
Composition for Component-Based Modeling?

Gregor Gössler1 and Joseph Sifakis2

1 INRIA Rhône-Alpes, goessler@inrialpes.fr
2 VERIMAG, sifakis@imag.fr

1 Introduction

Component-based engineering is of paramount importance for rigorous system
design methodologies. It is founded on a paradigm which is common to all engi-
neering disciplines: complex systems can be obtained by assembling components
(building blocks). Components are usually characterized by abstractions that
ignore implementation details and describe properties relevant to their compo-
sition e.g. transfer functions, interfaces. Composition is used to build complex
components from simpler ones. It can be formalized as an operation that takes
in components and their integration constraints. From these, it provides the
description of a new, more complex component.

Component-based engineering is widely used in VLSI circuit design method-
ologies, supported by a large number of tools. Software and system component-
based techniques have known significant development, especially due to the use
of object technologies supported by languages such as C++, Java, and standards
such as UML and CORBA. However, these techniques have not yet achieved the
same level of maturity as has been the case for hardware. The main reason seems
to be that software systems are immaterial and are not directly subject to the
technological constraints of hardware, such as fine granularity and synchrony
of execution. For software components, it is not as easy to establish a precise
characterization of the service and functionality offered at their interface.

Existing component technologies encompass a restricted number of inter-
action types and execution models, for instance, interaction by method calls
under asynchronous execution. We lack concepts and tools allowing integration
of synchronous and asynchronous components, as well as different interaction
mechanisms, such as communication via shared variables, signals, rendez-vous.
This is essential for modern systems engineering, where applications are initially
developed as systems of interacting components, from which implementations
are derived as the result of a co-design analysis.

The development of a general theoretical framework for component-based
engineering is one of the few grand challenges in information sciences and tech-
nologies. The lack of such a framework is the main obstacle to mastering the
complexity of heterogeneous systems. It seriously limits the current state of the
practice, as attested by the lack of development platforms consistently integrat-
ing design activities and the often prohibitive cost of validation.
? to appear in the proceedings of FMCO’02, held November 5–8, 2002, Leiden, the

Netherlands.

The application of component-based design techniques raises two strongly
related and hard problems.

First, the development of theory for building complex heterogeneous systems.
Heterogeneity is in the different types of component interaction, such as strict
(blocking) or non strict, data driven or event driven, atomic or non atomic and
in the different execution models, such as synchronous or asynchronous.

Second, the development of theory for building systems which are correct by
construction, especially with respect to essential and generic properties such as
deadlock-freedom or progress.

In practical terms, this means that the theory supplies rules for reasoning
on the structure of a system and for ensuring that such properties hold glob-
ally under some assumptions about its constituents e.g. components, connectors.
Tractable correctness by construction results can provide significant guidance in
the design process. Their lack leaves a posteriori verification of the designed
system as the only means to ensure its correctness (with the well-known limita-
tions).

In this paper, we propose a framework for component-based modeling that
brings some answers to the above issues. The framework uses an abstract layered
model of components. It integrates and simplifies results about modeling timed
systems by using timed automata with dynamic priorities [5, 1].

A component is the superposition of three models: a behavioral model, an
interaction model, and an execution model.

– Behavioral models describe the dynamic behavior of components.
– Interaction models describe architectural constraints on behavior. They are

defined as a set of connectors and their properties. A connector is a maximal
set of compatible component actions. The simultaneous occurrence of actions
of a connector is an interaction.

– Execution models reduce non determinism resulting from parallel execution
in the lower layers. They are used to coordinate the execution of threads
so as to ensure properties related to the efficiency of computation, such as
synchrony and scheduling.

An associative and commutative composition operator is defined on components,
which preserves deadlock-freedom. The operator defines a three-layered compo-
nent by composing separately the corresponding layers of its arguments. As a
particular instance of the proposed framework, we consider components where
behaviors are transition systems and both interaction and execution models are
described by priority relations on actions.

Our framework differs from existing ones such as process algebras, semantic
frameworks for synchronous languages [4, 11, 3, 17] and Statecharts [12], in two
aspects.

First, it distinguishes clearly between three different and orthogonal aspects
of systems modeling: behavior, interaction (architecture) and execution. This
distinction, apart from its methodological interest, allows solving technical prob-
lems such as associativity of a unique and powerful composition operator. The

proposed framework has concepts in common with Metropolis [2] and Ptolemy
[16] where a similar separation of concerns is advocated.

Second, parallel composition preserves deadlock-freedom. That is, if the ar-
guments can perform some action from any state then their product does so.
This is due to the fact that we replace restriction or other mechanisms used to
ensure strong synchronization between components, by dynamic priorities. Nev-
ertheless, our composition is a partial operation: products must be interaction
safe, that is, they do not violate strong synchronization assumptions. In that
respect, our approach is has some similarity to [7].

The paper is organized as follows.
Section 2 discusses three requirements for composition in component-based

modeling. The first is support for two main types of heterogeneity: heterogeneous
interaction and heterogeneous execution. The second is that it provide results
for ensuring correctness by construction for a few essential and generic system
properties, such as deadlock-freedom. The third is the existence of a composition
operator that allows abstraction and incremental description.

Section 3 presents a general notion of composition and its properties for
components with two layers: behavior and interaction models. Interaction mod-
els relate concepts from architecture (connectors) to actions performed by com-
ponents via the notion of interaction. Interaction models distinguish between
complete and incomplete interactions. This distinction induces the concept of
interaction safety for models, meaning that only complete or maximal interac-
tions are possible. We show associativity and commutativity of the composition
operator. The section ends with a few results on correctness by construction for
interaction safety of models and deadlock-freedom.

Section 4 presents two examples illustrating the use of execution models.
We assume that execution models can be described by priority orders. The first
example shoes how synchronous execution can be enforced by a priority order
on the interactions between reactive components. The order respects the causal-
ity flow relation between component actions. The second example shows how
scheduling policies can be implemented by an execution model.

Section 5 presents concluding remarks about the presented framework.

2 Requirements for Composition

2.1 General

We consider a very simple and abstract concept of components that is sufficient
for the purpose of the study. A component can perform actions from a vocabulary
of actions. The behavior of a component describes the effect of its actions.

A system of interacting components is a set of components integrated through
various mechanisms for coordinating their execution. We assume that the overall
effect of integration on the components of a system is the restriction of their
behavior and it can be abstractly described by integration constraints. The latter
describe the environment of a component. A component’s actions may be blocked
until the environment offers actions satisfying these constraints.

We distinguish two types of integration constraints: interaction and execution
constraints.

Interaction constraints characterize mechanisms used in architectures such
as connectors, channels, synchronization primitives. Interactions are the result
of composition between actions. In principle, all the actions of a component
are “visible” from its environment. We do not consider any specific notion of
interface.

Execution constraints restrict non determinism arising from concurrent ex-
ecution, and ensure properties related to the efficiency of computation, such as
synchronous execution and scheduling.

There exists a variety of formalisms proposing concepts for parallel execution
of sequential entities, such as process algebras (CCS [19], CSP [13]), synchro-
nous languages (Esterel, Lustre, Statecharts), hardware description languages
(VHDL), system description languages (SystemC [20], Metropolis), and more
general modeling languages (SDL [14], UML [10]). In our terminology, we use
the term “component” to denote any executable description whose runs can be
modeled as sequences of actions. Component actions can be composed to pro-
duce interactions. Tasks, processes, threads, functions, blocks of code can be
considered as components provided they meet these requirements.

The purpose of this section is to present concept requirements for composition
in component-based modeling and to discuss the adequacy of existing formalisms
with respect to these requirements.

2.2 Heterogeneity

Heterogeneity of Interaction It is possible to classify existing interaction
types according to the following criteria:

Interactions can be atomic or non atomic. For atomic interactions, the behav-
ior change induced in the participating components cannot be altered through
interference with other interactions. Process algebras and synchronous languages
assume atomic interactions. In languages with buffered communication (SDL,
UML) or in multi-threaded languages (Java), interactions are not atomic, in gen-
eral. An interaction is initialized by sending a message or by calling a method,
and between its initiating action and its termination, components non partici-
pating in the interaction can interfere.

Interactions can involve strict or non strict synchronization. For instance,
atomic rendez-vous of CSP is an interaction with strict synchronization in the
sense that it can only occur if all the participating actions can occur. Strict
synchronization can introduce deadlocks in systems of interacting deadlock-free
components, that is, components that can always offer an action. If a compo-
nent persistently offers an action and its environment is unable to offer a set of
actions matching the interaction constraints, then there is a risk of deadlock. In
synchronous languages, interactions are atomic and synchronization is non strict
in the sense that output actions can occur whether or not they match with some
input. Nevertheless, for inputs to be triggered, a matching output is necessary.

Finally, interactions can be binary (point to point) or n-ary for n > 3. For
instance, interactions in CCS and SDL are binary (point to point). The imple-
mentation of n-ary interactions by using binary interaction primitives is a non
trivial problem.

Clearly, there exists no formalism supporting all these types of interaction.

Heterogeneity of Execution There exist two well-known execution para-
digms.

Synchronous execution is typically adopted in hardware, in the synchronous
languages, and in many time triggered architectures and protocols. It considers
that a system run is a sequence of global steps. It assumes synchrony, meaning
that the system’s environment does not change during a step, or equivalently
“that the system is infinitely faster than its environment”. In each execution
step, all the system components contribute by executing some “quantum” com-
putation, defined through the use of appropriate mechanisms such as timing
mechanisms (clocks, timers) or a notion of stable states. For instance, in syn-
chronous languages, an execution step is a reaction to some external stimulus
obtained by propagating the reactions of the components according to a causality
flow relation. A component reaction is triggered by a change of its environment
and eventually terminates at some stable state for this environment. The syn-
chronous execution paradigm has built-in a very strong assumption of fairness:
in each step all components execute a quantum computation defined using either
quantitative or logical time.

The asynchronous execution paradigm does not adopt any notion of a global
computation step in a system’s execution. It is used in languages for the descrip-
tion of distributed systems such as SDL and UML, and programming languages
such as Ada and Java. The lack of a built-in mechanism for sharing resources
between components is often compensated by using scheduling. This paradigm
is also common to all execution platforms supporting multiple threads, tasks,
etc.

Currently, there is no framework encompassing the diversity of interaction
and execution models. Figure 1 classifies different system description languages
in a three-dimensional space with coordinates corresponding to execution (syn-
chronous/asynchronous) and to interaction: atomic/non atomic and strict/non-
strict. It is worth noting that synchronous languages use non strict and atomic
interactions. This choice seems appropriate for synchronous execution. On the
contrary, for asynchronous execution there is no language using this kind of
interaction.

2.3 Correctness by Construction

It is desirable that frameworks for component-based modeling provide results for
establishing correctness by construction for at least a few common and generic
properties such as deadlock-freedom or stronger progress properties. In practical

Fig. 1: About composition: heterogeneity. A: atomic, S: strict interaction.

terms, this implies the existence of inference rules for deriving system and com-
ponent properties from properties of lower-level components. In principle, two
types of rules are needed for establishing correctness by construction.

Composability rules allow to infer that, under some conditions, a compo-
nent will meet a given property after integration. These rules are essential for
preserving across integration previously established component properties. For
instance, to guarantee that a deadlock-free component (a component that has no
internal deadlocks) will remain deadlock-free after integration. Composability is
essential for incremental system construction as it allows building large systems
without disturbing the behavior of their components. It simply means stability
of established component properties when the environment changes by adding
or removing components. Property instability phenomena are currently poorly
understood e.g. feature interaction in telecommunications, or non composability
of scheduling algorithms. Results in composability are badly needed.

Compositionality rules allow to infer a system’s properties from its compo-
nents’ properties. There exists a rich body of literature for establishing correct-
ness through compositional reasoning [15, 9, 8]. However, most of the existing
results deal with the preservation of safety properties.

2.4 Abstraction and Incrementality

A basic assumption of component-based engineering is that components are char-
acterized by some external specification that abstracts out internal details. How-
ever, it is often necessary to modify the components according to the context of
their use, at the risk of altering their behavior. Such modifications may be nec-

essary to adapt components to a particular type of composition. For instance, to
model non strict synchronization using strict synchronization, a common trans-
formation consists in modifying both the action vocabularies (interfaces) and
the behavior of components by adding for each action a of the interface a “com-
plementary” ā action that will be executed from all the states from which a is
not possible. To model strict synchronization using non strict synchronization,
similar modifications are necessary (see for instance Milner’s SCCS [18]).

We currently lack sufficiently powerful and abstract composition operators
encompassing different kinds of interaction.

Another important requirement for composition is incrementality of descrip-
tion. Consider systems consisting of sets of interacting components, the inter-
action being represented as usual, by connectors or architectural constraints of
any kind. Incrementality means that such systems can be constructed by adding
or removing components and that the result of the construction is independent
of the order of integration. Associative and commutative composition operators
allow incrementality.

Existing theoretical frameworks such as CCS, CSP, SCCS, use parallel com-
position operators that are associative and commutative. Nevertheless, these
operators are not powerful enough. They need to be combined with other oper-
ators such as hiding, restriction, and renaming in system descriptions. The lack
of a single operator destroys incrementality of description. For instance, some
notations use hiding or restriction to enforce interaction between the compo-
nents of a system. If the system changes by adding a new component, then some
hiding or restriction operators should be removed before integrating the new
component.

Graphical formalisms used in modeling tools such as Statecharts or UML do
not allow incremental description as their semantics are not compositional. They
are defined by functions associating with a description its meaning, as a global
transition system (state machine), i.e., they implicitly use n-ary composition
operators (n is equal to the number of the composed components).

It is always easy to define commutative composition, even in the case of
asymmetric interactions. On the contrary, the definition of a single associative
and commutative composition operator which is expressive and abstract enough
to support heterogeneous integration remains a grand challenge.

3 Composition

We present an abstract modeling framework based on a unique binary associative
and commutative composition operator.

Composition operators should allow description of systems built from compo-
nents that interact by respecting constraints of an interaction model. The latter
characterizes a system architecture as a set of connectors and their properties.

Given a set of components, composition operations allow to construct new
components. We consider that the meaning of composition operations is defined

by connectors. Roughly speaking, connectors relate actions of different compo-
nents and can be abstractly represented as tuples or sets of actions. The related
actions can form interactions (composite actions) when some conditions are met.
The conditions define the meaning of the connector and say when and how the
interaction can take place depending on the occurrence of the related actions.
For instance, interactions can be asymmetric or symmetric. Asymmetric inter-
actions have an initiator (cause) which is a particular action whose occurrence
can trigger the other related actions. In symmetric interactions all the related
actions play the same role.

The proposed composition operator differs from existing ones in automata
theory and process algebras in the following.

– First, it preserves deadlock-freedom. This is not the case in general, for ex-
isting composition operators except in very specific cases. For instance, when
from any state of the behavioral model any action offered by the environment
can be accepted.

– Second, deadlock-freedom preservation is due to systematic interleaving of
all the actions of the composed components, combined with the use of pri-
ority rules. The latter give preference to synchronization over interleaving.
In existing formalisms allowing action interleaving in the product such as
CCS and SCCS, restriction operators are used instead of priorities to pre-
vent occurrence of interleaving actions. For instance, if a and ā are two
synchronizing actions in CCS, their synchronization gives an invisible action
τ = a p ā. The interleaving actions a and ā are removed from the product
system by using restriction. This may introduce deadlocks at product states
from which no matching actions are offered. Priority rules implement a kind
of dynamic restriction and lead to a concept of “flexible” composition.

3.1 Interaction Models and Their Properties

Consider a set of components with disjoint vocabularies of actions Ai for i ∈ K,
K a set of indices. We put A =

⋃
i∈K Ai.

A connector c is a non empty subset of A such that ∀i ∈ K . |Ai ∩ c| 6 1.
A connector defines a maximally compatible set of interacting actions. For the
sake of generality, our definition accepts singleton connectors. The use of the
connector {a} in a description is interpreted as the fact that action a cannot be
involved in interactions with other actions.

Given a connector c, an interaction α of c is any term of the form α = a1 p
. . . p an such that {a1, . . . , an} ⊆ c. We assume that p is a binary associative
and commutative operator. It is used to denote some abstract and partial action
composition operation. The interaction a1 p . . . p an is the result of the simulta-
neous occurrence of the actions a1, . . . , an. When α and α′ are interactions we
write α p α′ to denote the interaction resulting from their composition (if its is
defined).

Notice that if α = a1 p . . . pan is an interaction then any term corresponding
to a sub-set of {a1, . . . , an} is an interaction. By analogy, we say that α′ is a

sub-interaction of α if α = α′ pα′′ for some interaction α′′. Clearly, actions are
minimal interactions.

The set of the interactions of a connector c = {a1, . . . , an}, denoted by
I(c), consists of all the interactions corresponding to sub-sets of c (all the sub-
interactions of c). We extend the notation to sets of connectors. If C is a set
of connectors then I(C) is the set of its interactions. Clearly for C1, C2 sets of
connectors, I(C1 ∪ C2) = I(C1) ∪ I(C2).

Definition 1 (Interaction model). The interaction model of a system com-
posed of a set of components K with disjoint vocabularies of actions Ai for i ∈ K,
is defined by

– the vocabulary of actions A =
⋃

i∈K Ai;
– the set of its connectors C such that

⋃
c∈C c = A, and if c ∈ C then there

exists no c′ ∈ C and c ⊂ c′. That is, C contains only maximal connectors;
– the set of the complete interactions I(C)+ ⊆ I(C), such that ∀b, b′ ∈ I(C),

b ∈ I(C)+ and b ⊆ b′ implies b′ ∈ I(C)+. We denote by I(C)− the set of the
incomplete (non complete) interactions.

Notice that all actions appear in some connector. The requirement that C
contains only maximal sets ensures bijective correspondence between the set
of connectors C and the corresponding set of interactions I(C). Given I(C),
the corresponding set of connectors is uniquely defined and is C. To simplify
notation, we write IC instead of I(C).

The distinction complete/incomplete is essential for building correct mod-
els. As models are built incrementally, interactions are obtained by composing
actions. It is often necessary to express the constraint that some interactions
of a sub-system are not interactions of the system. This is typically the case
for binary strict synchronization (rendez-vous). For example, send and receive
should be considered as incomplete actions but sendpreceive as complete. The
occurrence of send or receive alone in a system model is an error because it
violates the assumption about strict synchronization made by the designer.

Complete interactions can occur in a system when all the involved com-
ponents are able to perform the corresponding actions. The distinction between
complete/incomplete encompasses many other distinctions such as input/output,
internal/external, observable/controllable used in different formalisms. It is in
our opinion, the most relevant concerning the ability of components to interact.
Clearly, internal component actions should be considered as complete because
they can be performed by components independently of the state of their environ-
ment. In some formalisms, output actions are complete (synchronous languages,
asynchronous buffered communication). In some others, with strict synchroniza-
tion rules, all actions participating in interactions are incomplete. In that case, it
is necessary to specify which interactions are complete. For instance, if a1 pa2 pa3

is complete and no sub-interaction is complete, this means that a strong syn-
chronization between a1, a2, a3 is required.

A requirement about complete interactions is closedness for containment that
is, if α is a complete interaction then any interaction containing it, is complete.

This requirement follows from the assumption that the occurrence of complete
interactions cannot be prevented by the environment.

Very often it is sufficient to consider that the interactions of IC+ are defined
from a given set of complete actions A+ ⊆ A. That is, IC+ consists of all the in-
teractions of IC where at least one complete action (element of A+) is involved.
In the example of figure 2, we give sets of connectors and complete actions to de-
fine interaction models. By convention, bullets represent incomplete actions and
triangles complete actions. In the partially ordered set of the interactions, full
nodes denote complete interactions. The interaction between put and get repre-
sented by the interaction putpget is a rendez-vous meaning that synchronization
is blocking for both actions. The interaction between out and in is asymmetric
as out can occur alone even if in is not possible. Nevertheless, the occurrence of
in requires the occurrence of out. The interactions between out, in1 and in2 are
asymmetric. The output out can occur alone or in synchronization with any of
the inputs in1, in2.

Fig. 2: Flexible composition: interaction structure.

In general, completeness of interactions need not be the consequence of the
completeness of some action. For instance, consider a connector {a1, a2, a3, a4}
and suppose that the set of the minimal complete interactions of I{a1, a2, a3, a4}
is a1 pa2 and a3 pa4. That is, the actions a1, a2, a3, a4 are incomplete and only

interactions containing a1 pa2 or a3 pa4 are complete. This specification requires
strict synchronization of at least one of the two pairs (a1, a2), (a3, a4).

3.2 Incremental Description of Interaction Models

Consider the interaction model IM = (IC, IC+) of a set of interacting components
K with disjoint vocabularies of actions Ai for i ∈ K. IC and IC+ denote the
sets of interactions and complete interactions, respectively on the vocabulary of
actions A =

⋃
i∈K Ai.

For given K ′ ⊆ K the interaction model IM[K ′] of the set of interacting
components K ′ is defined as follows:

– A[K ′] =
⋃

i∈K′ Ai is the vocabulary of actions of IM[K ′];
– C[K ′] = {c′ | ∃c ∈ C . c′ = c ∩ A[K ′] ∧ 6 ∃c′′ ∈ C . c′ (c′′ ∩ A[K ′]} is the

set of the connectors of IM[K ′];
– IM[K ′] = (IC[K ′], IC[K ′]+) is the interaction model of IM[K ′] where IC[K ′]

is the set of the interactions of C[K ′] and IC[K ′]+ = IC[K ′] ∩ IC+.

Definition 2. Given a family of disjoint sets of components K1, . . . , Kn subsets
of K, denote by C[K1, . . . , Kn] the set of the connectors having at least one action
in each set, that is, C[K1, . . . ,Kn] = {c = c1 ∪ · · · ∪ cn | ∀i ∈ [1, n] . ci ∈ C[Ki]}.

Clearly, C[K1, . . . , Kn] is the set of the connectors of IM[K1∪· · ·∪Kn] which
are not connectors of any IM[K ′] for any subset K ′ of at most n − 1 elements
from {K1, . . . , Kn}.

Proposition 1. Given K1, K2 two disjoint subsets of K.

IC[K1 ∪K2] = IC[K1] ∪ IC[K2] ∪ IC[K1, K2]

IC[K1 ∪K2]+ = IC[K1]+ ∪ IC[K2]+ ∪ IC[K1,K2]+

IM[K1 ∪K2] = (IC[K1 ∪K2], IC[K1 ∪K2]+)
= IM[K1] ∪ IM[K2] ∪ IM[K1,K2]

where IC[K1,K2]+ = IC[K1,K2] ∩ IC+.

Proof. The first equality comes from the fact that C[K1] ∪ C[K2] ∪ C[K1,K2]
contains all the connectors of C[K1 ∪ K2] and other connectors that are not
maximal. By definition, IC contains all the sub-sets of C. Thus, IC[K1 ∪K2] =
I(C[K1] ∪ C[K2] ∪ C[K1,K2]) = IC[K1] ∪ IC[K2] ∪ IC[K1,K2].

Remark 1. The second equality says that the same interaction cannot be com-
plete in an interaction model IM[K1] and incomplete in IM[K2], for K1,K2 ⊆ K.

This proposition provides a basis for computing the interaction model IM[K1

∪K2] from the interaction models IM[K1] and IM[K2] and from the interaction
model of the connectors relating components of K1 and components of K2.

Property 1. For K1, K2, K3 three disjoint subsets of K,

IC[K1 ∪K2,K3] = IC[K1,K3] ∪ IC[K2,K3] ∪ IC[K1,K2,K3]
IM[K1 ∪K2,K3] = IM[K1,K3] ∪ IM[K2,K3] ∪ IM[K1,K2,K3]

Proof. The first equality comes from the fact that C[K1,K3] ∪ C[K2,K3] ∪
C[K1,K2,K3] contains all the connectors of C[K1 ∪ K2,K3] and in addition,
other connectors that are not maximal. By definition, IC contains all the sub-
sets of C. Thus, IC[K1 ∪ K2,K3] = I(C[K1,K3] ∪ C[K2,K3] ∪ C[K1,K2, K3])
from which we get the result by distributivity of I over union.

This property allows computing the connectors and thus the interactions
between IM[K1 ∪K2] and IM[K3] in terms of the interactions between IM[K1],
IM[K2], and IM[K3].

By using this property, we get the following expansion formula:

Proposition 2 (Expansion formula).

IM[K1 ∪K2 ∪K3] =IM[K1] ∪ IM[K2] ∪ IM[K3] ∪ IM[K1,K2]
∪ IM[K1,K3] ∪ IM[K2,K3] ∪ IM[K1,K2,K3] .

3.3 Composition Semantics and Properties

We consider that a system S is a pair S = (B, IM) where B is the behavior of S
and IM is its interaction model. As in the previous section, IM is the interaction
model of a set of interacting components K with disjoint action vocabularies Ai,
i ∈ K.

For given K ′ ⊆ K, we denote by S[K ′] the sub-system of S consisting of
components of K ′, S[K ′] = (B[K ′], IM[K ′]), where IM[K ′] is defined as before.

We define a composition operator ‖ allowing to obtain for disjoint sub-sets
K1, K2 of K, the system S[K1∪K2] as the composition of the sub-systems S[K1],
S[K2] for given interaction model IM[K1,K2] connecting the two sub-systems.
The operator composes separately the behavior and interaction models of the
sub-systems.

Definition 3. The composition of two systems S[K1] and S[K2] is the system
S[K1 ∪ K2] = (B[K1], IM[K1])‖(B[K2], IM[K2]) = (B[K1] × B[K2], IM[K1] ∪
IM[K2] ∪ IM[K1,K2]) where × is a binary associative behavior composition op-
erator such that B[K1]×B[K2] = B[K1 ∪K2].

Due to proposition 1 we have (B[K1], IM[K1])‖(B[K2], IM[K2]) = (B[K1 ∪
K2], IM[K1∪K2]), which means that composition of sub-systems gives the system
corresponding to the union of their components.

Notice that under these assumptions composition is associative:
(
(B[K1], IM[K1])‖(B[K2], IM[K2])

)‖(B[K3], IM[K3]) =
= (B[K1 ∪K2], IM[K1 ∪K2])‖(B[K3], IM[K3])
= (B[K1]×B[K2]×B[K3], IM[K1 ∪K2] ∪ IM[K3] ∪ IM[K1 ∪K2,K3])
= (B[K1 ∪K2 ∪K3], IM[K1 ∪K2 ∪K3])

Fig. 3: The composition principle.

by application of proposition 2.

Transition Systems with Priorities As a rule, interaction models constrain
the behaviors of integrated components. We consider the particular case where
interactions are atomic, component behaviors are transition systems, and the
constraints are modeled as priority orders on interactions. Transition systems
with dynamic priorities have already been studied and used to model timed
systems. The interested reader can refer to [6, 1].

Definition 4 (Transition system). A transition system B is a triple (Q,
I(A), →) where Q is a set of states, I(A) is a set of interactions on the action
vocabulary A, and →⊆ Q× I(A)×Q is a transition relation.

As usual, we write q1
α→ q2 instead of (q1, α, q2) ∈→.

Definition 5 (Transition system with priorities). A transition system with
priorities is a pair (B,≺) where B is a transition system with set of interactions
I(A), and ≺ is a priority order, that is, a strict partial order on I(A).

Semantics: A transition system with priorities represents a transition sys-
tem: if B = (Q, I(A),→), then (B,≺) represents the transition system B′ =

(Q, I(A),→′) such that q1
α→ ′q2 if q1

α→ q2 and there exists no α′ and q3 such

that α ≺ α′ and q1
α′→ q3.

Definition 6 (⊕). The sum ≺1 ⊕ ≺2 of two priority orders ≺1, ≺2 is the least
priority order (if it exists) such that ≺1 ∪ ≺2⊆≺1 ⊕ ≺2.

Lemma 1. ⊕ is a (partial) associative and commutative operator.

Definition 7 (‖). Consider a system S[K] with interaction model IM[K] =
(IC[K], IC[K]+). Let S[K1] = (B[K1],≺1) and S[K2] = (B[K2],≺2) with dis-
joint K1 and K2 be two sub-systems of S[K] such that their priority orders do
not allow domination of complete interactions by incomplete ones, that is for all
α1 ∈ IC[K]+ and α2 ∈ IC[K]−, ¬(α1 ≺ α2).

The composition operator ‖ is defined as follows. If Bi = (Qi, IC[Ki],→i) for
i = 1, 2, then S[K1]‖S[K2] = (B1 ×B2,≺1 ⊕ ≺2 ⊕ ≺12), where

B1 ×B2 = (Q1 ×Q2, IC[K1 ∪K2],→12) with

q1
α→1 q′1 implies (q1, q2)

α→12 (q′1, q2)

q2
α→2 q′2 implies (q1, q2)

α→12 (q1, q
′
2)

q1
α1→1 q′1 and q2

α2→2 q′2 implies (q1, q2)
α1pα2→ 12 (q′1, q

′
2) if α1 pα2 ∈ IC[K1 ∪K2].

≺12 is the minimal priority order on IC[K1 ∪K2] such that

– α1 ≺12 α1 pα2 for α1 pα2 ∈ IC[K1,K2] (maximal progress priority rule);
– α1 ≺12 α2 for α1 ∈ IC[K1 ∪K2]−− and α2 ∈ IC[K1 ∪K2]+ (completeness

priority rule), where IC[K1 ∪K2]−− denotes the elements of IC[K1 ∪K2]−

that are non-maximal in IC[K1 ∪K2].

The first priority rule favors the largest interaction. The second ensures cor-
rectness of the model. It prevents the occurrence of incomplete interactions if
they are not maximal. The occurrence of such interactions in a model is a model-
ing error. If a component can perform a complete action, all non maximal inter-
actions of the other components are prevented. By executing complete actions
the components may reach states from which a maximal incomplete interaction
is possible.

Proposition 3. ‖ is a total, commutative and associative operator.

Proof. Total operator: prove that for K1 ∩K2 = ∅, ≺1 ⊕ ≺2 ⊕ ≺12 is a priority
order, that is, the transitive closure of the union of ≺1, ≺2, and ≺12 does not
have any circuits.

The maximal progress priority rule defines a priority order identical to the
set inclusion partial order, and is thus circuit-free.

The completeness priority rule relates incomplete and complete interactions
and is circuit-free, too. The only source of a priority circuit could be the existence
of interactions α1, α2, α3 ∈ IC[K1 ∪ K2] such that α1 = α2 p α3, α1 ∈ IC[K1 ∪

K2]−−, and α2 ∈ IC[K1 ∪ K2]+. This is impossible due to the monotonicity
requirement of definition 1.

Associativity:
(
(B[K1], ≺1)‖(B[K2], ≺2)

)‖(B[K3], ≺3) =

= (B[K1 ∪K2], ≺1 ⊕ ≺2 ⊕ ≺12)‖(B[K3], ≺3)
= (B[K1 ∪K2 ∪K3], ≺1 ⊕ ≺2 ⊕ ≺12 ⊕ ≺3 ⊕ ≺[12],3)

where ≺[12],3 is the least priority order defined by

– α1 ≺[12],3 α1 pα2 for α1 pα2 ∈ IC[K1 ∪K2, K3], and
– α1 ≺[12],3 α2 for α1 ∈ IC[K1 ∪K2 ∪K3]−− and α2 ∈ IC[K1 ∪K2 ∪K3]+.

It can be shown that the order ≺=≺12 ⊕ ≺[12],3 is the one defined by

– α1 ≺ α1 pα2 for α1 pα2 ∈ IC[K1, K2] ∪ IC[K1, K3] ∪ IC[K2, K3] ∪ IC[K1, K2,
K3], and

– α1 ≺ α2 for α1 ∈ IC[K1 ∪K2 ∪K3]−− and α2 ∈ IC[K1 ∪K2 ∪K3]+.

So the resulting priority order is the same independently of the order of compo-
sition.

Example 1. Consider the system consisting of a producer and a consumer. The
components interact by rendez-vous. The actions put and get are incomplete. We
assume that the actions prod and cons are internal and thus complete. Figure
4 gives the interaction model corresponding to these assumptions. The product
system consists of the product transition system and the priority order defined
from the interaction model. The priority order removes all incomplete actions
(crossed transitions).

3.4 Correctness by Construction

We present results allowing to check correctness of the models with respect to
two properties: interaction safety and deadlock-freedom.

Interaction Safety of the Model As explained in section 3.1, the distinction
between complete and incomplete interactions is essential for building correct
models. In existing formalisms, undesirable incomplete interactions are pruned
out by applying restriction operators to the model obtained as the product of
components [19]. In our approach, we replace restriction by priorities. This allows
deadlock-freedom preservation: if an interaction is prevented from occurring,
then some interaction of higher priority takes over. Nevertheless, it is necessary to
check that our “flexible” composition operator does not allow illegal incomplete
actions in a system model. For this we induce a notion of correctness called
interaction safety.

Interaction safety is a property that must be satisfied by system models at
any stage of integration. Notice however, that legality of incomplete interactions

Fig. 4: Composition: producer/consumer.

depends on the set of integrated components. Sub-systems of a given system may
perform incomplete interactions that are not legal interactions of the system.
For instance, consider a system consisting of three components with a connector
{a1, a2, a3} such that all its interactions are incomplete. The interaction a1 pa2 is
legal in the sub-system consisting of the first two components while it is illegal
in the system. In the latter, a1 p a2 is incomplete and non maximal. It must
synchronize with a3 to produce the maximal incomplete interaction a1 pa2 pa3.

For a given system, only complete and maximal incomplete interactions are
considered as legal.

Definition 8 (Interaction safety). Given an interaction model IM = (IC,
IC+), define the priority order ≺ on incomplete interactions such that α1 ≺ α2

if α1 ∈ IC−− and α2 ∈ IC− r IC−−. A system with interaction model IM is
interaction safe if its restriction with ≺ can perform only complete or maximal
incomplete interactions.

Notice that the rule defining the priority order ≺ is similar to the complete-
ness priority rule of definition 7. For a given system, incomplete interactions that
are maximal in IC have the same status as complete interactions with respect
to non maximal incomplete interactions. Nevertheless, the priority order ≺ de-
pends on the considered system as legality of incomplete actions depends on the
interaction model considered.

We give below results for checking whether a model is interaction safe.

Dependency graph: Consider a system S[K] consisting of a set of interacting
components K with interaction model IM = (IC, IC+). For c ∈ C (C is the set
of the connectors of IC) we denote by I+

min(c) the set of the minimal complete
interactions of c, and write I+

min(C) for {i ∈ I+
min(c)}c∈C .

The dependency graph of S[K] is a labelled bipartite graph with two sets
of nodes: the components of K, and nodes labelled with elements of the set
{(c, α(c)) | c ∈ C ∧ I+

min(c) = ∅} ∪ {(c, α) | c ∈ C ∧ α ∈ I+
min(c)}, where α(c) is

the maximal interaction of c (involving all the elements of c).
The edges are labelled with actions of A as follows:
Let (c, α) = ({a1, . . . , an}, α) be a node of the graph and assume that for an

action ai of c, owner(ai) ∈ K is the component which is owner of action ai. For
all actions ai of c occurring in α, add an edge labelled with ai from owner(ai)
to (c, α). For all actions ai of c, add an edge labelled with ai from (c, α) to
owner(ai) if ai is offered in some incomplete state of owner(ai), that is, a state
in which no complete or maximal action is offered.

The graph encodes the dependency between interacting actions of the com-
ponents in the following manner. If a component has an input edge labelled
ai from a node ({a1, . . . , an}, α), then for ai to occur in some interaction of
{a1, . . . , an} containing α it is necessary that all the actions labelling input
edges of ({a1, . . . , an}, α) interact.

We call a circuit in the dependency graph non trivial if it encompasses more
than one component node.

Example 2 (Producer/consumer). Consider a producer providing data to two
consumers. Interaction is by rendez-vous and takes place if at least one of
the two consumers can get an item. The interaction model is described by
C =

{{put, get1, get2}
}

and IC+ = {put p get1, put p get2, put p get1 p get2}. The
dependency graph is shown in figure 5.

Definition 9 (Cooperativity). Let a and b be labels of input and output edges
of a component k in the dependency graph of S[K]. We say that a component
k ∈ K is cooperative with respect to (a, b) if from any state of B[k] with a
transition labelled a there exists a transition labelled b.

k ∈ K is cooperative in a circuit γ in the dependency graph if it is cooperative
wrt. (a, b), where a and b are the arcs of γ entering and leaving k, respectively.

Theorem 1 (Interaction safety). A system model is interaction safe if its
dependency graph contains a non-empty sub-graph G such that (1) G contains all
its predecessors, (2) any component in G is deadlock-free, and in any elementary
circuit γ of G, either (3a) there exists a component k that is cooperative in γ and
whose successor node in γ is a binary interaction, or (3b) the set of components
k in γ whose successor node is not a binary interaction, is not empty, and all
components in this set are cooperative in γ.

Proof. Assume that the system is in an incomplete state, that is, a state from
which only incomplete actions are possible. Then each component in G offers
some incomplete action since it is deadlock-free. We consider the sub-graph G′

Fig. 5: Dependency graph for the producer/two consumer example.

of G that represents dependencies in the current state: G′ has an edge from an
interaction node (c, α) to a component node k if k is actually waiting for α in the
current state; G′ has the same edges from component to interaction nodes as G.
G′ has the same set of components as G since any component of G is awaiting
at least one incomplete action.

If according to (3a) one of the components k is cooperative in some non
trivial elementary circuit γ G′, and the successor node (c, α) of k in γ is a binary
interaction, then k and the successor of (c, α) can interact via the complete or
maximal interaction α.

Otherwise, all non trivial circuits in G′ satisfy condition (3b). Let k be some
component in a strongly connected sub-graph of G′ not having any predecessors.
Such a sub-graph exists since any component is node of some non-trivial circuit.
Let γ be a non-trivial circuit in G′ containing k, and consider some non-binary
interaction node (c, α) in γ. Let k′ be an arbitrary predecessor node of (c, α) in
G′. By the choice of k, k′ and (c, α) are in some non-trivial circuit γ′ of G′. γ′

satisfies (3b), which implies that k′ is cooperative in γ′. That is, all predecessors
of (c, α) are cooperative, such that the complete or maximal interaction α is
enabled.

In both cases, at least one complete or maximal interaction is enabled, which
means that any non-maximal incomplete interaction is disabled in (B,≺).

Intuitively, the hypotheses of Theorem 1 make sure that any circular depen-
dency between the occurrence of strict interactions is broken by some cooperative
component. Notice that by definition components are cooperative with respect
to (a, a) for any action a. If the dependency graph has a backwards-closed sub-
graph all of whose elementary circuits are self-loops with the same label then
the model is interaction safe.

Example 3 (Producer/consumer). For example 2, the only subgraph G satisfying
the backward closure requirement is the whole dependency graph. Let n1 =
({put, get1, get2}, put p get1) and n2 = ({put, get1, get2}, put p get2). ΓG contains
two non-trivial elementary circuits γ1 = (producer, n1, consumer2, n2) and γ2 =
(producer, n2, consumer1, n1). Since the producer is trivially cooperative wrt. the
pair (put, put), condition (3a) is satisfied. If all three components are deadlock-
free, the system is interaction safe.

Deadlock-Freedom We give some results about deadlock-freedom preservation
for transitions systems with priorities. Similar results have been obtained for
timed transition systems with priorities in [5].

Definition 10 (Deadlock-freedom). A transition system is called deadlock-
free if it has no sink states. A system is deadlock-free if the transition system
with priorities representing it is deadlock-free.

Proposition 4 (Composability). Deadlock-freedom is preserved by priority
orders that is, if B is deadlock-free then (B,≺) is deadlock-free for any priority
order ≺.

Proposition 5 (Compositionality). Deadlock-freedom is preserved by compo-
sition that is, if (B1,≺1) and (B2,≺2) are deadlock-free then (B1,≺1)‖(B2,≺2)
is deadlock-free.

Proof. Follows from the fact that composition of behaviors preserves deadlock-
freedom and from the previous proposition.

Proposition 6. Any system obtained by composition of deadlock-free compo-
nents is deadlock-free.

4 Execution Model

Execution models constitute the third layer. They implement constraints which
superposed to interaction constraints further restrict the behavior of a system by
reducing non determinism. They differ from interaction models from a pragmatic
point of view. Interaction models restrict behavior so as to meet global functional
properties, especially properties ensuring harmonious cooperation of components
and integrity of resources. Execution models restrict behavior so as to meet
global performance and efficiency properties. They are often timed and specific
to execution platforms. In that case, they describe scheduling policies which
coordinate system activities by taking into account the dynamics of both the
execution platform and of the system’s environment.

We assume that execution models are also described by priority orders, and
discuss two interesting uses of execution models.

Asynchronous vs. Synchronous Execution As explained in 2.2, synchro-
nous execution adopts a very strong fairness assumption as in all computation
steps components are offered the possibility to execute some quantum of com-
putation. Our thesis is that synchronous execution can be obtained by appropri-
ately restricting the first two layers. Clearly, it is possible to build synchronous
systems by using specific interaction models to compose behaviors. This is the
case for Statecharts, and synchronous languages whose semantics use parallel
composition operators combined with unary restriction operators [17]. Neverthe-
less, their underlying interaction model uses non strict interaction and specific
action composition laws which are not adequate for asynchronous execution.

In the proposed framework, systems consisting of the first two layers are
not synchronous, in general. Interactions between components may be loose.
Components keep running until they reach some state from which they offer
a strongly synchronizing action. Thus, executions are rich in non-determinism
resulting from the independence of computations performed in the components.
This is the case for formalisms which point to point interaction, such as SDL
and UML.

We believe that it is possible to define synchronous execution semantics for
appropriate sub-sets of asynchronous languages. Clearly, these sub-sets should
include only reactive components, that is, components with distinct input and
output actions such that when an input occurs some output(s) eventually occur.
The definition of synchronous execution semantics for asynchronous languages
is an interesting and challenging problem.

Consider the example of figure 6, a system which is the serial composi-
tion of three strongly synchronized components with inputs ij and outputs oj ,
j = 1, 2, 3. Assume that the components are reactive in the sense that they are
triggered from some idle (stable) state when an input arrives and eventually
produce an output before reaching some idle state from where a new input can
be accepted. For the sake of simplicity, components have simple cyclic behaviors
alternating inputs and outputs.

The interaction model is specified by {o1, i2, o2, i3} ≺ {i1, o3}, {o1, i2} ≺ o1 p
i2, {o2, i3} ≺ o2 p i3. That is, we assume that i1 and o3 are complete as the system
is not connected to any environment. In the product of the behaviors restricted
with the interaction model each component can perform computation indepen-
dently of the others provided the constraints resulting from the interaction model
are met. This corresponds to asynchronous execution.

The behavior of the two layers can be further constrained by an execution
model to become synchronous in the sense that a run of the system is a sequence
of steps, each step corresponding to the treatment of an input i1 until an output
o3 is produced. This can be easily enforced by the order i1 ≺ o1 p i2 ≺ o2 p i3 ≺ o3.
This order reflects the causality order between the interactions of the system.
In fact, if all the components are at some idle state then all the components are
awaiting for an input. Clearly, only i1 can occur to make the first component
evolve to a state from which o1 p i2 can occur. This will trigger successively o2 p i3

Fig. 6: Enforcing synchronous execution.

and finally o3. Notice that i1 cannot be executed as long as a computation takes
place in some component.

Scheduling Policies as Execution Models We have shown in [1] that gen-
eral scheduling policies can be specified as timed priority orders. The following
example illustrates this idea for untimed systems.

We model fixed priority scheduling with pre-emption for n processes shar-
ing a common resource (figure 7). The scheduler gives preference to low index
processes.

The states of the i-th process are si (sleeping), wi (waiting), ei (executing),
and e′i (pre-empted). The actions are ai (arrival), bi (begin), fi (finish), pi (pre-
empt), ri (resume). To ensure mutual exclusion between execution states ei,
we assume that begin actions bj are complete and synchronize with pi for all
1 6 i, j 6 n, i 6= j. By the maximal progress priority rule, an action bj cannot
occur if some interaction bj p pi is possible. Similarly, we assume that finish
actions fj are complete and synchronize with ri for all 1 6 i, j 6 n, i 6= j. An
action fj cannot occur if some interaction fj pri is possible.

The system is not interaction safe, since the structural properties of theorem
1 cannot exclude the case where the system is in the incomplete state (e′1, . . . , e

′
n),

that is, all processes are preempted. However, this is the only incomplete state of
the system, and it is easy to show that it is not reachable from any other state:

Fig. 7: Fixed-priority preemptive scheduling of processes.

as all actions pi are incomplete, they are disabled by the completeness priority
rule of definition 7 giving priority to the complete actions. Interactions bi p pj

are complete but keep component i, and thus the whole system, in a complete
state. Therefore, initialized in a complete state the system always remains in a
complete state, where interaction safety is guaranteed.

Scheduling constraints resolve conflicts between processes (bi and ri actions)
competing for the acquisition of the common resource. They can be implemented
by adding a third layer with the priority rules bi ≺ bj , bi p pk ≺ bj p pk, and
fk pri ≺ fk prj for all k, and i > j.

It is easy to check that these constraints preserve mutual exclusion, in the
sense that if the initial state respects mutual exclusion then mutual exclusion
holds at any reachable state.

Notice that as the components are deadlock-free and the composition of the
interaction and execution priority orders is a priority order, the obtained model
is deadlock-free.

5 Discussion

The paper proposes a framework for component composition encompassing het-
erogeneous interaction and execution.

The framework uses a single powerful associative and commutative compo-
sition operator for layered components. Component layering seems to be instru-
mental for defining such an operator. Existing formalisms combine at the same
level behavior composition and unary restriction operators to achieve interaction
safety. Layered models allow separation of concerns. Behaviors and restrictions
(represented by priority orders) are composed separately. This makes technically
possible the definition of a single associative operator.

Interaction models describe architectural constraints on component behav-
ior. Connectors relate interacting actions of different components. They natu-
rally define the set of interactions of a system. The distinction between complete
and incomplete interactions is essential for the unification of existing interaction
mechanisms. It induces the property of interaction safety characterizing cor-
rectness of a model with respect to modeling assumptions about the possibility
for interactions to occur independently of their environment. Such assumptions
are implicit in existing formalisms. Their satisfaction is enforced on models at
the risk of introducing deadlocks. The proposed composition operator preserves
deadlock-freedom. Theorem 1 can be used to check interaction safety of models.

The distinction between interaction and execution models is an important
one from a methodological point of view. Priority orders are a powerful tool for
describing the two models. Their use leads to a semantic model consisting of
behaviors and priorities which is amenable to correctness by construction. This
is due to the fact that priorities are restrictions that do not introduce deadlocks
to an initially deadlock-free system. More results about deadlock-freedom and
liveness preservation can be found in [5].

References

1. K. Altisen, G. Gössler, and J. Sifakis. Scheduler modeling based on the controller
synthesis paradigm. Journal of Real-Time Systems, special issue on ”control-
theoretical approaches to real-time computing”, 23(1/2):55–84, 2002.

2. F. Balarin, L. Lavagno, C. Passerone, A. Sangiovanni-Vincentelli, M. Sgroi, and
Y. Watanabe. Modeling and Designing Heterogeneous Systems, volume 2549 of
LNCS, pages 228–273. Springer-Verlag, 2002.

3. A. Benveniste, P. LeGuernic, and Ch. Jacquemot. Synchronous programming with
events and relations: the SIGNAL language and its semantics. Science of Computer
Programming, 16:103–149, 1991.

4. G. Berry and G. Gonthier. The ESTEREL synchronous programming language:
Design, semantics, implementation. Science of Computer Programming, 19(2):87–
152, 1992.

5. S. Bornot, G. Gössler, and J. Sifakis. On the construction of live timed systems.
In S. Graf and M. Schwartzbach, editors, Proc. TACAS’00, volume 1785 of LNCS,
pages 109–126. Springer-Verlag, 2000.

6. S. Bornot and J. Sifakis. An algebraic framework for urgency. Information and
Computation, 163:172–202, 2000.

7. L. de Alfaro and T.A. Henzinger. Interface theories for component-based design.
In T.A. Henzinger and C. M. Kirsch, editors, Proc. EMSOFT’01, volume 2211 of
LNCS, pages 148–165. Springer-Verlag, 2001.

8. W.-P. de Roever, F. de Boer, U. Hannemann, J. Hooman, Y. Lakhnech, M. Poel,
and J. Zwiers. Concurrency Verification: Introduction to Compositonal and Non-
compositional Methods. Cambridge University Press, 2001.

9. W.-P. de Roever, H. Langmaack, and A. Pnueli, editors. Compositionality: The
Significant Difference, volume 1536 of LNCS. Springer-Verlag, 1997.

10. OMG Working Group. Response to the omg rfp for schedulability, performance,
and time. Technical Report ad/2001-06-14, OMG, June 2001.

11. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow
programming language lustre. Proceedings of the IEEE, 79(9):1305–1320,
September 1991.

12. D. Harel. Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming, 8:231–274, 1987.

13. C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
14. ITU-T. Recommendation Z.100. Specification and Design Language (SDL). Tech-

nical Report Z-100, International Telecommunication Union — Standardization
Sector, Geneva, 1999.

15. L. Lamport. Specifying concurrent program modules. ACM Trans. on Program-
ming Languages and Systems, 5:190–222, 1983.

16. E.A. Lee et al. Overview of the Ptolemy project. Technical Report UCB/ERL
M01/11, University of California at Berkeley, 2001.

17. F. Maraninchi. Operational and compositional semantics of synchronous automa-
ton compositions. In proc. CONCUR, volume 630 of LNCS. Springer-Verlag, 1992.

18. R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science,
25(3):267–310, 1983.

19. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
20. SystemC. http://www.systemc.org.

