Priority Systems

Gregor Gossler! and Joseph Sifakis?

! INRIA Rhone-Alpes, goessler@inrialpes.fr
2 VERIMAG, sifakis@imag.fr

Abstract. We present a framework for the incremental construction
of deadlock-free systems meeting given safety properties. The frame-
work borrows concepts and basic results from the controller synthesis
paradigm by considering a step in the construction process as a con-
troller synthesis problem.

We show that priorities are expressive enough to represent restrictions
induced by deadlock-free controllers preserving safety properties. We de-
fine a correspondence between such restrictions and priorities and provide
compositionality results about the preservation of this correspondence by
operations on safety properties and priorities. Finally, we provide an ex-
ample illustrating an application of the results.

1 Introduction

A common idea for avoiding a posteriori verification and testing, is to use system
design techniques that guarantee correctness by construction. Such techniques
should allow to construct progressively from a given system S and a set of re-
quirements Ry,...,R,, a sequence of systems Si,...,5,, such that system .S;
meets all the requirements R; for j <. That is, to allow incremental construc-
tion, requirements should be composable [2, 6] along the design process. In spite
of their increasing importance, there is currently a tremendous lack of theory
and methods, especially for requirements including progress properties which
are essential for reactive systems. Most of the existing methodologies deal with
construction of systems such that a set of state properties always hold. They are
founded on the combined use of invariants and refinement relations. Compos-
ability is ensured by the fact that refinement relations preserve trace inclusion.
We present a framework allowing to consider jointly state property invariance
and deadlock-freedom.

Practice for building correct systems is often based on the idea of adding
enforcement mechanisms to a given system S in order to obtain a system S’
meeting a given requirement. These mechanisms can be implemented by instru-
menting the code of S or by composing S with systems such as controllers or
monitors that modify adequately the overall behavior.

An application of this principle is the enforcement of security policies which
are safety properties described by automata [14]. A main requirement for the
enforced system is that it safely terminates when it detects a deviation from

some nominal secure behavior. A more difficult problem is also to ensure system
availability and preserve continuity of service [3, 10].

Another application of this principle is aspect oriented programming [8] used
to build programs meeting (usually simple) requirements. Aspects can be con-
sidered as requirements from which code is generated and woven into a program
intended to meet the requirements. In aspect oriented programming, aspect com-
position is identified as a central problem as it may cause unintentional interfer-
ence and inconsistency [15].

Practice for building correct systems by using enforcement mechanisms raises
some hard theoretical problems. For a sufficiently fine granularity of observation,
it is relatively easy to enforce safety requirements (as non violations of given state
properties) by stopping system progress. It is much harder to devise mechanisms
that also guarantee system availability and avoid service interruption. Further-
more, composability of requirements e.g. security policies, aspects, is identified
as a main obstacle to rigorous incremental system construction.

We propose a design framework for both safety and deadlock-freedom re-
quirements. The framework consists of a model, priority systems and results
concerning its basic properties including composability. A priority system is a
transition system with a (dynamic) priority relation on its actions. A priority re-
lation < is a set of predicates of the form a; < C;;.a; meaning that action a; has
lower priority than action a; at all states satisfying C;;. At a given state of the
transition system, only enabled actions with maximal priority can be executed.
That is, in a priority system, a priority relation restricts the behavior of its tran-
sition system exactly as a scheduler restricts the behavior of a set of tasks. The
remarkably nice property of priority systems is that they are deadlock-free if
they are built from deadlock-free transition systems and from priority relations
satisfying some easy-to-check consistency condition.

The proposed framework considers design as a controller synthesis [12] prob-
lem: from a given system S and requirement R, find a system S’ meeting R.
S’ is the composition of S with a controller which monitors the state of S and
restricts its behavior by adequately switching off a subset of controllable actions
of S. The controller is usually specified as a solution of a fixpoint equation.

The simple case where R means that S’ is deadlock-free and does not violate
a state predicate U has been studied in various contexts e.g., in [11,1]. The
corresponding controller is specified as a deadlock-free control invariant which is
a state predicate U’, U’ = U, such that

— it is preserved by the non controllable actions of S, that is if U’ holds at
some state then it remains true forever if only non controllable actions are
executed;

— U’ is false for all deadlock states of S.

Given U’, the controlled (designed) system S’ is obtained from S by con-
juncting the guard of any controllable action a by the weakest precondition of
U’ under a.

In Section 2, we formalize the relationship between S and S’, by introducing
restriction operators. These are specified as tuples of state predicates in bijection
with the set of actions of S. The application of a restriction operator to S is S’,
obtained from S by conjuncting the guards of its actions by the corresponding
state predicates of the restriction. We study properties of deadlock-free control
restrictions, that is restrictions corresponding to deadlock-free control invariants.

In Section 3, we show that under some consistency conditions, priorities
can be used to represent deadlock-free restrictions. Thus, controlled systems
S’ can be represented as deadlock-free priority systems. Consistency checking
boils down to computing a kind of transitive closure of the priority relation. We
show that for static priorities consistency is equivalent to deadlock-freedom.

Composability in our framework means commutativity of application of pri-
orities on a given system. As a rule, the result of the successive restriction of
a system S by two priorities <; and <3 depends on the order of application
and we provide sufficient conditions for commutativity. This difficulty can be
overcome by using a symmetric composition operator @ for priorities which pre-
serves safety and deadlock-freedom. The restriction of a system S by <; & <s
is a refinement of any other restriction of S obtained by application of <; and
~<2.

An interesting question is whether priorities are expressive enough to repre-
sent restrictions induced by deadlock-free control invariants. We bring a positive
answer by using a construction associating with a state predicate U a priority
relation <. We show that if U is a deadlock-free control invariant then the
controlled system S’ is equivalent to the system S restricted by <y. Further-
more, we provide results relating the controlled systems corresponding to Uq,
Us, Uy A Us to restrictions by <, , <uv,, <u, @ <v,-

Section 4 illustrates application of the results on an example.

Section 5 presents concluding remarks about the presented framework.

2 Deadlock-free Control Invariants

2.1 Definitions and basic properties

Definition 1 (Transition system). A transition system B is a tuple (X, A,
{G*}acn, {F*} aca), where

— X is a finite set of variables;

— A is a finite set of actions, union of two disjoint sets A* and A€, the sets of
the uncontrollable and controllable interactions respectively;

— G* is a guard, predicate on X;

— F*: X — X is g transition function, where X is the set of valuations of X.

Definition 2 (Semantics of a transition system). A transition system (X,
A {G } aca, {F*}aca) defines a transition relation —: X x A x X such that:
Vx,x' € XVaec A.x 5 x = Gx)Ax = F%x).

We introduce the following notations:

— Given two transition systems Bj, Bs with disjoint action vocabularies such
that B; = (X;, 4i, {G%}aca,, {F%}taca,), for i = 1,2, their union is the
transition system B1UBy = (X1UX2, AiUA2, {G}aca vy, {F acauas,)-

— Given a transition system B, we represent by B* (respectively B€) the tran-
sition system consisting of the uncontrollable (respectively controllable) ac-
tions of B. Clearly B = B* U B¢.

— Given a transition system B, we represent by G(B) the disjunction of its
guards, that is G(B) = \/,. 4 G* where A is the set of the actions of B.

Definition 3 (Predecessors). Given B = (X, A, {G}aca, {F %} aca) and a
predicate U on X, the predecessors of U by action a is the predicate pre,(U) =
G* NU([F*(X)/X]) where U[F*(X)/X] is obtained from U by uniform substi-
tution of X by F*(X).

Clearly, pre,(U) characterizes all the states from which execution of a leads
to some state satisfying U.

Definition 4 (Invariants and control invariants). Given a transition sys-
tem B and a predicate U,

— U s an invariant of B if U = N ,cawre.(-U) = Njca(-G* V
U([F*(X)/X]). An invariant U, U # false, is called deadlock-free if U =
G(B).

— U is a control invariant of B if U = A\ ,c 4u ~prea(=U). A control invariant
U, U # false, is called deadlock-free if U = \/,c 4 preq(U).

We write inv[B](U) to express the fact that U is an invariant of B. Notice
that invariants are control invariants of systems that have only uncontrollable
actions.

Proposition 1. If U is a control invariant of B = (X, A, {G%}aca,{F*}aca)
then U is an invariant of B’ = (X, A, {(G*) }aca, {F®}aca) where (G*) =
G*NU[F*(X)/X] fora € A® and (G*)' = G otherwise. Furthermore, if U is a
deadlock-free control invariant of B then it is a deadlock-free invariant of B'.

This result allows to build from a given system B and a safety requirement
of the form "always Uy” a deadlock-free system B’ meeting this requirement,
provided there exists a deadlock-free control invariant U of B such that U = U.
The following simple example illustrates this fact.

Ezample 1. In a Readers/Writers system, we use two counters, non negative
integers, r and w to represent respectively, the number of readers and writers
using a common resource. The counters are modified by actions of a transition
system B specified as a set of guarded commands:

ai :true—r:=r+1 as:r>0—r:=r—1
by :true —w:=w+1 bo:w>0—-w:=w-1

where a1 and by are respectively, the actions of granting the resource to a reader
and a writer and as and by are respectively, the actions of releasing the resource
by a reader and a writer.

We assume that the actions a; and by are controllable and we want to enforce
the requirement ”always U” for U = (w < 1) A (w = 0V r = 0). This prevents
concurrent access among writers, as well as between readers and writers. It is
easy to check that U is a deadlock-free control invariant. In fact, it is easy to
check that U is preserved by the uncontrollable actions ay and bs:

(r>0AU=Ulr—1/r]and (w>0) AU = Ulw — 1/w].

Furthermore, it is easy to check that U = pre,, V preq, V prep, V prep,.

As preq, (U) =w =0 and prey, (U) = (w = 0) A (r = 0), we have inv[B'|(U)

where B’ is the controlled transition system:

ap:w=0—r:=r+1 as:r>0—ri=r—1
bi:(r=0)A(w=0)—-w:=w+1 by :w>0—w:=w-—1

The notion of restriction defined below allows a formalization of the relation-
ship between the initial and the controlled system.

Definition 5 (Restriction). Given a transition system B = (X, A, {G®}aca,
{F%}aca), arestriction is a tuple of predicates V.= (U%)qea. B/V denotes the
transition system B restricted by V, B/V = (X, A, {G* ANU®}gea,{F}aca).
V' = (U%)4ea is a control restriction for B if A\, ¢ 4u(=G*V U?) = true.
V' = (U?%)q4ea is a deadlock-free restriction for B if \/ ., G*ANU® = \/ . 4 G*.
We simply say that V is a control restriction or a deadlock-free restriction
if the corresponding equation holds for any transition system B with vocabulary
of actions A = A°U A" (independently of the interpretation of the guards).

Definition 6 (U4, V(U)). Given a predicate U, we denote by U4 the restric-
tion UA = (U)aea, and by V(U) the restriction V(U) = (U[F*(X)/X])aca-

If Vi, Va are two restrictions, V; = (U;i)aieA for 3 =1,2, we write Vi A Va
for the restriction (U7 AUy)a,ca-

Proposition 2 (Control invariants and restrictions). Given a transition
system B and a predicate U,

a) IfU is a control invariant of B then V(U) is a control restriction of B;

b) IfU is a deadlock-free invariant of B then V(U) is a deadlock-free restriction
of B;

c) If U is a deadlock-free control invariant of B then V(U) is a deadlock-free
control restriction of B.

We need the following definitions for the comparison of transition systems.

Definition 7 (Refinement and equivalence). Given B; = (X;, A, {G¢}qca,
{Ff}aca) fori=1,2, two transition systems and a predicate U we say that

— By refines By under U, denoted by By Cy Bs, if Va € A . F = F§ and
UNG)=UANGS;

— By is equivalent to By under U, denoted by By ~y Bs, if By Cy By and
By Cy Br.

We write By C By and By ~ Bs for By Cipye Bo and By ~4ye Bo, Tespectively.
Property 1. Given transition systems B, Bi, Bs and restrictions V', Vi, V5,

la B/V C B;
lc (B/V1)/Va ~ B/ (Vi A Va);
1d By C By = (inv[Bs](U) = inv[B1](U)) for any predicate U.

Notice that if the conjunction of control invariants is a control invariant, the
conjunction of deadlock-free control invariants is not in general, a deadlock-free
control invariant. We investigate conditions for composability.

3 Priority Systems

We define priority systems which are transition systems restricted with priorities.
Priorities provide a general mechanism for generating deadlock-free restrictions.

3.1 Deadlock-free restrictions and priorities
Priorities

Definition 8 (Priority). A priority on a transition system B with set of ac-
tions A is a set of predicates <= {Cij}a;a;ea. The restriction defined by <,
V(B’ '<) = (Ua)aeA s Ut = /\ajEA _'(Cij A Gaj)'

The predicates C;; specify priority between actions a; and a;. If C;; is true
at some state, then in the system restricted by V(B, <) the action a; cannot
be executed if a; is enabled. We write a; < Cj;.a; to express the fact that a; is
dominated by a; when C;; holds. A priority is irreflezive if C;; = —Cj; for all
ai,a; € A.

Definition 9 (Transitive closure). Given a priority < we denote by <T the
least priority such that <C=<™, obtained by the rule:
a; <+t C’ij.aj and a; <+ Cjk.ak implies a; <t (Cjk A Cjk).ak.

Proposition 3 (Activity preservation for priorities). A priority < defines
a deadlock-free restriction if < is irreflexive.

Proof. Suppose that <7 is irreflexive. Consider some transition system B =
(X, A, {Gaca, {F}aca), and let G =\/ ., G* and V(B, <) = (U*)4ca. Let
x be a state of B such that G(x), let A’ = {a € A | G*(x)}, and define a relation
<’ on A’ such that Va;,a; € A’ . a; <" a; < C;;(x). As <" is irreflexive, <’
is a partial order on A’, and thus acyclic. If A’ # () then max A’ exists and is
non-empty. Thus, (V, ey G*AU®) (%) = (Voea G)(x) = (V,en GY)(x). =

The above proposition motivates the definition of priority systems which are
transition systems restricted by priorities.

Definition 10 (Priority system). A priority system is a pair (B, <) where
B is a transition system and <= {Cij}a;.a;ea 15 a priovity on B such that
Ci; = false for all (a;,a;) € A* x A.

The priority system (B, <) represents the transition system B/V (B, <).

The following propositions give properties of priority systems.

Proposition 4. If (B, <) is a priority system, then V (B, <) is a control re-
striction for B.

Proof. It V(B, <) = (U%)4,ca then for all uncontrollable actions a;, U% = true
because C;; = false. [|

Corollary 1. If U is a control invariant of B then U is a control invariant of
(B, =)

Proposition 5. If U is a deadlock-free control invariant of a transition sys-
tem B then for any priority < such that <T is irreflezive, U is a deadlock-free
invariant of (B/V(U), <).

Proof. If U is a deadlock-free control invariant of B then U = G(B/V(U)) and
inv[B*)(U). As < defines deadlock-free restrictions, (B/V(U),<)* = B* and
G(B/V({U)) = G(B/V(U), <) . u

Static priorities

Definition 11 (Static priority). A static priority is a priority <= {Ci;}a;,a,ea
such that the predicates C;; are positive boolean expressions on guards. We call
static restrictions the corresponding restrictions V(B,<) = (U%)4ca, that is
restrictions which are tuples of negative boolean expressions on guards.

It is easy to check that any static restriction defines a static priority. Notice
that in a priority system with static priorities, the choice of the action to be
executed at some state depends only on the set of the actions enabled at this
state. For example, a restriction with U* = -G2 A (-G* V-G) means that in
the restricted system the action a; can be executed only if as is disabled and as
or a4 is disabled. The corresponding the priority relation is: a; < true.as,a; <
G*.a4,a1 < G*.a3

Notation: For a static priorities the notation can be drastically simplified.

If (U%)a,ea is a static restriction then it is of the form, U% = A, p -MF
where MF is a monomial on guards M} = Ai, cw G**». Each monomial MF,
corresponds to the set of priorities {a; < /\kweW\{j} G%w .a;}iew. This set can
be canonically represented by simply writing a; < A ke €W Voo -

For example if M} = G NG AG® instead of writing a; < (G* A G?).a3,
a; < (G ANG*).ag, a; < (G2 ANG*).a1, we write a; < ajasaz. We propose the
following definition for static priorities.

Definition 12 (Static priority — simplified definition). A monomial m
on a vocabulary of actions A is any term m = aj, ...a;, obtained by using
an associative, commutative and idempotent product operation. Let 1 denote its
neutral element, and M(A) the set of the monomials on A.

A static priority < on A is a relation <C A x M(A).

FEzxample 2. The static priority < corresponding to the static restriction U* =
true, U = true, U = =G*V-G*?, U = -G NG, U = =G AN=-G*3V
G2 A =G = (G ANG2) A (G AGU) A (G AG2) A (G AG™) is:
az < a1z, a4 < a1, G4 < a2, @45 < A102, a5 < A104, A5 < A3042, A5 < A3QA4.

Definition 13 (Closure). Let < be a static priority. The closure of < is the
least static priority <T containing < such that

— if a1 <F asmsy and as <T mg3 then a1 <T maoms;
— if a <F am, then a <T m for m # 1.

Ezample 3. For <= {a < bc,b < ad}, <F= {a <F bc,b <F ad,a <F acd,a <F
cd,b <F bed, b <F cd}.

Lemma 1. If for any a; € A, a; < m; with m; a monomial on A, then a; <F a;
for some a; € A.

Proof. Omitted.

Proposition 6 (Activity preservation for static priorities). A static pri-
ority < defines a deadlock-free restriction if and only if <* is irreflezive.

Proof. “if”: suppose that <7 is irreflexive. By definition, only top elements in <
can be non-trivial monomials. Thus, < is acyclic, and all ascending chains in <
are finite. Consider some deadlock-free transition system B = (X, A, {G*}4ca,
{F%}aca), and let G = \/ ., G Let x be a state of B such that G(x), and
let A/ ={a € A| G*x)}. As < is acyclic, max A’ exists and is non-empty. It
remains to show that some element of max A’ is not dominated by any monomial
in 24 Suppose that for any a; € A’ there is some m; € 2‘4,7 a; < m;. In that
case, <T has a circuit by lemma 1, which contradicts the hypothesis. Thus, at
least one action in max A’ is maximal in <. B
“only if”: suppose that a < a for some a € A. By construction of <*,
this means that (A U M(A), <) contains a tree (A’ U M(A’),<') with root a
such that all leaves are monomials consisting only of the action a. Take B =
(0, A, {G" Y acn, {D}aca) with G@) = true if o’ € A’, and G@) = false other-
wise. By definition of /, all guards in B/V (B, <) are false, whereas B is clearly
deadlock-free.]

Ezxample 4. Consider the static priority < on the actions a1, as, as, a4 such that,
as < asay, az < a4, ay < asgas. It is easy to see that <¥ is not irreflexive,
thus < does not define a deadlock-free restriction. By elimination of a4, as in the
proof of Lemma 1, we get: ag <T asasz, ag <T asaz which gives by application
of the second closure rule, as <T as, ag <T az. Thus <F is not irreflexive.

Consider the slightly different static priority <; on the actions ai,as, as, ay
such that, as <1 a1azay, az <1 asa4, ag <1 azaz. It can be checked that -<f is
irreflexive and thus deadlock-free and contains the chain ay <{ az <7 az <7 a;.

Clearly, -<1+ is not irreflexive as az <1 G*2.a4,a4 <1 G®.a3. This example
shows that for static priorities the use of the specific closure gives finer results
than by using Proposition 3.

3.2 Composition of priorities

Notice that given B and <, the predicate V(B, <) depends on B. The property
(B, <), <?) = ((B,<?),=<") does not hold in general. For instance, consider a
system B and priorities < and <’ such that a; < as and as <’ a3 where a1, as,
as are actions of B. If from some state of B the three actions are enabled then in
((B, =), =) only ag is enabled while in ((B, <’), <) both a; and ag are enabled.

We define two composition operations on priorities and study composability
results.

Definition 14 (Composition of priorities). Given two priorities <* and <2
their composition is the operation © such that <* @& <= (<! U <2)T. Further-
more, if <* and <2 are static priorities we define another composition operation,
& such that <! & <?= (<! U <?)F.

Proposition 7. The operations ® and @ are associative and commutative.

Lemma 2. Let <==<7F be an irreflexive closed static priority. Then, any non
mazimal action a is dominated by some monomial m on maximal actions.

Proof. Omitted.

Proposition 8 (Composability for static priorities). Given a transition
system B and two static priorities <' and <2, if <! U <?=<! @& <2 then
(B, <Y),<?) ~ (B, <! & <?).

Proof. Let G%, (G%), (G*)", and (G*)" be the guards of action a in B, B/ <1,
(B <)/ <2, and B/(<! @& <?), respectively. For some state x, let Ay =
{a € A| G*x)}, A1 = {a € A| (GY)(x)}, A2 = {a € A | (G*)'(x)}, and
As = {a € A | (G*)"(x)}, respectively. Notice that A; U A3 C A3 C Ag. We
show that A, = As.

If a € A, then there is no monomial on Ay dominating a in <', and there is
no monomial on A; dominating a in <2. Thus, either there is no monomial on
Ag dominating a in <* U <2=<! & <2, and a € A3, or there is a monomial m
on Ag such that a <2 m. In the latter case, m = m/m” with m’ a non-empty
monomial on Ag~\ A, and m” a monomial on A; (i.e., product of actions that are
maximal in <!). Thus, for any factor a; of m’ there is a monomial m; on Aq (and
by lemma 2, on Aj) such that a;(<')"m;. Since (=!)* C<! U <?=<! § <?,
we have a(<! U <%)my ---mym”, and a ¢ Ay, which is in contradiction to the
assumption. Thus, a € As.

Conversely, if a € Az, then a is not dominated by any monomial on Ay in
<1 U <2 Thus, a is maximal among Ay and A; in both priorities, and a € As.
|

Proposition 9 (Composability for priorities). Given a transition system
B and two priorities <!, <2, if <t U <?=<! @ <2 then ((B,<!),<?) ~ (B, <!
® <?).

Proof. Consider some state x, and let <% be the static priority defined by <®
at state x: a; <% a; <= C};(x), i = 1,2. Notice that <} & <2 is irreflexive
whenever <! @ <2 is irreflexive. The proof follows that of proposition 8 for the
static priorities <1 and <2 at state x.]

Propositions 8 and 9 provide composability conditions, that is conditions
guaranteeing commutativity of two restrictions defined by priorities. The fol-
lowing proposition is easy to prove by using monotonicity properties C and the
definitions of composition operations. It shows that the successive application of
priority restrictions can be safely replaced by their composition.

Proposition 10. For any transition system B and priorities <, <2 we have

— if <'=<? then (B,
- (B,=<' @ <*) C (

2) E (B, _<1)’.
1
priorities, (B, <! @ ~

<
B,<' U <?) C ((B,<'),=<?). Furthermore, for static
<?) ~ (B, =<' @ <?).

3.3 Safety and deadlock-freedom

We present results relating deadlock-free control invariants to priorities. We show
that priorities can be used to define any restriction corresponding to a deadlock-
free control invariant.

Given a transition system B and a predicate U, the restriction V(U) guar-
antees the invariance (safety) for U in B/V(U), that is inv[B/V (U)|(U). Fur-
thermore, if U is a control invariant then V' (U) is a control restriction, that is a
restriction that does not affect the guards of uncontrollable actions. As a rule,
V(U) is not deadlock-free. We define for a predicate U, a priority <y and study
relationships between its restrictions and V (U).

Definition 15. Given a state predicate U on a transition system, the associated
priority <y is defined by <y= {pre,(=U) Aprea(U)}(a,a)ecacxa-

Property 2. The priority <y is transitively closed and irreflexive and thus it
defines a deadlock-free restriction.

Proposition 11. For any transition system B and predicate U, B/V(U) Cy
(B, <y). Furthermore, if U is a deadlock-free invariant of B, B/V(U) ~y
(B, —<U).

Proof. As we consider B with initial set of states satisfying U we assume that
all the guards G* of its actions are such that G* = U. Let’s verify that if (G*)’
is the restricted guard of action a; in (B, <y), then G% A pre,, (U) = (G*)'.

We find (G“) = G* A /\ajeA (preq, (2U) A preq,(U) A G%) = G*% A
/\aj eA(_‘preai (=U)Vv TPreég; (U)) = G* N=preq, (=U) vV G A /\aj cA Préa;).

Given that G% A —pre,, (-U) = G% A pre,, (U), we have

(G%) = G Apreg,(U) Vv G* A /\ajeA —preq, (U).

From this follows that B/V(U) Cy (B, <u).

If U is a deadlock-free invariant then for any guard G*, G* = U =
\/a]-EA preq; (U). Thus, we have G* A /\ajeA —preq, (U) = false. Consequently,
(G*) = G A preg,(U) which completes the proof. [|

A direct consequence of this proposition is that for any deadlock-free control
invariant U, B/V(U) ~y (B, <y). That is the effect of deadlock-free controllers
can be modeled by restrictions induced by priorities.

From this proof it also follows that the guards of B/V(U) and (B, <y) agree
at deadlock-free states of B/V(U) in U. They may differ at deadlock states of
B/V(U) where B is deadlock-free. In other words (B, <) is a kind of “best
deadlock-free abstraction” of B/V(U) under U.

Ezxample 5. We apply the previous proposition for B and U of Example 1. We
show that (B, <y) behaves exactly as B’ = B/V(U) from any state satisfying
the deadlock-free control invariant U.

We have preg, (2U) A prep, (U) = w > 0, prep, (-U) A prep,(U) = w
1, prep, (2U) A preq,(U) = r > 0 and preg, (-U) A prey, (U) = prep, (2U)
preq, (U) = false. This gives the priority

<= {a1 <u (w > 0).by, b1 <y (w > 1).b2),b1 <y (r > 0).a2)}. It can be
checked that (B, <y) is indeed equivalent to (B/V (U)). The computation of the
restricted guards (G%')" and (G*') gives
(GM) =G A (—~w >0V -G*)=w=0 and
(G") = GY A (~w > 1V -GP2) A (=r > 0V =G*) = (w=0)A(r=0).

>
A

The following propositions study relationships between safety and deadlock-
free restrictions.

Proposition 12. If Uy, Uy are two state predicates and <y,, <y, the cor-
responding priorities, then B/V(Uy A Us) Cuy,av, (B, <u, @ =<v,) Cuiav,
(Bv'<U1/\U2)'

Furthermore, if U1 AUs is a deadlock-free invariant then B/V (U1 AUs) ~y, av,
(37 <v, @ _<U2) UL AU, (B’ '<U1/\U2)~

Proof. Omitted.

This proposition says that (B, <y, ® <y,) is an upper approximation of
B/V (Uy A Us). The following proposition shows an even stronger relationship
between the two priority systems.

Proposition 13. IfUy, Uy are two deadlock-free invariants of B and <y, & <y,
is irreflezive then B/V (Uy A Us) ~y, av, (B, <u, @ <u,) is deadlock-free.

Proof. We have from B/V(Uy) ~y, (B,<u,) and B/V(Us) ~py, (B,<u,),
(B,-<U1 &) ‘<U2) Cu, (B,-<U1 U '<U2) Cu, B/V(Ul) and (B,-<U1 D <u,
) Cu, (B,<u, U <p,) Cy, B/V(Us). This gives, (B, <y, © <uv,) Cu,au,
B/V(Uy) ANV (Uy) ~ B/V(Uy A Us). From the previous proposition we get the
result. []

The following proposition provides for static priorities, a result similar to
Proposition 11. It is very useful for establishing safety by using static priorities.

Proposition 14. Given a state predicate U on a transition system B = (X, A,
{G}aca, {F}aca), let <y be a static priority such thatVa € A . pre,(-U) =

Vm .a<ym /\aiem G Then; va[(Ba '<U>](U)
Proof. By Definition 10 of the semantics of (B, <y). [|

As shown in the following example, this proposition provides a means to
ensure invariance of an arbitrary predicate U by static priorities. The choice of
=<y is a trade-off between completeness and efficiency. Extreme choices are given
by

—a =<y d < pre,(—-U)Apre, (U) # false, which is a priority with singleton
monomials only; the closure of this priority may easily be not irreflexive.
—a=<ym < 3x. (pre,(-0))(x) A m = {d | G (x)} which is the most

fine-grained static priority ensuring invariance of U.

4 Example

We consider a robotic system controlled by the following processes:

— 3 trajectory control processes T'Cy, TCy, TC _man. TCy is more precise
and needs more resources than T'Cy; TC_man is the process for manual
operation.

— 2 motion planners, MP;, MPy; MP5 is more precise and needs more resources
than MP;.

We consider for each process P predicates P.halted and P.running such that
P.halted = —P.running. Each process P can leave states of P.halted (resp.
P.running) by action P.start (resp. P.stop), as in figure 1. The robotic system
must satisfy forever the following constraints:

1. In order to ensure permanent control of the position and movements of
the robot, at least one trajectory control process and at least one motion
planner must be running at any time: (7'Cyi.running VvV TCs.running V
TC-man.running) A (MP;.running V' MPs.running).

start

halted running

stop

Fig. 1: Transition system of a process.

2. In order to meet the process deadlines, the CPU load must be kept below a
threshold, which excludes that both high-precision processes can be simul-
taneously active: TCs.halted V MP5.halted.

The problem is to find a deadlock-free controller which restricts the behavior of
the system so that the above requirement is met. A similar problem has been
solved in [13] by using controller synthesis [12]. We propose a solution by finding
an appropriate static priority.

We put the global constraint to be satisfied as a predicate U in conjunctive
form: U = (T'Cy.running V TCs.running V. TC_man.running) A (MP;.running V
MPs.running) A (TCs.halted V. MPs.halted).

Invariance of U requires the invariance of each one of the three conjuncts,
disjunctions of predicates. We define the static priority <y in the following
manner.

For each conjunct D consider the critical configurations where only one literal
of the disjunction is true. The priority <y prevents critical actions, that is actions
that can turn this term to false, by keeping them dominated by safe actions
enabled in the considered configuration. More formally, for each disjunction D,
each critical action a (for which D A pre,(—D) # false) is dominated by the
monomial consisting of the safe actions enabled in D.

For example, take D = TCj.running V TCs.running vV TC_man.running.
Consider the critical configuration where T'Ci.running = true, TCs.running =
false, and TC_man.running = false. Clearly, T'C}.stop is a critical action for this
configuration. Its occurrence can be prevented by the static priority TC.stop <
TCy.start- TC_man.start. The monomial T'Cs.start- TC_man.start is the product
of the safe actions enabled at this configuration. In this way, we compute the
static priority <y which guarantees invariance of U:

TC.stop <y TCs.start - TC_man.start

TCy.stop <y TC).start - TC_man.start
TC_man.stop <y TC}.start - TCy.start

MP .stop <y MPs.start

MP5.stop <y MP;.start

TCy.start <y MPs.stop

MPs.start <y TCs.stop

It is easy to see that <5 is irreflexive. By Proposition 6, <y is a deadlock-free
restriction. By Proposition 14, U is an invariant of (TC; U TCy U TC-man U
MP; U MP,, -<U).

This approach can be applied to find deadlock-free control restrictions of arbi-
trary systems of processes {B1, ..., B, } abstractly modeled as the deadlock-free
transition system of figure 1, preserving a predicate U, boolean expression on
atomic predicates B;.running and B;.halted. For example, U can express require-
ments on the global system state such as:

— a safety-critical process must not run unless a failure-handling process is
running;

— mutual exclusion between concurrently running processes, e.g., between a
safety-critical and an untrusted process.

We suppose U to be written as a conjunction of disjunctions

U=/ (\/ Bjruning v \/ Bj.halted)

iel jeJ; jeJ;

where I, J; and J] are index sets such that any conjunct has at least two atoms
that are predicates on two different processes (this is always possible for any
predicate U if we have at least two processes).

Invariance of U is equivalent to invariance of all of its conjuncts D;. Consider
the conjunct vleJ,- B;.running Vv VleJ! By.halted. As in the previous example,
consider a critical configuration, that ié, a configuration where only one literal
is true. We distinguish two cases:

— if that literal is Bj.running (thus j € J;), then Bj;.stop violates U from this
configuration characterized by A\;c; _(;, Bi-halted A A;c /¢y Bi-running.
This action can be prevented by the static priority

Bj.stop <y H B;.start - H B;.stop
ledJi~{j} leJ!

In this relation, B;.stop is dominated by the monomial consisting of the
actions of the other processes involved in this configuration.

— if the literal is Bj.halted (thus j € J;), then Bj.start violates U, and we apply
a similar reasoning and get Bj.start <y HleJi B, .start - Hleﬂ\{j} B;.stop.

Let <y be the union of the so defined priorities for all ¢ € 1.

By definition of <y, for any disjunct D; of U, any critical action a is dom-
inated by at least one monomial m(a,D;) = [] B.start - [[B;.stop consist-
ing of safe actions enabled in D;. Thus, pre.(=D;) = N, cm(a,pi) G
and preq(—U) = preq(— N;e; Di) = prea(\/iel —\Di) = Vierpre.(—D;) =
Vier /\aiEm(a,Di)Gai’ By proposition 14, U is an invariant of (Ul B;, <y)
Notice that < is minimally restrictive, that is, only transitions violating the
invariance of U are inhibited. B

Deadlock-freedom of (|J; B;, <u) is established by Proposition 14 if < is
irreflexive, which depends on the actual predicate U.

5 Discussion

We present a framework for the incremental construction of deadlock-free sys-
tems meeting given safety properties. The framework borrows concepts and
basic results from the controller synthesis paradigm by considering a step in
the construction process as a controller synthesis problem. Nevertheless, it does
not directly address controller synthesis and other related computationally hard
problems. Instead, it is based on the abstraction that the effect of the controller
corresponding to a deadlock-free control invariant can be modeled by deadlock-
free control restrictions.

Priorities play a central role in our framework. They can represent any
deadlock-free control restriction. They can be naturally used to model mutual
exclusion constraints and scheduling policies [4, 2]. They are equipped with very
simple and natural composition operations and criteria for composability. We
provide an equational characterization of priorities and a sufficient condition for
representing deadlock-free restrictions. Static priorities are solutions expressed
as boolean expressions on guards for which a necessary and sufficient condition
for deadlock-freedom is provided.

The use of priority systems instead of simple transition systems is a key idea
in our approach. Of course, any priority system is, by its semantics, equivalent
to a transition system. Nevertheless, using such layered models offers numerous
advantages of composability and compositionality:

— The separation between transition system (behavior) and priorities allows
reducing global deadlock-freedom to deadlock-freedom of the transition sys-
tem and a condition on the composed priorities.

— The use of priorities to model mutual exclusion and scheduling policies in-
stead of using transition systems leads to more readable and compositional
descriptions [2].

— In [6,5] priority systems are used to define a general framework for com-
ponent-based modeling. This framework uses a single associative parallel
composition operator for layered components, encompassing heterogeneous
interaction. Priorities are used to express interaction constraints. For systems
of interacting components, we have proposed sufficient conditions for global
and individual deadlock-freedom, based on the separation between behavior
and priorities.

Our work on priorities found application in generating schedulers for real-
time Java applications [9]. This paper uses a scheduler synthesis algorithm that
generates directly (dynamic) priorities. Another interesting application is the
use of priorities in the IF toolset to implement efficiently run-to-completion
semantics of the RT-UML profile [7].

Priority systems combine behavior with priorities, a very simple enforce-
ment mechanism for safety and deadlock-freedom. This mechanism is powerful
enough to model the effect of controllers ensuring such properties. They offer
both abstraction and analysis for incremental system construction. Our theo-

retical framework can be a basis for the various approaches and practices using
enforcement mechanisms in a more or less ad-hoc manner.

References

1.

10.

11.

12.

13.

14.

15.

K. Altisen, G. Gossler, A. Pnueli, J. Sifakis, S. Tripakis, and S. Yovine. A frame-
work for scheduler synthesis. In Proc. RTSS’99, pages 154-163. IEEE Computer
Society Press, 1999.

K. Altisen, G. Gossler, and J. Sifakis. Scheduler modeling based on the controller
synthesis paradigm. Journal of Real-Time Systems, special issue on ”control-
theoretical approaches to real-time computing”, 23(1/2):55-84, 2002.

L. Bauer, J. Ligatti, and D. Walker. A calculus for composing security policies.
Technical Report TR-655-02, Princeton University, 2002.

S. Bornot, G. Gossler, and J. Sifakis. On the construction of live timed systems.
In S. Graf and M. Schwartzbach, editors, Proc. TACAS’00, volume 1785 of LNCS,
pages 109-126. Springer-Verlag, 2000.

G. Gossler and J. Sifakis. Component-based construction of deadlock-free systems
(extended abstract). In proc. FSTTCS 03, volume 2914 of LNCS. Springer-Verlag,
2003.

G. Gossler and J. Sifakis. Composition for component-based modeling. In proc.
FMCO’02, volume 2852 of LNCS. Springer-Verlag, 2003.

S. Graf, I. Ober, and I. Ober. Model checking of uml models via a mapping to
communicating extended timed automata. In S. Graf and L. Mounier, editors,
Proc. SPIN’04, volume 2989 of LNCS. Springer-Verlag, 2004.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes, J.-M. Lo-
ingtier, and J. Irwin. Aspect-oriented programming. In Proc. ECOOP ’97, volume
1241 of LNCS, page 220ff. Springer-Verlag, 1997.

. C. Kloukinas, C. Nakhli, and S. Yovine. A methodology and tool support for

generating scheduled native code for real-time java applications. In R. Alur and
I. Lee, editors, Proc. EMSOFT’03, volume 2855 of LNCS, pages 274-289, 2003.
J. Ligatti, L. Bauer, and D. Walker. Edit automata: Enforcement mechanisms
for run-time security policies. Technical Report TR-681-03, Princeton University,
2003.

O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for
timed systems. In E:W. Mayr and C. Puech, editors, STACS’95, volume 900 of
LNCS, pages 229-242. Springer-Verlag, 1995.

P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete event
processes. SIAM J. Control and Optimization, 25(1), 1987.

E. Rutten and H. Marchand. Task-level programming for control systems using
discrete control synthesis. Technical Report 4389, INRIA, 2002.

F. Schneider. Enforceable security policies. ACM Transactions on Information
and System Security, 3(1):30-50, 2000.

P. Tarr, M. D’Hondt, L. Bergmans, and C. V. Lopes. Workshop on aspects and
dimensions of concern: Requirements on, challenge problems for, advanced separa-
tion of concerns. In ECOOP 2000 Workshop Proceedings, Springer Verlag, 2000.

