-
neous interaction and heterogeneous execution. The second is that it provide
results for ensuring correctness by construction for a few essential and generic
system properties, such as deadlock-freedom. The third is the existence of a
composition operator that allows abstraction and incremental description.

Section 3 presents composition and its properties.

Section 4 presents results ensuring correctness by construction of product sys-
tems from properties of their interaction model and of their components.

3

The considered properties include global deadlock-freedom (the product of
deadlock-free components is deadlock-free), individual deadlock-freedom of
components, and interaction safety.

Section 5 presents the application of correctness by construction results to an
example.

Section 6 presents concluding remarks about the presented framework.

2 Requirements for Composition

2.1 General

We consider a very simple and abstract concept of components that is sufficient
for the purpose of the study. A component can perform actions from a vocab-
ulary of actions. A system of interacting components is a set of components
integrated through various mechanisms for coordinating their execution. The
overall effect of integration on the components of a system is the restriction
of their behavior. It can be abstractly described by two types of integration
constraints: interaction and execution constraints.

Interaction constraints characterize mechanisms used in architectures such as
connectors, channels, synchronization primitives. Interactions result from the
composition of actions.

Execution constraints restrict non determinism arising from concurrent exe-
cution, and ensure properties related to the efficiency of computation, such as
synchronous execution and scheduling.

There exists a variety of formalisms proposing concepts for parallel execu-
tion of sequential entities, such as process algebras (CCS [24], CSP [16]),
synchronous languages (Esterel, Lustre, Statecharts), hardware description
languages (VHDL), system description languages (SystemC [25], Metropolis
meta-model), and more general modeling languages (SDL [17], UML [13]). We
use the term “component” to denote any executable description whose runs
can be modeled as sequences of actions. Tasks, processes, threads, functions,
blocks of code can be considered as components provided they meet these
requirements.

The purpose of this section is to present concept requirements for composi-
tion in component-based modeling and to discuss the adequacy of existing
formalisms with respect to these requirements.

4

2.2 Heterogeneity

There exist two main sources of heterogeneity: interaction and execution. Het-
erogeneity of interaction results from the combination of different kinds of
interaction.

Interactions can be atomic or non atomic. The effect of atomic interactions on
participating components cannot be altered through interference with other
interactions. Process algebras and synchronous languages assume atomic inter-
actions. In languages with buffered communication (SDL, UML) or in multi-
threaded languages (Java), interactions are not atomic, in general.

Interactions can involve strict or non strict synchronization. For instance, CSP
rendez-vous are strict interactions; their execution requires participation of the
involved actions. Strict synchronization can introduce deadlocks in systems of
interacting deadlock-free components. If a component persistently offers an
action and its environment is unable to offer matching actions, then there is
a risk of deadlock. In synchronous languages, interactions are atomic and non
strict as execution of outputs does not require synchronization with inputs.
Nevertheless, for some input to be triggered, a matching output is necessary.

Heterogeneity of execution results from the combination of two execution pa-
radigms.

Synchronous execution is typically adopted in hardware, in synchronous lan-
guages, and in time triggered architectures and protocols. It considers that a
system execution is a sequence of steps. It assumes synchrony, meaning that
the system’s environment does not change during a step, or equivalently “that
the system is infinitely faster than its environment”. In each execution step,
all the system components contribute by executing some ”quantum” computa-
tion. The synchronous execution paradigm has a built-in strong assumption of
fairness: in each step all components execute a quantum computation defined
by using either quantitative or logical time.

The asynchronous paradigm does not adopt any notion of global computation
step in a system’s execution. It is used in languages for the description of
distributed systems such as SDL and UML, and programming languages such
as Ada and Java. The lack of built-in mechanisms for sharing computation
between components can be compensated through scheduling. This paradigm
is also common to all execution platforms supporting multiple threads, tasks,
etc.

Currently, there is no unified framework encompassing heterogeneous composi-
tion. Figure 1 shows existing languages in a three-dimensional space with coor-
dinates corresponding to execution (synchronous/asynchronous) and to inter-

5

Fig. 1. About composition: heterogeneity. A: atomic, S: strict interaction.

action: atomic/non atomic and strict/non-strict. It is worth noting that syn-
chronous languages use non strict and atomic interactions. This choice seems
appropriate for synchronous execution. On the contrary, for asynchronous ex-
ecution there is no language using this kind of interaction.

2.3 Correctness by Construction

Frameworks for component-based modeling should provide methods for estab-
lishing correctness by construction, in particular for classes of very common
and generic properties such as deadlock-freedom and liveness. In principle, two
types of rules are needed for establishing correctness by construction.

• Composability rules allowing to infer that, under some local conditions, a
component property will remain valid after composition. These rules are
essential for preserving previously established component properties. For
instance, to guarantee that a component without internal deadlocks will
remain deadlock-free after composition. Composability is essential for in-
cremental system construction. It means stability of component properties
across integration (when its environment changes by adding or removing
components). Property instability phenomena are currently poorly under-
stood e.g. feature interaction in telecommunications, or non composability
of scheduling algorithms. Results in composability are badly needed.

• Compositionality rules allowing to infer overall system properties from its
components’ properties. Existing compositionality results deal mainly with
preservation of safety properties [19,10,9]. Compositionality results for pro-
gress properties are essential for the correctness of reactive systems.

6

2.4 Abstraction and Incrementality

It is often necessary to modify components according to the context of their
use, at the risk of altering their behavior. Such modifications may be needed to
adapt them to a particular type of composition. For instance, if a composition
operator allows only strict interaction, this operator can be used for non strict
interaction by modifying both the interface and the behavior of the compo-
nents in the following manner (see for instance Milner’s SCCS [23]): For each
action a in the interface add a “complementary” action ā that will be executed
from all the states from which a is not possible. Conversely, modeling strict
interactions by using non strict interactions requires similar modifications of
the components.

We currently lack sufficiently powerful and abstract composition operators
encompassing all kinds of interaction without modification of the integrated
components.

Another important requirement for composition is incrementality of descrip-
tion. Incrementality means that models can be constructed by adding or re-
moving components and that the result of the construction is independent of
the order of integration. Associative and commutative composition operators
allow incrementality.

Existing theoretical frameworks for composition such as CCS and SCCS, use
parallel composition operators that are associative and commutative. Never-
theless, these operators are not expressive enough and need to be combined
with other operators such as hiding and restriction. This jeopardizes incremen-
tality of description. For instance, if restriction is used in a system’s model,
its integration in a larger model may need changing the scope of restriction.

Lack of incrementality is also a well-identified problem in graphical formalisms
such as Statecharts or UML. Their operational semantics associate with de-
scriptions global transition systems by using implicitly n-ary composition op-
erators (n is equal to the number of the composed components.

The definition of an associative and commutative composition operator which
is expressive and abstract enough to support heterogeneous integration re-
mains an open problem.

7

3 Composition

We present a modeling framework based on a binary associative and com-
mutative composition operator for heterogeneous interaction. For the sake of
simplicity, atomic components are characterized by a set of actions and the
associated behavior.

3.1 Interaction Models

Composition operators allow to build a system as a set of components that
interact by respecting constraints of an interaction model. The latter char-
acterizes a system architecture as a set of connectors and their properties.
Roughly speaking, connectors relate actions of different components and can
be abstractly represented as maximal sets of interacting actions (interactions).

Consider a set of components with disjoint vocabularies of actions Ai for i ∈ K,
K a set of indices. We put A =

⋃

i∈K Ai.

A connector c is a non empty subset of A such that ∀i ∈ K . |Ai ∩ c| 6 1. A
connector defines a maximally compatible set of interacting actions. For the
sake of generality, our definition accepts singleton connectors. The use of the
connector {a} in a description is interpreted as the fact that action a cannot
be involved in interactions with other actions (is an internal action).

Given a connector c, an interaction α of c is any term of the form α = a1 p . . . pan

such that {a1, . . . , an} ⊆ c. As usual [23,4], we assume that p is a binary as-
sociative and commutative operator used to denote some abstract and partial
action composition operation. The interaction a1p . . . pan is the result of the oc-
currence of the actions a1, . . . , an. When α and α′ are interactions we write αpα′

to denote the interaction resulting from their composition (if its is defined).

Notice that if α = a1p . . . pan is an interaction then any term corresponding
to a sub-set of {a1, . . . , an} is an interaction. By analogy, we say that α′ is a
sub-interaction of α if α = α′pα′′ for some interaction α′′. Clearly, actions are
minimal interactions.

The set of the interactions of a connector c = {a1, . . . , an}, denoted by I(c),
consists of all the interactions corresponding to sub-sets of c (all the sub-
interactions of c). We extend the notation to sets of connectors. If C is a set
of connectors then I(C) is the set of its interactions. Clearly for C1, C2 sets of
connectors, I(C1 ∪ C2) = I(C1) ∪ I(C2).

Definition 1 (Set of connectors) The set of connectors of a system con-

8

sisting of a set of components K with disjoint action vocabularies Ai for i ∈ K,
is a set C such that

⋃

c∈C c =
⋃

i∈K Ai, and if c ∈ C then there exists no c′ ∈ C
and c (c′. That is, C contains only maximal sets.

For K ′ ⊆ K, let A[K ′] =
⋃

i∈K′ Ai, and let C[K ′] = {c′ | ∃c ∈ C . c′ =
c ∩ A[K ′] ∧ 6 ∃c′′ ∈ C . c′ (c′′ ∩ A[K ′]} be the set of the connectors of K ′.

Definition 2 (Interaction model) The interaction model of a system con-
sisting of a set of components K with a set of connectors C is a pair IM =
(I(C), I(C)+) where I(C)+ ⊆ I(C), is the set of the complete interactions
such that ∀b, b′ ∈ I(C), b ∈ I(C)+ and b ⊆ b′ implies b′ ∈ I(C)+. We denote
by I(C)− the set of the incomplete (non complete) interactions.

Notice that any action appears in some connector. The requirement that C
contains only maximal sets ensures a bijection between the set of connectors C
and the corresponding set of interactions I(C). Given I(C), the corresponding
set of connectors is uniquely defined and is C. To simplify notation, we write
IC instead of I(C).

The distinction between complete and incomplete interactions introduces a
notion of correctness which is essential for systems of interacting components.
As models are built incrementally, interactions are obtained by successively
composing actions. It is often necessary for a given system, to express the fact
that some interaction of a sub-system is not a legal interaction of the overall
system. This is typically the case for binary strict synchronization (rendez-
vous) between two actions send and receive offered by two components. These
actions should be considered as incomplete and sendpreceive as complete. If
a system model involving the two components can execute actions send or
receive then it is not correct as it violates the rendez-vous assumption about
strict synchronization.

The execution of a complete interaction by a component does not require
synchronization with interactions of its environment (other components). The
execution of an incomplete interaction requires synchronization with some
other interaction to produce a larger one which may be either complete or
incomplete. Thus, incompleteness implies the obligation to synchronize with
matching interactions as specified by the connectors. If an interaction model
has no complete interactions, then components must synchronize to produce
(incomplete) interactions which are maximal in the sense that they involve all
the actions in some connector. We consider that in a system, only complete or
maximal incomplete interactions are legal. This induces a notion of correctness
called interaction safety, defined in 4.2.

In our framework the distinction between complete and incomplete interac-
tions is used to encompass distinctions such as output/input, internal/external,

9

uncontrollable/controllable used in different modeling formalisms. Clearly, in-
ternal actions of components should be considered as complete because they
can be performed independently of the state of their environment. In some for-
malisms, output actions are complete (synchronous languages, asynchronous
buffered communication). In some others such as CSP and Lotos, all synchro-
nizing actions are incomplete.

A property about complete interactions is closedness for containment that is,
if α is a complete interaction then any interaction containing it, is complete.
This property is motivated by both pragmatic and technical considerations.
It ensures consistency of the composition of interaction models and has a
”natural” interpretation. If α is a complete interaction of a component, then
the fact that α p α′ remains complete is consistent with the assumption that
the component can execute α independently of the state of its environment.

Very often it is sufficient to consider that the interactions of IC+ are defined
from a given set of complete actions A+ ⊆ A. That is, IC+ consists of all
the interactions of IC where at least one complete action (element of A+) is
involved. In the example of figure 2, we give sets of connectors and complete
actions to define interaction models. By convention, bullets represent incom-
plete actions and triangles complete actions. In the partially ordered set of the
interactions, full nodes denote complete interactions. The interaction between
put and get represented by the interaction putpget is a rendez-vous meaning
that synchronization is blocking for both actions. The interaction between out
and in is asymmetric as out can occur alone even if in is not possible. Never-
theless, the occurrence of in requires the occurrence of out. The interactions
between out, in1 and in2 are asymmetric. The output out can occur alone or
in synchronization with any of the inputs in1, in2.

In general, completeness of interactions need not be the consequence of the
completeness of some action. For instance, consider a connector {a1, a2, a3, a4}
and suppose that the set of the minimal complete interactions of I{a1, a2, a3,
a4} is a1pa2 and a3pa4. That is, the actions a1, a2, a3, a4 are incomplete and only
interactions containing a1pa2 or a3pa4 are complete. This specification requires
strict synchronization of at least one of the two pairs (a1, a2), (a3, a4).

3.2 Composition of Interaction Models

Consider the interaction model IM = (IC, IC+) of a set of interacting compo-
nents K with disjoint action vocabularies Ai for i ∈ K. IC and IC+ denote the
sets of interactions and complete interactions, respectively on the vocabulary
of actions A =

⋃

i∈K Ai.

Definition 3 (Set of connectors of a partition) The set of the connec-

10

Fig. 2. Flexible composition: interaction structure.

tors of a partition K1, . . . , Kn of K, is a set C[K1, . . . , Kn] of connectors
having at least one action in each set of components, that is, C[K1, . . . , Kn] =
{c = c1 ∪ · · · ∪ cn | ∀i ∈ [1, n] . ci ∈ C[Ki] ∧ c ∈ C[K]}.

Clearly, C[K1, . . . , Kn] is the set of the connectors of IM[K1 ∪ · · · ∪Kn] which
are not connectors of any IM[K ′] for any subset K ′ of at most n− 1 elements
from {K1, . . . , Kn}.

Definition 4 (Interaction model of a partition) The interaction model
of a partition K1, . . . , Kn of K ′ ⊆ K, with disjoint action vocabularies Ai

for i ∈ K ′ and set of connectors C[K1, . . . , Kn], is a pair IM[K1, . . . , Kn] =
(IC[K1, . . . , Kn], IC[K1, . . . , Kn]

+) where IC[K1, . . . , Kn]
+ = IC[K1, . . .Kn] ∩

IC+.

Notice that when the partition consists of only one set, then the above defini-
tions agree with Definitions 1 and 2.

Remark 1 Writing the interaction model of a sub-system K ′ ⊆ K as the
projection of IM on K ′ helps to simplify notation. It does not preclude incre-
mental construction. The following proposition provides a basis for computing
the interaction model IM[K1 ∪ K2] from the interaction models IM[K1] and
IM[K2] and from the interaction model of the connectors relating components
of K1 and K2.

11

Proposition 1 Given K1, K2, a partition of K, interaction models IM[Ki] =
(IC[Ki], IC[Ki]

+), for i = 1, 2, the interaction model IM[K1 ∪ K2] = (IC[K1 ∪
K2], IC[K1 ∪ K2]

+) can be defined by

IC[K1 ∪ K2] = IC[K1] ∪ IC[K2] ∪ IC[K1, K2]

IC[K1 ∪ K2]
+ = IC[K1]

+ ∪ IC[K2]
+ ∪ IC[K1, K2]

+

IM[K1 ∪ K2] = (IC[K1 ∪ K2], IC[K1 ∪ K2]
+)

= IM[K1] ∪ IM[K2] ∪ IM[K1, K2]

where IC[K1, K2]
+ is any set of interactions of the form

IC[K1, K2]
+ = IC[K1]

+ ∩ IC[K1, K2] ∪ IC[K2]
+ ∩ IC[K1, K2] ∪ I with

I ⊆ IC[K1, K2] r (IC[K1]
+ ∪ IC[K2]

+) and
α ∈ IC[K1]

+∪IC[K2]
+, α2 = αpα1 ∈ IC[K1, K2]r(IC[K1]

+∪IC[K2]
+) implies

α2 ∈ I.

Proof. The first equality comes from the fact that C[K1]∪C[K2]∪C[K1, K2]
contains all the connectors of C[K1∪K2] and other sets of interactions that are
not maximal. By definition, IC contains all the sub-sets of C. Thus, IC[K1 ∪
K2] = I(C[K1] ∪ C[K2] ∪ C[K1, K2]) = IC[K1] ∪ IC[K2] ∪ IC[K1, K2].

To prove the second equality it is sufficient to prove that IC[K1 ∪ K2]
+ ⊆

IC[K1∪K2] and IC[K ′]+ = IC[K1∪K2]
+∩IC[K ′] for [K ′] = [K1], [K2], [K1, K2].

This is easy to check given that IC[K1]
+∪ IC[K2]

+∪ IC[K1, K2]
+ = IC[K1]

+∪
IC[K2]

+ ∪ I.

Property 1 Given K1, K2, K3 three disjoint subsets of a set of compo-
nents K, and the interaction models IM[K ′] = (IC[K ′], IC[K ′]+), for [K ′] =
[K1, K3], [K2, K3], [K,1 , K2, K3],

IC[K1 ∪ K2, K3] = IC[K1, K3] ∪ IC[K2, K3] ∪ IC[K1, K2, K3]

IM[K1 ∪ K2, K3] = IM[K1, K3] ∪ IM[K2, K3] ∪ IM[K1, K2, K3]

Proof. The first equality comes from the fact that C[K1, K3] ∪ C[K2, K3] ∪
C[K1, K2, K3] contains all the connectors of C[K1 ∪ K2, K3] and in addition,
other sets of interactions that are not maximal. By definition, IC contains
all the sub-sets of C. Thus, IC[K1 ∪ K2, K3] = I(C[K1, K3] ∪ C[K2, K3] ∪
C[K1, K2, K3]) from which we get the result by distributivity of I over union.

The second equality results from the fact that IC[K1∪K2, K3]
+ = IC[K1, K3]

+∪
IC[K2, K3]

+ ∪ IC[K1, K2, K3]
+ = IC[K1 ∪ K2 ∪ K3]

+ ∩ IC[K1 ∪ K2, K3].

This property allows computing the connectors and thus the interactions be-
tween IM[K1 ∪ K2] and IM[K3] in terms of the interactions between IM[K1],
IM[K2], and IM[K3]. Is is used to obtain the following expansion formula:

12

Proposition 2 (Expansion formula)

IM[K1 ∪ K2 ∪ K3] =IM[K1] ∪ IM[K2] ∪ IM[K3] ∪ IM[K1, K2]

∪ IM[K1, K3] ∪ IM[K2, K3] ∪ IM[K1, K2, K3] .

3.3 Composition Semantics and Properties

We consider that a system S is a pair S = (B, IM) where B is the behavior
model of S and IM is its interaction model. As in the previous section, IM
is the interaction model of a set of interacting components K with disjoint
action vocabularies Ai, i ∈ K.

For given K ′ ⊆ K, we denote by S[K ′] the sub-system of S consisting of
components of K ′, S[K ′] = (B[K ′], IM[K ′]), where IM[K ′] is defined as before.

We define an abstract composition operator ‖ allowing to obtain for disjoint
sub-sets K1, K2 of K, the system S[K1 ∪ K2] as the composition of the sub-
systems S[K1], S[K2] for given interaction model IM[K1, K2] connecting the
two sub-systems. The operator composes separately the behavior models and
the interaction models of the sub-systems.

Definition 5 The composition of two systems S[K1] and S[K2] is the system
S[K1 ∪ K2] = (B[K1], IM[K1])‖(B[K2], IM[K2]) = (B[K1] × B[K2], IM[K1] ∪
IM[K2] ∪ IM[K1, K2]) where × is a binary associative behavior composition
operator such that B[K1] × B[K2] = B[K1 ∪ K2].

Remark 2 This definition does not make any specific assumption about be-
havior models which can be programs, state equations, formulas of a temporal
logic or any description representing transition relations or their abstractions.
Clearly, the choice of a behavior model implies an adequate interpretation of
the interaction model. If for instance, components are circuits, their behavior
can be described by boolean state equations and interactions are correspon-
dences between inputs and outputs. Composition of behaviors is the (disjoint)
union of the state equations of the components.

Due to proposition 1 we have (B[K1], IM[K1])‖(B[K2], IM[K2]) = (B[K1 ∪
K2], IM[K1 ∪ K2]), which means that composition of sub-systems gives the
system corresponding to the union of their components.

Notice that under these assumptions composition is associative:

13

Fig. 3. The composition principle.
(

(B[K1], IM[K1])‖(B[K2], IM[K2])
)

‖(B[K3], IM[K3]) =

= (B[K1 ∪ K2], IM[K1 ∪ K2])‖(B[K3], IM[K3])

= (B[K1] × B[K2] × B[K3], IM[K1 ∪ K2] ∪ IM[K3] ∪ IM[K1 ∪ K2, K3])

= (B[K1 ∪ K2 ∪ K3], IM[K1 ∪ K2 ∪ K3])

by application of proposition 2.

3.3.1 Transition Systems with Priorities

We consider the particular case where interactions are atomic, component
behaviors are transition systems, and the constraints are modeled as priority
orders on interactions. Transition systems with priorities have already been
studied and used to model timed systems. The interested reader can refer to
[7,1].

Definition 6 (Transition system) A transition system B is a triple (Q,
I(A), →) where Q is a set of states, I(A) is a set of interactions on the action
vocabulary A, and →⊆ Q × I(A) × Q is a transition relation.

As usual, we write q1
α
→ q2 instead of (q1, α, q2) ∈→.

14

Definition 7 (Transition system with priorities) A transition system
with priorities is a pair (B,≺) where B is a transition system with set of
interactions I(A), and ≺ is a priority order, that is, a strict partial order on
I(A).

Semantics: A transition system with priorities represents a transition sys-
tem: if B = (Q, I(A),→), then (B,≺) represents the transition system B ′ =
(Q, I(A),→′) such that q1

α
→ ′q2 if q1

α
→ q2 and there exist no α′ and q3 such

that α ≺ α′ and q1
α′

→ q3.

Definition 8 (⊕) The sum ≺1 ⊕ ≺2 of two priority orders ≺1, ≺2 is the
least priority order (if it exists) such that ≺1 ∪ ≺2⊆≺1 ⊕ ≺2.

Notice that ≺1 ⊕ ≺2, if it is defined, is the transitive closure of ≺1 ∪ ≺2.

Lemma 1 ⊕ is a (partial) associative and commutative operator.

Definition 9 (‖) Consider a system S[K] with interaction model IM[K] =
(IC[K], IC[K]+). Let K1, K2 be two disjoint subsets of K and S[K1] = (B[K1],
≺1), S[K2] = (B[K2],≺

2) be two sub-systems of S[K] such that their priority
orders do not allow domination of complete interactions by incomplete ones,
that is for all α ∈ IC[K]+ and α′ ∈ IC[K]−, ¬(α ≺i α′) for i = 1, 2.

If Bi = (Qi, IC[Ki],→i) for i = 1, 2, then S[K1]‖S[K2] is the composition of
S[K1] and S[K2] defined by S[K1]‖S[K2] = (B1 × B2,≺

1 ⊕ ≺2 ⊕ ≺12), where

B1 × B2 = (Q1 × Q2, IC[K1 ∪ K2],→12) with

q1
α
→1 q′1 implies (q1, q2)

α
→12 (q′1, q2)

q2
α
→2 q′2 implies (q1, q2)

α
→12 (q1, q

′

2)

q1
α1→1 q′1 and q2

α2→2 q′2 implies (q1, q2)
α1 pα2→ 12 (q′1, q

′

2) if α1pα2 ∈ IC[K1 ∪ K2].

≺12 is the minimal priority order on IC[K1 ∪ K2] such that

• α1 ≺
12 α1pα2 for α1pα2 ∈ IC[K1, K2] (maximal progress priority rule);

• α1 ≺12 α2 for α1 ∈ IC[K1 ∪ K2]
−− and α2 ∈ IC[K1 ∪ K2]

+, where IC[K1 ∪
K2]

−− denotes the elements of IC[K1∪K2]
− that are non-maximal in IC[K1∪

K2] (completeness priority rule).

The first priority rule favors the largest interaction. The second allows ensur-
ing correctness of the model. Non maximal incomplete (illegal) interactions
are prevented if complete interactions are possible in the product: if a com-
ponent can perform a complete interaction then all non maximal incomplete
interactions are blocked.

15

Notice that priority rules of ≺12 allow preventing illegal actions of the product
which are usually eliminated by using restriction operators [23,24]. A main
difference between the two approaches is that restrictions remove all illegal
interactions from the product while priorities eliminate illegal interactions
only if they are dominated by complete interactions in the priority order. The
use of restriction may introduce deadlocks in the product of deadlock-free
components while deadlock-freedom is preserved by using priorities as shown
in the next section.

Proposition 3 ‖ is a total, commutative and associative operator.

Proof. Total operator: prove that for K1 ∩ K2 = ∅, ≺1 ⊕ ≺2 ⊕ ≺12 is a
priority order, that is, the transitive closure of the union of ≺1, ≺2, and ≺12

does not have any circuits.

The maximal progress priority rule defines a priority order isomorphic to the
set inclusion partial order, and is thus circuit-free.

The completeness priority rule relates incomplete and complete interactions
and is circuit-free, too. The only source of a priority circuit could be the
existence of interactions α1, α2, α3 ∈ IC[K1 ∪ K2] such that α1 = α2pα3,
α1 ∈ IC[K1 ∪ K2]

−−, and α2 ∈ IC[K1 ∪ K2]
+. This is impossible due to

the monotonicity requirement of definition 2.

Associativity:

(

(B[K1], ≺1) ‖ (B[K2], ≺2)
)

‖ (B[K3], ≺3) =

= (B[K1 ∪ K2], ≺1 ⊕ ≺2 ⊕ ≺12) ‖ (B[K3], ≺3)

= (B[K1 ∪ K2 ∪ K3], ≺1 ⊕ ≺2 ⊕ ≺12 ⊕ ≺3 ⊕ ≺[12],3)

where ≺12 is the least priority order defined by

• α1 ≺
12 α1pα2 for α1pα2 ∈ IC[K1, K2], and

• α1 ≺
12 α2 for α1 ∈ IC[K1 ∪ K2]

−− and α2 ∈ IC[K1 ∪ K2]
+,

and ≺[12],3 is the least priority order defined by

• α1 ≺
[12],3 α1pα2 for α1pα2 ∈ IC[K1 ∪ K2, K3], and

• α1 ≺
[12],3 α2 for α1 ∈ IC[K1 ∪ K2 ∪ K3]

−− and α2 ∈ IC[K1 ∪ K2 ∪ K3]
+.

Let ≺ be the order defined by

• α1 ≺ α1pα2 for α1pα2 ∈ IC[K1, K2]∪IC[K1, K3]∪IC[K2, K3]∪IC[K1, K2, K3],
and

• α1 ≺ α2 for α1 ∈ IC[K1 ∪ K2 ∪ K3]
−− and α2 ∈ IC[K1 ∪ K2 ∪ K3]

+.

16

Fig. 4. Composition: producer/consumer.

By comparing both relations it is clear that ≺12 ∪ ≺[12],3=≺ (by using the
fact that IC[K1, K2, K3] ⊆ IC[K1 ∪ K2, K3]).

We show that if ≺+ is the transitive closure of ≺ then ≺+=≺. Consider inter-
actions α1 and α2 such that α1pα2 ∈ IC[K1, K2] ∪ IC[K1, K3] ∪ IC[K2, K3] ∪
IC[K1, K2, K3]. If α1 ∈ IC[K1 ∪ K2 ∪ K3]

+ then by definition 2, α1pα2 /∈
IC[K1 ∪ K2 ∪ K3]

−−. Conversely, if α1pα2 ∈ IC[K1 ∪ K2 ∪ K3]
−− then α1 /∈

IC[K1 ∪ K2 ∪ K3]
+. Thus, ≺+=≺, and ≺12 ⊕ ≺[12],3=≺. So the resulting pri-

ority order ≺1 ⊕ ≺2 ⊕ ≺3 ⊕ ≺ is the same independently of the order of
composition.

Example 1 Consider the system consisting of a producer and a consumer.
The components interact by rendez-vous. The actions put and get are in-
complete. We assume that the actions prod and cons are internal and thus
complete. Figure 4 gives the interaction model corresponding to these assump-
tions. The product system consists of the product transition system and the
priority order defined from the interaction model. The priority order removes
all incomplete actions (crossed transitions).

17

4 Correctness by Construction

4.1 Global Deadlock-Freedom

We give basic results about deadlock-freedom preservation for transitions sys-
tems with priorities. Similar results have been obtained for timed transition
systems with priorities in [6].

Definition 10 (Deadlock-freedom) A transition system B = (Q, I(A),
→) is called deadlock-free if it has no sink states, that is if for any state
q there exist α, q′ such that (q, α, q′) ∈→. A system is deadlock-free if the
transition system with priorities representing it is deadlock-free.

Proposition 4 (Composability) Deadlock-freedom is preserved by priority
orders that is, if B is deadlock-free then (B,≺) is deadlock-free for any priority
order ≺.

Proposition 5 (Compositionality) Deadlock-freedom is preserved by com-
position that is, if (B1,≺

1) and (B2,≺
2) are deadlock-free then (B1,≺

1)‖(B2,
≺2) is deadlock-free, if ≺1, ≺2 meet the requirements of Definition 9.

Proof. Follows from the fact that composition of behaviors preserves dead-
lock-freedom and from the previous proposition.

Corollary 1 Any system obtained by composition of deadlock-free components
is deadlock-free.

4.2 Interaction Safety

As explained in section 3.1, the distinction between complete and incomplete
interactions is essential for building correct models. Our composition opera-
tion preserves deadlock-freedom of components but it does not prevent the
occurrence of non maximal incomplete interactions.

We introduce a notion of correctness called interaction safety.

Definition 11 (Interaction safety) Consider a system S with interaction
model IM = (IC, IC+). Define the priority order ≺ on incomplete interactions
such that α1 ≺ α2 if α1 ∈ IC−− and α2 ∈ IC− r IC−−. S is called interaction
safe if its restriction by ≺ can perform only complete or maximal incomplete
interactions.

18

Notice that the rule defining the priority order ≺ is similar to the complete-
ness priority rule of definition 9. For a given system, incomplete interactions
that are maximal in IC have the same status as complete interactions with
respect to non maximal incomplete interactions. Nevertheless, maximality of
incomplete interactions depends on the overall interaction model. For instance,
consider a system consisting of three components with a connector {a1, a2, a3}
such that all its interactions are incomplete. The interaction a1pa2 is legal in
the sub-system consisting of the first two components while it is illegal in the
overall system. In the latter, a1pa2 is incomplete and non maximal. It must
synchronize with a3 to produce the maximal incomplete interaction a1pa2pa3.

We give below a method for checking whether a model is interaction safe. No-
tice that the same method can be used to check deadlock-freedom of systems
of deadlock-free interacting components, for composition operators using re-
striction as in [24]. If a system is not interaction safe then there exists a state
from which it can perform only illegal interactions. This is a deadlock state
for composition with restriction.

Dependency graph: Consider a system S[K] consisting of a set of inter-
acting components K with interaction model IM = (IC, IC+). For c ∈ C (C
is the set of the connectors of IC) we denote by I+

min(c) the set of the minimal
complete interactions of c, and write I+

min(C) for {i ∈ I+
min(c)}c∈C .

The dependency graph of S[K] is a labeled bipartite graph with two sets
of nodes: the components of K, and nodes labeled with elements of the set
{(c, α(c)) | c ∈ C ∧ I+

min(c) = ∅} ∪ {(c, α) | c ∈ C ∧ α ∈ I+
min(c)}, where α(c)

is the maximal interaction of c (involving all the elements of c).

The edges are labeled with actions of A as follows:

Let (c, α) = ({a1, . . . , an}, α) be a node of the graph and denote by owner(ai)
the component which is owner of action ai. For all actions ai of c occurring
in α, add an edge labeled with ai from owner(ai) to (c, α). For all actions ai

of c, add an edge labeled with ai from (c, α) to owner(ai) if ai is offered in
some incomplete state of owner(ai), that is, a state in which no complete or
maximal interaction is offered.

The graph encodes the dependency between interacting actions of the com-
ponents in the following manner. If a component has an input edge labeled
ai from a node ({a1, . . . , an}, α), then for ai to occur in some interaction of
{a1, . . . , an} containing α it is necessary that all the actions labeling input
edges of ({a1, . . . , an}, α) interact.

We call a circuit in the dependency graph non trivial if it contains more than
one component node.

19

Fig. 5. Dependency graph for the producer/two consumer example.

Example 2 (Producer/consumer) Consider a producer providing data to
two consumers. Interaction is by rendez-vous and takes place if at least one
of the two consumers can get an item. The interaction model is described
by C =

{

{put, get1, get2}
}

and IC+ = {putpget1, putpget2, putpget1pget2}. The
dependency graph is shown in figure 5.

For a some action, let en(a) be the predicate characterizing the states of
owner(a) in which a is enabled. For γ a non trivial circuit of the dependency
graph, let

D(γ) =
∧

((c,α),a,k)∈γ

(

(

∨

a′∈α

¬en(a′)
)

∧ en(a)
)

.

Intuitively, D(γ) is the predicate characterizing the product states for which all
components in γ are cyclically waiting for each other and only non maximal
incomplete interactions are possible. For a component k, let inc(k) be the
predicate characterizing the incomplete states of k. The circuit γ is called
feasible if

∧

k∈components(γ) inc(k) ∧ D(γ) 6= false.

Theorem 1 (Interaction safety) A system is interaction safe if its depen-
dency graph has a non-empty finite sub-graph G such that G contains all its
predecessors, any component in G is deadlock-free, and there is no feasible
non-trivial elementary circuit in G.

Proof. Consider a state q = (q1, . . . , qn) of the system for which all compo-
nents are in an incomplete state qi from which only non-maximal incomplete
actions are possible. Then each component k in G offers some non-maximal
incomplete action a since it is deadlock-free. We consider the sub-graph G′ of
G that represents dependencies in the current state: G′ has an edge from an
interaction node (c, α) to a component node k if k is actually waiting for α in
the current state; G′ has the same edges from component to interaction nodes

20

as G. G′ has the same set of components as G since any component of G is
awaiting at least one incomplete action.

If there is a non trivial circuit γ in G′, then
∧

k∈components(γ) inc(k)∧D(γ) = false
by hypothesis, and since all component states of q are incomplete, D(γ)(q) =
false. Thus there is some edge ((c, α), a, k) in γ such that

∧

a′∈α en(a′)(q) ∨
¬en(a)(q). By hypothesis, k is waiting for α, that is, en(a)(q) holds. Therefore,
∧

a′∈α en(a′)(q), that is, interaction α is enabled.

If there is no non trivial circuit in G′, suppose that G′ is strongly connected
(otherwise, take only the source strongly connected subgraph). Consider some
interaction node (c, α) of G′. For any component k and action ak such that
(k, ak, (c, α)), the edge ((c, α), ak, k) is also in G′ since G′ is strongly connected,
and there is no non trivial circuit. By construction of G′, k is waiting for α,
and ak is enabled in the current state. Therefore, α is enabled.

In both cases, at least one complete or maximal interaction is enabled, which
means that any non-maximal incomplete interaction is disabled in (B,≺).

Example 3 (Producer/consumer) For example 2, the dependency graph
G is backward closed. Let n1 = ({put, get1, get2}, putpget1) and n2 = ({put,
get1, get2}, putpget2). G contains three non-trivial elementary circuits γ1 =
(producer, n1, consumer2, n2), γ2 = (producer, n2, consumer1, n1), and γ3 =
(consumer1, n1, consumer2, n2). We obtain D(γ1) = false, D(γ2) = false, and

D(γ3) =
(

¬en(put) ∨ ¬en(get1)
)

∧ en(get2)∧
(

¬en(put) ∨ ¬en(get2)
)

∧ en(get1)

=¬en(put) ∧ en(get1) ∧ en(get2)

If the only incomplete action of producer is put and all three components
are deadlock-free, then inc(producer) ∧ inc(consumer1) ∧ inc(consumer2) ∧
D(γ3) = false and the system is interaction safe.

Remark 3 The condition of Theorem 1 that D(γ) = false for any non-trivial
circuit γ, is a generalization of the notion of cooperativity introduced in [11].

4.3 Individual Deadlock-Freedom

In general, deadlock-freedom or even liveness of a system of components does
not imply that any component is deadlock-free in any run of the system.
Guaranteeing this stronger property is the objective of the following definitions
and theorem.

21

Notation: We consider a set of components K and denote by S[K ′] =
(B[K ′], IM[K ′]) the sub-system of S[K] with IM[K ′] = (IC[K ′], IC[K ′]+),
for K ′ ⊆ K.

Definition 12 (Run) A run of S[K] = (B[K], IM[K]) with B[K] = (Q,
IC[K],→) is a maximal sequence of interactions q0

α0→ q1
α1→ . . . qn

αn→ . . .
where qi ∈ Q and αi ∈ IC[K] for all i.

Definition 13 (Individual Deadlock-Freedom) Given a system S[K], a
component k ∈ K is deadlock-free in S[K] if for any run σ of S[K] and any
prefix σn of σ, there exists a run σ′ such that σnσ′ is a run of S[K], and some
interaction of σ′ contains an interaction of k.

Definition 14 (Controllable predecessors) Let S[K ′] = (B[K ′], IM[K ′])
with B[K ′] = (Q, IC[K ′],→) for K ′ ⊆ K. For X ⊆ Q, define pre(X) ⊆ Q
such that q ∈ pre(X) if

• if q is complete then ∃q′ ∈ Q ∃a ∈ IC[K ′]+ . q
a
→ q′ ∧ q′ ∈ X;

• if q is incomplete then ∀q′ ∈ Q ∀a ∈ IC[K ′]− . q
a
→ q′ ⇒ q′ ∈ X.

For Q0 ⊆ Q we denote by PRE(Q0) the least solution of X = Q0 ∪ pre(X).

Clearly, PRE(Q0) is the fixed point of a monotonic functional. PRE(Q0) repre-
sents the set of the predecessors of Q0 in the transition system such that from
anyone of its states a state of Q0 can be reached by appropriately choosing
complete interactions. In this context, complete interactions can be charac-
terized as controllable, as when they are enabled some interaction containing
them can occur in the product system. On the contrary incomplete interac-
tions can be considered as uncontrollable as their occurrence in the product
depends on the state of the environment. Predicate transformers taking into
account controllability have been studied in [21].

Definition 15 (Controllability) Given a system S[K ′] = (B[K ′], IM[K ′])
with B[K ′] = (Q, IC[K ′],→) for K ′ ⊆ K, we call K ′ controllable with respect
to some interaction a ∈ IC[K ′] if PRE(en(a)) = Q.

K ′ is controllable with respect to IM[K] = (IC[K], IC[K]+) if it is controllable
with respect to any interaction α ∈ IC[K ′] such that there exists α′ ∈ IC[K]−

with αpα′ ∈ IC[K]; that is, there exists an interaction α′ needing synchroniza-
tion with α.

Controllability of K ′ in S[K] means that if progress in a component k of S[K]
requires some interaction from S[K ′], the latter can be led to a state where
synchronization is possible.

22

Theorem 2 (Individual Deadlock-Freedom) A component k is deadlock-
free in S[K] with interaction model IM[K] if the dependency graph of S[K]
has a finite sub-graph G such that (1) k is a node of G, (2) G contains all
its predecessors, all its components are deadlock-free, and it has no feasible
non-trivial elementary circuit, (3) all components in G are controllable with
respect to IM[K], and (4) for any c ∈ C[K], |c| 6 2, that is, all interactions
between components are binary.

Proof. Consider some product state in which k is blocked, and no complete
or maximal interaction involving k is enabled. Suppose that k is waiting for
some interaction α, and let •α be the components participating in α. Any of
them can either, by controllability, progress until its action synchronizing in
α is enabled, or it is blocked itself. By theorem 1, some (direct or transitive)

predecessor of k can progress. Let ki1

α1

99K ki2

α2

99K . . .
αn−1=α
99K kin = k be a chain

of components where ki

α
99K kj means that component kj is in an incomplete

state waiting for interaction α, and such that only ki1 is able to progress.
By (3), it can be led (by appropriately choosing some complete action, or by
any incomplete action) towards a state where its action participating in α1 is
enabled, thus unblocking ki2 . The same reasoning can now be applied to ki3

and recursively descending the chain, until α becomes enabled.

5 Example: a Token-Ring Network

The following example models a token-ring network with three nodes. At any
time exactly one network node possesses the token and can access the network.
Figure 6 shows the architecture of the network. Each network node i consists
of a network layer Ni and optionally, an application layer Ai. A network layer
Ni in possession of the token can grant network access to the application layer
Ai by interaction grantippi, until Ai frees the network in a vipfreei interaction
with Ni. The network layer can then pass the token to N(i mod 3)+1 by the in-
teraction {passi, get(i mod 3)+1}. We require that all non-maximal interactions
are incomplete and the maximal interactions are complete. Thus the interac-
tion model IM has the set of connectors isomorphic to the set of complete
interactions: IC+ = C =

⋃

i=1,2,3{passipget(i mod 3)+1, grantippi, vipfreei, reqi}.
We first consider that there is no application layer A3 using the network, and
that this component is added later.

Figure 7 shows the transition systems of one instance of the network layer N
and the application layer A, respectively. After a get interaction, N can either
pass on the token in a pass interaction, or grant access to the application layer
(grant), wait for the latter to finish its transaction (free), and then pass on the
token. The application layer can make a request to access the network (req),
obtain access (p), and give back its right to access the network (v).

23

A2

A1

A3

v1

free3v2 v3

free1

free2

get2 pass3

get1pass1

p1 grant1

p2 grant2 pass2 get3
p3grant3

N1

N2 N3

Fig. 6. Architecture of the token-ring.

pass

free

get

grantpass

req p

v

idle waiting usingdone granted

inactive token

Fig. 7. Behavior of a network layer N (left) and an application layer A (right).

Let us check interaction safety of the network model. Figure 8 shows the depen-
dency graph G. Labels on arcs have been omitted for the sake of readability;
as connectors and maximal complete interactions coincide, only the latter are
shown. There are four different types of non-trivial elementary circuits in G:

A1

p1pgrant1 v1pfree1

A2

v2pfree2

pass1pget2 pass3pget1

pass2pget3

p2pgrant2 grant3

free3

N1

N2 N3

Fig. 8. Dependency graph of the token-ring.

γi
1 = (Ai, pipgranti, Ni, vipfreei), γi

2 = (Ni, pipgranti, Ai, vipfreei), for i = 1, 2
γ3 = (N1, pass1pget2, N2, pass2pget3, N3, pass3pget1),

24

and γ4 = (N3, pass2pget3, N2, pass2pget1, N1, pass3pget1). We have

D(γi
1) =¬en(pi) ∧ en(granti) ∧ ¬en(freei) ∧ en(vi) = tokeni ∧ usingi

D(γi
2) =en(pi) ∧ ¬en(granti) ∧ en(freei) ∧ ¬en(vi) = waitingi ∧ grantedi

D(γ3) =¬en(pass1) ∧ en(get2) ∧ ¬en(pass2) ∧ en(get3) ∧ ¬en(pass3)

∧ en(get3) = false

D(γ4) =en(pass1) ∧ ¬en(get2) ∧ en(pass2) ∧ ¬en(get3) ∧ en(pass3)

∧ ¬en(get3) = false

Thus, Theorem 1 fails to prove interaction safety. Indeed, the system is not in-
teraction safe, since there exist incomplete states tokeni∧usingi and grantedi∧
waitingi in which network and application layer do not agree on the current
state. However, it is easy to show that U =

∧

i(tokeni ⇐⇒ usingi) is an in-
variant of the global system. Therefore, initialized in a state in U the system
always remains in a complete state, where interaction safety is guaranteed by
Theorem 1.

It is easy to see that since the system is interaction safe, U ′ = ¬N1.inactive∧
N2.inactive ∧ N3.inactive ∨ N1.inactive ∧ ¬N2.inactive ∧ N3.inactive ∨
N1.inactive ∧ N2.inactive ∧ ¬N3.inactive is another invariant of the system,
that is, there is always exactly one network layer component Ni possessing the
token.

Let us see whether all components are deadlock-free in the system. The com-
ponents Ai are controllable with respect to IM . The components Ni are con-
trollable with respect to geti, granti, and passi, but not with respect to freei.
By using knowledge about the overall system, it is possible to establish con-
trollability of Ni with respect to freei, and prove individual deadlock-freedom
of all components.

Let us now add an application layer A3 to our model. In IM[{N1, N2, N3, A1, A2,
A3}] = IM[{N1, N2, N3, A1, A2}]∪IM[{A3}]∪IM[{N1, N2, N3, A1, A2, A3}, {A3}],
grant3 and free3 are non-maximal incomplete interactions. By application of
Theorem 1 to the modified dependency graph we show that the system remains
interaction safe.

Given that all components are individually deadlock-free, a scheduler can be
used to ensure fairness with respect to some or all components in the system.
The scheduling policy modeled by the priority order {passipget(i mod 3)+1 ≺
grantippi}i=1,2,3 ensures requests of the application layer to be served before the
token is passed on. The scheduled system is then obtained by restricting the
system of interacting processes with these priority rules. As the components
are deadlock-free and the composition of the priority order induced by the
interaction model with the priority order of the scheduler is again a priority
order, the obtained model is deadlock-free by Propositions 5 and 4.

25

6 Discussion

The paper proposes a framework for component composition encompassing
heterogeneous interaction.

The framework uses a single abstract associative and commutative compo-
sition operator for layered components. Component layering seems to be in-
strumental for defining such an operator. Existing formalisms combine at the
same level composition of both behavior and interaction constrains. Layered
models allow separation of concerns by composing behaviors and interaction
constraints separately. This makes the definition of a single associative oper-
ator technically possible.

Interaction models describe architectural constraints on component behavior.
Connectors relate interacting actions of different components. They naturally
define the set of interactions in a system. The distinction between complete and
incomplete interactions is essential for the unification of existing interaction
mechanisms, e.g. unification of symmetric and asymmetric interaction. The
notion of interaction safety characterizes correctness of a model with respect to
strict synchronization requirements. Such requirements are implicit in existing
formalisms, because they adopt specific interaction models, e.g. in CSP, all the
synchronizing actions are incomplete. Interaction models allow incremental
description of architecture constraints for heterogeneous interaction.

Flexible composition is just one possible implementation of the abstract com-
position operator, using priorities. An advantage over standard approaches,
based on the use of restriction instead of priorities, is that restriction is ad-
equate only for strict synchronization. It cannot express maximal progress
for complete actions. Furthermore, flexible composition preserves deadlock-
freedom. Transition systems with priorities prove to be powerful tools for
incremental modeling. They are a very simple semantic model amenable to
correctness by construction.

An essential correctness requirement for system models is interaction safety.
Theorem 1 provides sufficient conditions for a system to be interaction safe
from properties of its interaction model and of its components. It uses depen-
dency graphs to represent synchronization constraints induced by interaction
models. It would be interesting to investigate whether analysis techniques
specific to dependency graphs can be adapted to the analysis of systems of
interacting components. Notice that the same theorem can be used to guar-
antee global deadlock-freedom of a system obtained by using ordinary (non
flexible) composition operators. That is, when priority orders are replaced by
restriction in the product. In fact, restriction is used to remove non-maximal
incomplete interactions. Proving that such interactions will never occur in a

26

globally deadlock-free system amounts to proving that the system remains
deadlock-free when these interactions are removed.

Finally, Theorem 2 establishes links between a notion of component controlla-
bility, with respect to an interaction model and individual deadlock-freedom.
As shown in the previous example, this result can be extended to take into
account the dynamics of a component’s environment.

The framework presented is part of a lasting research effort for theory and
methods guaranteeing system correctness by construction. It can be enriched
to model components with interfaces and a notion of abstraction. It also needs
further validation by examples and case studies. Nevertheless, its key features,
such as combination of behavior and priorities and the resulting advantages
in composability and compositionality, have already been positively assessed
in some non-trivial applications [18] and [12].

References

[1] K. Altisen, G. Gössler, and J. Sifakis. Scheduler modeling based on the
controller synthesis paradigm. Journal of Real-Time Systems, special issue on

”control-theoretical approaches to real-time computing”, 23(1/2):55–84, 2002.

[2] F. Balarin, L. Lavagno, C. Passerone, A. Sangiovanni-Vincentelli, M. Sgroi, and
Y. Watanabe. Modeling and Designing Heterogeneous Systems, volume 2549 of
LNCS, pages 228–273. Springer-Verlag, 2002.

[3] A. Benveniste, P. LeGuernic, and Ch. Jacquemot. Synchronous programming
with events and relations: the SIGNAL language and its semantics. Science of

Computer Programming, 16:103–149, 1991.

[4] J.A. Bergstra and J.W. Klop. Algebra of communicating processes with
abstraction. TCS, 37(1):77–121, 1985.

[5] G. Berry and G. Gonthier. The ESTEREL synchronous programming language:
Design, semantics, implementation. Science of Computer Programming,
19(2):87–152, 1992.

[6] S. Bornot, G. Gössler, and J. Sifakis. On the construction of live timed systems.
In S. Graf and M. Schwartzbach, editors, Proc. TACAS’00, volume 1785 of
LNCS, pages 109–126. Springer-Verlag, 2000.

[7] S. Bornot and J. Sifakis. An algebraic framework for urgency. Information and

Computation, 163:172–202, 2000.

[8] L. de Alfaro and T.A. Henzinger. Interface theories for component-based design.
In T.A. Henzinger and C. M. Kirsch, editors, Proc. EMSOFT’01, volume 2211
of LNCS, pages 148–165. Springer-Verlag, 2001.

27

[9] W.-P. de Roever, F. de Boer, U. Hannemann, J. Hooman, Y. Lakhnech, M. Poel,
and J. Zwiers. Concurrency Verification: Introduction to Compositonal and

Noncompositional Methods. Cambridge University Press, 2001.

[10] W.-P. de Roever, H. Langmaack, and A. Pnueli, editors. Compositionality: The

Significant Difference, volume 1536 of LNCS. Springer-Verlag, 1997.

[11] G. Gössler and J. Sifakis. Composition for component-based modeling. In
F. de Boer, M. Bonsangue, S. Graf, and W.-P. de Roever, editors, proc.

FMCO’02, volume 2852 of LNCS. Springer-Verlag, 2003.

[12] S. Graf, I. Ober, and I. Ober. Model checking of uml models via a mapping to
communicating extended timed automata. In S. Graf and L. Mounier, editors,
Proc. SPIN’04, volume 2989 of LNCS. Springer-Verlag, 2004.

[13] OMG Working Group. Response to the omg rfp for schedulability, performance,
and time. Technical Report ad/2001-06-14, OMG, June 2001.

[14] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow
programming language lustre. Proceedings of the IEEE, 79(9):1305–1320,
September 1991.

[15] D. Harel. Statecharts: A visual formalism for complex systems. Science of

Computer Programming, 8:231–274, 1987.

[16] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[17] ITU-T. Recommendation Z.100. Specification and Design Language
(SDL). Technical Report Z-100, International Telecommunication Union —
Standardization Sector, Geneva, 1999.

[18] C. Kloukinas, C. Nakhli, and S. Yovine. A methodology and tool support for
generating scheduled native code for real-time java applications. In R. Alur and
I. Lee, editors, Proc. EMSOFT’03, volume 2855 of LNCS, pages 274–289, 2003.

[19] L. Lamport. Specifying concurrent program modules. ACM Trans. on

Programming Languages and Systems, 5:190–222, 1983.

[20] E.A. Lee et al. Overview of the Ptolemy project. Technical Report UCB/ERL
M01/11, University of California at Berkeley, 2001.

[21] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for
timed systems. In E.W. Mayr and C. Puech, editors, STACS’95, volume 900 of
LNCS, pages 229–242. Springer-Verlag, 1995.

[22] F. Maraninchi. Operational and compositional semantics of synchronous
automaton compositions. In proc. CONCUR, volume 630 of LNCS. Springer-
Verlag, 1992.

[23] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science,
25(3):267–310, 1983.

[24] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[25] SystemC. http://www.systemc.org.

28

