
Component-Based Construction of
Deadlock-Free Systems

Extended Abstract

Gregor Gössler1 and Joseph Sifakis2

1 INRIA Rhône-Alpes, goessler@inrialpes.fr
2 VERIMAG, sifakis@imag.fr

Abstract. We propose a framework for building deadlock-free systems
from deadlock-free components. The framework is based on a methodo-
logy for the layered construction of systems by superposing three layers.
A layer of components, an interaction model and a restriction layer. The
interaction model specifies the possible interactions between components.
The restriction layer restricts the behavior of the two lower layers by a
global constraint. Layered structuring allows separating three orthogonal
aspects in system construction. Apart from its methodological interest
it makes technically possible the definition of a unique and powerful as-
sociative composition operator.
We study sufficient deadlock-freedom conditions for systems built from
deadlock-free components and given interaction model and restriction.
We also provide a sufficient condition for individual deadlock-freedom of
the components of such systems.

1 Introduction

Deadlock-freedom is an essential correctness property as it characterizes a sys-
tem’s ability to perform some activity over its lifetime. Deadlocks are the most
common source of errors in systems of concurrent processes. They occur when
processes share common resources or are in general subject to strong synchro-
nization constraints. In that case, a process may remain blocked as long as a
condition depending on the state of their environment is not satisfied.

It has been often argued that deadlock-freedom is not a relevant property
as there exist systems that never deadlock e.g. hardware, time triggered sys-
tems [12, 10], synchronous systems [4, 9, 2, 14]. In such systems, components are
never blocked by their environment as it is supposed that component inputs
are always available whenever requested. Nevertheless, it is clear that if some
strong coordination between components is needed e.g. they share a common
resource, then this can be achieved by a deadlock-free protocol where the values
exchanged between components are used to encode the information necessary for
safely implementing the coordination. Thus, for systems that are by construc-
tion deadlock-free, verifying mutual exclusion requires analysis of the sequences
of the values exchanged between the coordinating components.

Another argument for not considering deadlock-freedom as a relevant prop-
erty is that any system can become trivially deadlock-free by adding some idle
action loop that does not modify its overall observable behavior whenever there
is a risk of deadlock e.g. at waiting states. Such a modification allows elimi-
nation of deadlocks but it leads to systems where it is possible to indefinitely
postpone interaction between components by privileging idle actions. Thus in-
stead of checking for deadlock-freedom, other properties such as livelock-freedom
and fairness must be checked for system correctness.

The above remarks show that building deadlock-free systems requires the
definition of an appropriate setting where absence of deadlock means satisfaction
of strong coordination properties. In this paper we propose a framework for
building deadlock-free systems from deadlock-free components. The framework
is based on a methodology for the layered construction of systems by superposing
three layers (figure 1).

Fig. 1: Layered system description.

– The bottom layer consists of a set of components. They are characterized by
the set of actions they can perform and their behavior. The latter is specified
as a transition system representing the effect of actions on component states.

– The intermediate layer is an interaction model. This is used to specify the
possible interactions between the components. An interaction is the result
of the simultaneous occurrence (synchronization) of actions from different
components. Furthermore, an interaction model specifies the set of incom-
plete interactions, that is the interactions that the system cannot execute
without synchronizing with its environment. Interaction models are a general
mechanism for specifying various kinds of parallel composition [8].

– The upper layer is a restriction by a constraint (predicate) on the system
state. Restriction is used to prevent the behavior of the underlying layers
from executing interactions that violate the constraint.

System behavior is obtained by successive application of the meaning of each
layer. The behavior of components is composed as specified by the interaction
model. Then it is restricted by application of a global constraint. We believe
that the proposed construction methodology is general enough as it combines

usual parallel composition with techniques relying on the use of constraints such
as invariants. For example, in a multitasking system, interaction models can be
typically used to describe synchronization for mutual exclusion and restriction
can be used to express scheduling policies [1].

We provide sufficient conditions for deadlock-freedom of systems built from
deadlock-free components for given interaction model and restriction. The results
assume that for each component a deadlock-free invariant is given, that is a set
of states from which the component can block only because of its environment.
The condition relates the deadlock-free invariants of the system components to
the enabling conditions of the interactions of the layered system.

We also provide a sufficient condition for individual deadlock-freedom of the
components in a system. A component is individually deadlock-free if it can
always perform an action.

The paper is organized as follows.
Section 2 describes the layered construction principle. It deals essentially with

the presentation of the interaction models and their properties. Component be-
haviors are described as simple non deterministic loops with guarded commands
[7, 16]. The concept of restriction is taken from [1].

Section 3 presents the result for global and individual deadlock-freedom.
Section 4 presents concluding remarks about the presented framework.

2 Composition

We present a composition operation on layered systems. The operation com-
poses each layer separately. The bottom layer of the product is the union of
the bottom layers of the operands. The interaction model of the product is ob-
tained as the union of the interaction models of the operands with some ”glue”
interaction model. That is, the composition operator is parameterised with in-
formation about the interactions between the operands. Finally, the restriction
of the product is the conjunction of the restrictions of the operands (figure 2).

Fig. 2: Layered composition.

The two following sub-sections present the interaction models and their com-
position.

2.1 Interaction Models

Consider a finite set K of components with disjoint finite vocabularies of actions
Ai for i ∈ K. We put A =

⋃
i∈K Ai.

A connector c is a non empty subset of A such that ∀i ∈ K . |Ai ∩ c| 6 1.
A connector defines a maximally compatible set of interacting actions. For the
sake of generality, our definition accepts singleton connectors. The use of the
connector {a} in a description is interpreted as the fact that action a cannot be
involved in interactions with other actions.

Given a connector c, an interaction α of c is any term of the form α = a1 p
. . . pan such that {a1, . . . , an} ⊆ c. As usual [15, 3], we assume that p is a binary
associative and commutative operator. It is used to denote some abstract and
partial action composition operation. The interaction a1 p . . . p anis the result of
the occurrence of the actions a1, . . . , an. For α and α′ interactions, we writeα pα′
to denote the interaction resulting from their composition (if its is defined).

Notice that if α = a1 p . . . pan is an interaction then any term corresponding
to a sub-set of {a1, . . . , an} is an interaction. By analogy, we say that α′ is a
sub-interaction of α ifα = α′ p α′′ for some interaction α′′. Clearly,actions are
minimal interactions.

The set of the interactions of a connector c = {a1, . . . , an}, denoted by
I(c), consists of all the interactions corresponding to sub-sets of c (all the sub-
interactions of c). We extend the notation to sets of connectors. If C is a set
of connectors then I(C) is the set of its interactions. Clearly, for C1, C2 sets of
connectors, I(C1 ∪ C2) = I(C1) ∪ I(C2).

Definition 1 (Set of connectors). The set of connectors of a system consist-
ing of a set of components K with disjoint action vocabularies Ai for i ∈ K, is
a set C such that

⋃
c∈C c =

⋃
i∈K Ai, and if c ∈ C then there exists no c′ ∈ C

and c (c′. That is, C contains only maximal sets.

Definition 2 (Interaction model). The interaction model of a system com-
posed of a set of components K with a set of connectors C is a pair IM =
(I(C), I(C)−) where I(C)− ⊆ I(C), is the set of the incomplete interactions
such that it contains no maximal interactions and ∀b, b′ ∈ I(C), b ∈ I(C)− and
b′ ⊆ b implies b′ ∈ I(C)−. We denote by I(C)+ the set of the complete (non
incomplete) interactions. Clearly, I(C)+ contains all the maximal interactions
of I(C) and is such that ∀b, b′ ∈ I(C), b ∈ I(C)+ and b ⊆ b′ implies b′ ∈ I(C)+.

Notice that any action appears in some connector. The requirement that C
contains only maximal sets ensures a bijective correspondence between the set
of connectors C and the corresponding set of interactions I(C). Given I(C),
the corresponding set of connectors is uniquely defined and is C. To simplify
notation, we write IC instead of I(C).

The distinction between complete and incomplete interactions is essential
for building correct models. As models are built incrementally, interactions are
obtained by composing actions. It is often necessary to express the constraint
that some interactions of a sub-system are not interactions of the system. This is

typically the case for binary strict synchronization (rendez-vous). For example,
send and receive should be considered as incomplete actions but sendpreceive as
complete. The occurrence of send or receive alone in a system model is an error
because it violates the assumption about strict synchronization made by the
designer.

The execution of a complete interaction by a component does not require
synchronization with interactions of its environment. The execution of an in-
complete interaction requires synchronization with some other interaction to
produce a larger one which may be either complete or incomplete. Incomplete-
ness of an interaction implies the obligation to synchronize when environment
offers matching interactions as specified by the connectors.

The distinction between complete and incomplete interactions encompasses
many other distinctions such as output/input, internal/external, uncontrollable/
controllable used in different modeling formalisms. Clearly, internal actions of
components should be considered as complete because they can be performed
independently of the state of their environment. In some formalisms, output
actions are complete (synchronous languages, asynchronous buffered communi-
cation). In some others such as CSP [11] and Lotos [17], all synchronizing actions
are incomplete.

Often it is convenient to consider that the complete interactions of IC+ are
defined from a given set of complete actions A+ ⊆ A. That is, IC+ consists of
all the interactions of IC where at least one complete action (element of A+)
is involved. In the example of figure 3, we give sets of connectors and complete
actions to define interaction models. By convention, bullets represent incom-
plete actions and triangles complete actions. In the partially ordered set of the
interactions, full nodes denote complete interactions. The interaction between
put and get represented by the interaction putpget is a rendez-vous meaning that
synchronization is blocking for both actions. The interaction between out and in
is asymmetric as out can occur alone even if in is not possible. Nevertheless, the
occurrence of in requires the occurrence of out. The interactions between out, in1

and in2 are asymmetric. The output out can occur alone or in synchronization
with any of the inputs in1, in2.

2.2 Incremental Description of Interaction Models

Consider the interaction model IM = (IC, IC−) of a set of interacting components
K with disjoint action vocabularies Ai for i ∈ K. IC andIC− denote the sets
of interactions and incomplete interactions, respectively on the vocabulary of
actions A =

⋃
i∈K Ai.

Definition 3 (Glue connectors). Given a set of disjoint subsets of K, K1, . . . ,
Kn of K, we denote by C[K1, . . . , Kn] the set of the connectors having at least
one action in each set of components, that is, C[K1, . . . , Kn] = {c = c1∪· · ·∪cn |
∀i ∈ [1, n] . ci ∈ C[Ki] ∧ c ∈ C[K]}.

Clearly, C[K1, . . . , Kn] is the set of the connectors of IM[K1∪· · ·∪Kn] which
are not connectors of any IM[K ′] for any subset K ′ of at most n − 1 elements

Fig. 3: Interaction models.

from {K1, . . . ,Kn}. Notice that when the partition consists of only one set, then
the above definition agrees with Definition 1.

Proposition 1. Given K1, K2, K3 three disjoint subsets of K.

IC[K1 ∪K2] = IC[K1] ∪ IC[K2] ∪ IC[K1,K2]
IC[K1 ∪K2,K3] = IC[K1,K3] ∪ IC[K2,K3] ∪ IC[K1,K2, K3]

Proof. The first equality comes from the fact that C[K1] ∪ C[K2] ∪ C[K1,K2]
contains all the connectors of C[K1 ∪K2] and other sets of actions that are not
maximal. By definition, IC contains all the sub-sets of C. Thus, IC[K1 ∪K2] =
I(C[K1] ∪ C[K2] ∪ C[K1,K2]) = IC[K1] ∪ IC[K2] ∪ IC[K1,K2].

The second equality comes from the fact that C[K1,K3]∪C[K2,K3]∪C[K1,
K2, K3] contains all the connectors of C[K1∪K2, K3] and in addition, other sets
of actions that are not maximal. By definition, IC contains all the sub-sets of C.
Thus, IC[K1 ∪K2,K3] = I(C[K1, K3]∪C[K2,K3]∪C[K1,K2,K3]) from which
we get the result by distributivity of I over union.

Definition 4 (Union of incomplete interactions). Consider two sets of con-
nectors C1, C2 and the corresponding sets of interactions IC1, IC2. We take
(IC1)− ∪ (IC2)− = (IC1 ∪ IC2)−.

This definition combined with proposition 1 allows to compute the incomplete
interactions of a system from the incomplete interactions of its components and
thus provides a basis for incremental description of interaction models.

Property 1. For K1, K2, K3 three disjoint subsets of K,

IC[K1 ∪K2]− = IC[K1]− ∪ IC[K2]− ∪ IC[K1,K2]−

IM[K1 ∪K2] = (IC[K1 ∪K2], IC[K1 ∪K2]−)
= IM[K1] ∪ IM[K2] ∪ IM[K1,K2]

IM[K1 ∪K2,K3] = IM[K1,K3] ∪ IM[K2,K3] ∪ IM[K1,K2,K3]

By using this property, we get the following expansion formula:

Proposition 2 (Expansion formula).

IM[K1 ∪K2 ∪K3] =IM[K1] ∪ IM[K2] ∪ IM[K3] ∪ IM[K1,K2]
∪ IM[K1,K3] ∪ IM[K2,K3] ∪ IM[K1,K2,K3] .

2.3 Composition Semantics and Properties

We need the following definitions.

Definition 5 (Transition system). A transition system B is a tuple (X, IC,
{Ga}a∈IC, {F a}a∈IC), where

– X is a finite set of variables;
– IC is a finite set of interactions;
– Ga is a predicate on X, the set of valuations of X, called guard;
– F a : X → X is a transition function.

Definition 6 (Semantics of a transition system). A transition system (X,
IC, {Ga}a∈IC, {F a}a∈IC) defines a transition relation →: X× IC×X as follows:
∀x,x′ ∈ X ∀a ∈ IC . x a→ x′ ⇐⇒ Ga(x) ∧ x′ = F a(x).

Definition 7 (Constraint). A constraint on a transition system B = (X, IC,
{Ga}a∈IC, {F a}a∈IC) is a term of the form UX ∧∧

a∈IC ta(Ua), where

– UX is a state predicate on X;
– ta(Ua) is an action predicate such that ∀x ∈ X . ta(Ua)(x) if Ga(x) ⇒

Ua(x).

That is, UX ∧∧
a∈IC ta(Ua) holds at states which satisfy UX and from which

only actions satisfying Ua are executable.

Definition 8 (Restriction). The restriction of a transition system B = (X,
IC, {(Ga)}a∈IC, {F a}a∈IC) with a constraint U = UX∧∧

a∈IC ta(Ua) is the tran-
sition system B/U = (X, IC, {(Ga)′}a∈IC, {F a}a∈IC) where (Ga)′ = Ga ∧ UX ∧
Ua ∧ UX([F a(x)/x]).

A system S is described by a term S = (B, IM)/U where IM = (IC, IC−)
is an interaction model, B is a transition system with set of interactions IC
describing the behavior of its components, and U is a constraint.

We define the behavior of S as the transition system B′/U where B′ is the
transition system obtained from B by removing all its incomplete interactions,
that is B′ = (X, IC, {Ga}a∈IC+ , {F a}a∈IC+), where IC+ is the set of the complete
interactions of IM .

As in the previous sub-section, we consider that S = (B, IM)/U is built
from a set of interacting components K with disjoint action vocabularies Ai, i ∈
K and behaviors described by transition systems (Xi, Ai, {Ga}a∈Ai

, {F a}a∈Ai
)

with disjoint sets of variables.
We denote by S[K] the system built from the components k ∈ K, and assume

that it has the layered structure S[K] = (B[K], IM[K])/U with interaction model
IM[K] and constraint U .

We define a composition operator ‖ allowing to obtain for disjoint sub-sets
K1, K2 of K, the system S[K1∪K2] as the composition of the sub-systems S[K1],
S[K2] for given interaction model IM[K1,K2] connecting the two sub-systems.
The operator composes separately behaviors, interaction models and restrictions
of the sub-systems.

Fig. 4: The composition principle.

Definition 9 (‖). The composition of two systems S[K1] and S[K2] is the sys-
tem

S[K1 ∪K2] =(B[K1], IM[K1])/U1 ‖ (B[K2], IM[K2])/U2

=(B[K1]×B[K2], IM[K1] ∪ IM[K2] ∪ IM[K1,K2])/(U1 ∧ U2)

where × is a binary associative behavior composition operator such that B[K1]×
B[K2] = (X1 ∪ X2, IC[K1 ∪ K2], {Ga}a∈IC[K1∪K2], {F a}a∈IC[K1∪K2]) where for
α = α1 p α2 ∈ IC[K1,K2], Gα = Gα1 ∧ Gα2 and for any valuation (x1,x2) of
X1 ∪X2, Fα(x1,x2) = (Fα1(x1), Fα2(x2)).

Due to property 1 we have (B[K1], IM[K1])/U1 ‖ (B[K2], IM[K2])/U2 =
(B[K1 ∪ K2], IM[K1 ∪ K2])/(U1 ∧ U2), which means that composition of sub-
systems gives the system corresponding to the union of their components.

Notice that as × is an associative operator, composition is associative:
(
(B[K1], IM[K1])/U1‖(B[K2], IM[K2])/U2

)‖(B[K3], IM[K3])/U3 =
= (B[K1 ∪K2], IM[K1 ∪K2])/(U1 ∧ U2)‖(B[K3], IM[K3])/U3

= (B[K1]×B[K2]×B[K3], IM[K1 ∪K2] ∪ IM[K3] ∪ IM[K1 ∪K2,K3])/
(U1 ∧ U2 ∧ U3)

= (B[K1 ∪K2 ∪K3], IM[K1 ∪K2 ∪K3])/(U1 ∧ U2 ∧ U3)

by application of proposition 2. Thus we have the proposition

Proposition 3. ‖ is a commutative and associative operator on systems.

3 Deadlock Freedom by Construction

3.1 Global Deadlock Freedom

Definition 10 (Invariant). A constraint U = UX ∧ ∧
a∈IC ta(Ua) on B =

(X, IC, {Ga}a∈IC, {F a}a∈IC) is an invariant if ∀a ∈ IC ∀x ∈ X . UX(x) ∧
Ga(x) ⇒ UX([F a(x)/x]) ∧ Ua(x).

The following properties are easy to prove and relate restriction to invariants.

Property 2. Given a transition system B and constraints U , U1, U2,

– U is an invariant of B/U ;
– if Ui is an invariant of Bi, i = 1, 2, then U1∧U2 is an invariant of (B1×B2, IM)

for any IM , and of (B1 ×B2, IM)/U ;
– (B/U1)/U2 = B/(U1 ∧ U2);
– if U is an invariant of B then B/U is bisimilar to B from any state satisfying

U .

As in the previous section, consider a system S = (×k∈KBk, IM)/U built
from a set of interacting components K where the transition systems Bk =
(Xk, Ak, {Ga}a∈Ak

, {F a}a∈Ak
) have disjoint action vocabularies and sets of vari-

ables. We assume that IM = (IC, IC+), and B = (×k∈KBk, IM) = (X, IC+,
{Ga}a∈IC+ , {F a}a∈IC+). In this section we study deadlock-freedom of S = B/U
and of its components.

Let B/U = (X, IC+, {(Ga)′}a∈IC+ , {F a}a∈IC+) be the restriction of B by
some constraint U = UX ∧ ∧

a∈A ta(Ua) with restricted guards (Ga)′ = Ga ∧
UX ∧ Ua ∧ UX([F a(x)/x]) for any interaction a ∈ IC+.

Definition 11 (Complete states). Given S = (B, IM), U = UX∧∧
a∈A ta(Ua),

and k some component of B, the set of complete states of k, that is, states of
k from which its progression cannot be prevented by its environment, is charac-
terized by the largest predicate complete(k) on Xk such that complete(k) =⇒
dlfk ∧

∨
α∈IC+

α∩Ak 6=∅
(Gα)′.

Definition 12 (Blocking states). For k ∈ K, let dlfk be some non-empty
invariant on Xk implying deadlock-freedom of k, that is, dlfk ⇒

∨
a∈Ak

Ga. We
take dlf =

∧
k∈K dlfk and define for a component k the predicate

blocking(k) = dlfk ∧ ¬
∨

α∈IC+
α∩Ak 6=∅

(Gα)′

characterizing the states where k is blocked due to interaction or restriction with
U .

Definition 13 (Dependency graph). Consider a system S = (B, IM)/U
built from a set K of components. For each component k put each predicate
blocking(k) in the form

∨
i∈Ik

ci with ci =
∧

k′∈K Dk′,i where Dk′,i is a predicate
depending on Xk′ . The dependency graph of S is a labelled bipartite graph with
two sets of nodes: the components of K, and constraint nodes {ci | ∃k ∈ K . i ∈
Ik}, where Ik is the set of conjunctive terms occurring in blocking(k). For a
component node k and a constraint node ci,

– there is an edge from k to ci labeled with Dk,i if Dk,i 6= false; and
– there is an edge from ci to k labeled with Dk,i if i ∈ Ik.

Notice that constraint nodes represent conditions under which a component
is blocked. If c is a constraint node for a component k then it has at least one
incoming and one outcoming edge. At some state, k is blocked if all the predicates
labelling the incoming edges of c are true.

Let γ be a circuit of the dependency graph of a system (B, IM)/U . The
predicate

DL(γ) =
∧

(k
D→c

D′→k′)∈γ

(
D ∧D′)

characterizes the system states for which all components in γ may be blocked
cyclically awaiting for each other.

Theorem 1 (Deadlock freedom). A system (B, IM)/U is deadlock-free from
any state satisfying dlf ∧UX if its dependency graph contains a non-empty sub-
graph G such that

– if G contains a component node then G contains all its predecessor con-
straint nodes, and if G contains a constraint node then G contains one of its
predecessors; and

– for any elementary circuit γ of G, DL(γ) = false.

Proof. Assume that the system is at some global deadlock state x. As all the
components are initialised at states satisfying dlf there exists for each component
at least one action a having its guard Ga enabled at this state in B.

Consider a component k of G and a term ci of blocking(k) such that ci(x).
As dlfk(x), the label of the input edge (ci, k) is true at this state (the guards
are contained in dlfk). Then consider some predecessor k′ of ci in G. The label
of the edge (k′, ci) is true as it is a factor of ci. Again, the component k′ has at
least one guard enabled. Move backwards in G from this node by iterating the
process. Then an elementary circuit γ of G is found. By construction, all the
predicates labelling the edges of this circuit are true at state x. This contradicts
the assumption of DL(γ) = false.

Theorem 2 (Deadlock freedom). (B, IM)/U is deadlock-free from dlf∧UX

if dlf ∧ UX ⇒ ∨
α∈IC+(Gα)′.

Proof. Since for any k ∈ K, dlfk is invariant by hypothesis, dlf and dlf∧UX are
by property 2 invariants of (B, IM)/U . As dlf∧UX implies enabledness of some
complete interaction, its invariance amounts to deadlock-freedom.

Theorem 3. The conditions of theorem 1 imply that dlf∧UX ⇒ ∨
α∈IC+(Gα)′.

Proof (sketch). Suppose that there is some non-empty sub-graph G of the de-
pendency graph as specified in theorem 1 such that for any elementary circuit γ
of G, DL(γ) = false. Thus, for any valuation x such that dlf(x) there is some com-
ponent k in G with ¬blocking(k)(x) by construction of the dependency graph.
By definition of blocking , it follows that there is some interaction α such that
(Gα)′(x).

The condition of theorem 2 allows an efficient check for deadlock freedom.
However, in order to provide a diagnostic when this condition is not verified, it
may be useful to construct a dependency graph for the states satisfying dlf ∧
¬∨

α∈IC+(Gα)′.

3.2 Individual Deadlock-Freedom

We give some results about deadlock-freedom preservation for transitions sys-
tems. Similar results have been obtained for timed transition systems with pri-
orities in [5].

In general, deadlock-freedom or even liveness of a system of interacting com-
ponents do not imply that any component remains deadlock-free in the system.
Guaranteeing this stronger property is the objective of the following definitions
and theorem.

Definition 14 (Run). A run of a transition system B = (X, IC, {Ga}a∈IC,
{F a}a∈IC) is an infinite sequence of interactions x0

α0→ x1
α1→ . . .xn

αn→

Definition 15 (Individual deadlock-freedom). Given a system S, a com-
ponent k ∈ K is deadlock-free in S if for any run σ of S and any prefix σn of
σ, there exists a run σ′ such that σnσ′ is a run of S, and some interaction of σ′

contains an interaction of k.

Definition 16 (Controllable predecessors). Let B = (X, IC, {Ga}a∈IC,
{F a}a∈IC) be the behavior of a component. For Y ⊆ X, define pre(Y) ⊆ X
such that x ∈ pre(Y) if

– if x is complete then ∃x′ ∈ X ∃a ∈ IC+ . x a→ x′ ∧ x′ ∈ Y ;
– if x is incomplete then ∀x′ ∈ X ∀a ∈ IC− . x a→ x′ ⇒ x′ ∈ Y , and such a

and x′ exist.

For X0 ⊆ X we denote by PRE(X0) the least solution of Y = X0 ∪ pre(Y).

Clearly, PRE(X0) exists, as it is the fixed point of a monotonic functional.
PRE(X0) represents the set of the predecessors of X0 in the transition graph
such that from anyone of its states a state of X0 can be reached by appro-
priately choosing complete interactions. In this context, complete interactions
can be characterized as controllable, as when they are enabled some interaction
containing them can occur in the product system. On the contrary incomplete
interactions are uncontrollable as their occurrence in the product depends on
the state of the environment. Predicate transformers taking into account con-
trollability have been studied in [13].

Definition 17 (Controllability). Given a system S, we call a component k ∈
K with behavior (Xk, Ak, {Ga}a∈Ak

, {F a}a∈Ak
) controllable with respect to some

state constraint U on Xk if PRE(U) = Xk.

Theorem 4 (Individual Deadlock-Freedom). Given a system S = (B, IM)
built from a set K of components, a component k ∈ K is deadlock-free from dlf
in S if

– the dependency graph of S contains a sub-graph G satisfying the requirements
of theorem 1 with k ∈ K ′, where K ′ is the set of component nodes in G,

– any k ∈ K ′ is controllable with respect to Ga for any a ∈ Ak such that
∃α ∈ IC ∃α′ ∈ IC− . a ∈ α ∧ α′ ⊆ α, and

– all n-ary interactions with n > 3 are rendez-vous, that is, for any interactions
α ∈ IC+ with |α| > 3 and α′ ∈ IC, we have (1) if α∩α′ 6= ∅, then α′ ∈ IC−,
and (2) if a ∈ α∩Ai and a′ ∈ α′ ∩Ai, then Ga ∧Ga′ = false for any i ∈ K.

Notice that under the hypotheses above, any component that is blocked, is
either waiting for one (or more) binary interaction, or for exactly one n-ary
interaction with n > 3.

Proof. Consider some product state x in which k is blocked, and no complete
interaction involving k is enabled. By theorem 1, some (direct or transitive)
predecessor of k can progress. Let ki1

α199K ki2

α299K . . .
αn−1=α

99K kin
= k be a chain

of components in K ′ where ki
α99K kj means that kj is in an incomplete state

waiting for interaction α with ki, and such that only ki1 is able to progress. By
controllability, ki1 can be led (by appropriately choosing some complete action,
or by any incomplete action) towards a state x′ where its action participating in
α1 is enabled. If α1 is binary then this unblocks ki2 ; otherwise the interaction is
by hypothesis a rendez-vous, and both components ki1 and ki2 remain blocked.
In that case we apply the same reasoning to any chain of components blocking
ki2 . Finally, α2 will be enabled. The same reasoning can now be applied to ki3

and recursively descending the chain, until α becomes enabled.

4 Discussion

This work is in progress and needs further validation by examples and case
studies. It pursues similar objectives as the work by Th. Henzinger and his
colleagues [6]. It lies within the scope of a lasting research program.

The paper presents compositionality and composability results for deadlock-
from of systems built from components following the proposed construction me-
thodology. The concept of component is very general and can be applied to
various types of descriptions, e.g. a block of code, hardware, provided they have
disjoint state spaces and well defined interface and behavior. Interaction mod-
els provide a powerful framework for synchronization, that encompasses both
strict and non strict synchronization. Restriction appears to be a very useful
concept for imposing global invariants. The layered description principle allows
separation of concerns and has been used to some extent in [1]. Furthermore, lay-
ered structuring is instrumental for the definition of an associative composition
operation.

The provided sufficient deadlock-freedom conditions require that components
satisfy specific properties such as existence of non trivial deadlock-free invari-
ants, and of sets of controllable predecessors. These properties can be checked
algorithmically only when the components are finite-state. Deadlock-freedom
conditions also require the computation of the guards of the constructed system,
which may be a source of exponential explosion for general interaction models
and restrictions.

References

1. K. Altisen, G. Gössler, and J. Sifakis. Scheduler modeling based on the controller
synthesis paradigm. Journal of Real-Time Systems, special issue on ”control-
theoretical approaches to real-time computing”, 23(1/2):55–84, 2002.

2. A. Benveniste, P. LeGuernic, and Ch. Jacquemot. Synchronous programming with
events and relations: the SIGNAL language and its semantics. Science of Computer
Programming, 16:103–149, 1991.

3. J.A. Bergstra and J.W. Klop. Algebra of communicating processes with abstrac-
tion. TCS, 37(1):77–121, 1985.

4. G. Berry and G. Gonthier. The ESTEREL synchronous programming language:
Design, semantics, implementation. Science of Computer Programming, 19(2):87–
152, 1992.

5. S. Bornot, G. Gössler, and J. Sifakis. On the construction of live timed systems.
In S. Graf and M. Schwartzbach, editors, Proc. TACAS’00, volume 1785 of LNCS,
pages 109–126. Springer-Verlag, 2000.

6. L. de Alfaro and T.A. Henzinger. Interface theories for component-based design.
In T.A. Henzinger and C. M. Kirsch, editors, Proc. EMSOFT’01, volume 2211 of
LNCS, pages 148–165. Springer-Verlag, 2001.

7. E.W. Dijskstra. A Discipline of Programming. Prentice Hall, 1976.
8. G. Goessler and J. Sifakis. Composition for component-based modeling. In proc.

FMCO’02 (to appear), LNCS. Springer-Verlag, 2003.
9. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow

programming language lustre. Proceedings of the IEEE, 79(9):1305–1320,
September 1991.

10. T.A. Henzinger, B. Horowitz, and C. Meyer Kirsch. Embedded control systems
development with Giotto. In Proc. LCTES’01, 2001.

11. C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
12. Hermann Kopetz. Real-Time Systems: Design Principles for Distributed Embedded

Applications. Kluwer, 1997.
13. O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for

timed systems. In E.W. Mayr and C. Puech, editors, STACS’95, volume 900 of
LNCS, pages 229–242. Springer-Verlag, 1995.

14. F. Maraninchi. Operational and compositional semantics of synchronous automa-
ton compositions. In proc. CONCUR, volume 630 of LNCS. Springer-Verlag, 1992.

15. R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science,
25(3):267–310, 1983.

16. J. Misra and K.M. Chandy. Parallel Program Design: A Foundation. Addison-
Wesley, 1988.

17. K.J. Turner, editor. Using Formal Description Techniques — An Introduction to
Estelle, LOTOS and SDL. Wiley, 1993.

