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Abstract

PROMETHEUS is a modeling tool allowing the user to specify and compose
real-time systems, by means of synchronization and priorization of actions, with
a scheduler specified in a high-level description language. The resulting model
is checked for consistency of the priorities, safety and liveness properties which
can — up to a certain degree — be guaranteed by PROMETHEUS. The composed
system can be output in several formats.

1 Introduction

On the background of the growing complexity of real-time systems, it is a crucial,
but more and more complex task to guarantee the absence of unwanted interference
between the processes, which make the system behavior hard or impossible to predict.
Priority functions [3, 1] are an intuitive and powerful means of modeling coordination
between processes. Their composability allows a modular specification of different
aspects of coordination — for example, functional aspects such as mutual exclusion,
as well as non-functional aspects such as scheduling algorithms. These modules can be
composed and checked for consistency, that is, absence of contradictory specifications.

PROMETHEUS is a modeling tool based on priority functions as a model for coordi-
nation between processes. Both real-time processes and a scheduler can be specified in
a high-level modeling language. The language is sufficiently general to specify most fre-
quently used scheduling policies such as rate monotonic scheduling (RMS, [9]), earliest
deadline first (EDF, [9]), and the priority ceiling protocol (PCP, [10]). The possibility
of defining and instantiating scheduler templates allows to establish a library of sched-
ulers. Process templates simplify the specification of multiple occurrences of a process
type with the same untimed transition structure, but different timing constraints.

Detailed diagnostics, mainly about liveness properties of the component systems,
and inconsistent priority functions, accelerate debugging and help gaining confidence
in the correctness of the specification.

The composed system can be output in the intermediate format IF [5]. Figure 1
gives an overview of the context of PROMETHEUS, and the toolset connected to the
validation environment IF. The latter has been developed at VERIMAG, and uses

*to appear in proc. Workshop on Real-Time Tools (RT-TOOLS’2001)



ObjectGEODE

specification
design

DL IF2IF KRONOS
static analysis model checking
SDL2IF IF - . IFZC. LTS e CADP
simulation

5 TGV
ROMETHEUS test generation
A
processes +
scheduler
description

Figure 1: The context of PROMETHEUS.

IF as an intermediate format for timed asynchronous systems, and integrates tools
operating on different levels of abstraction.

At the specification level, systems can be described in a high-level description lan-
guage such as SDL [8]. The translator SDL2IF allows an automatic translation to the
IF language.

At the intermediate level, the system is represented as a set of parallel commu-
nicating processes. At this level, the tool IF2IF allows optimization based on static
analysis techniques.

The tool IF2C generates a simulator that uses techniques such as partial order
reduction and on-the-fly model-checking to explore the state space of the IF speci-
fication, giving access at the semantic level, to the corresponding labeled transition
system (LTS). The latter can be analyzed using the tool suite CADP [6], including
the minimization and comparison tool ALDEBARAN based on bisimulation, and the
alternating-free p-calculus model-checker EVALUATOR. At the same level are also
available the TcTL model-checker KRONOS [11], and the test generator Tav [7].

2 Modeling Real-Time Systems

2.1 Modeling Real-Time Processes

Consider the two periodic processes P; and P» modeled as timed systems [4], as shown
in figure 2. We suppose them to share two non-preemptable resources r; and ro. In
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Figure 2: Two processes sharing two non-preemptable resources.

the control states sleep;, waity, usel, and usei?, process Py is sleeping, waiting for
r1, using r1, and using both resources, respectively. The control structure of process
P, is nearly symmetric, with the difference that P, acquires first ro (state use3) and
then r; (state usei?).

Each transition is labeled by an action, a predicate on the clock valuations called
guard, and a set of clocks to be reset. Actions with an upperscript u are uncontrollable,
that is, they cannot be controlled by the scheduler, whereas all other actions are
controllable and can be disabled by the scheduler. The guard specifies when the
transition is enabled; its exponent (& or €) is the urgency type specifying when the
transition becomes urgent and must be taken: a delayable transition must be taken
before it becomes disabled forever, whereas an eager transition must be taken as soon
as it is enabled. Transitions are instantaneous; in any control state, time can progress
until a transition leaving the control state becomes urgent.

Consider process P;. From state sleep;, the uncontrollable transition arrive; lead-
ing to state wait; is taken as soon as the value of clock t; reaches 10. t; is reset by
arrivey; it is used to measure the time elapsed since the last occurrence of arrive;.
Hence, the process has an inter-arrival time of 10. The controllable transition bgn}
leading from wait; to use} and acquiring r; must be taken as soon as possible, and at
last at t; = 4; it resets another clock z; measuring the time passed in states use] and
use?. The two remaining transitions bgn? and end; acquire ro and free both resources,
respectively.

In [3] a property called structural liveness has been defined that implies liveness
and that can be checked locally at low cost on processes as the conjunction of three
more elementary structural properties. Under certain hypotheses on the composition
of structurally live processes, the composed system is guaranteed to be structurally
live. PROMETHEUS implements these results.

2.2 Modeling with Priorities

Priorities are widely used in modeling formalisms to restrict system behavior, espe-
cially for conflict resolution and scheduling, or to reduce non-determinism. We adopt
the approach discussed in [4, 3], providing a general framework for dynamic priorities
on the actions of a timed system of processes T'S.

A priority order is a strict partial order < on the set of actions of T'S. Priority



functions associate priority orders with subsets of states of the system. More formally,
a priority function pr is a finite set of pairs {(C?, <%)};c, where for any j € J, C?
is a state comstraint, that is, a predicate on the control states and clock valuations of
TS, specifying when the priority order <7 applies.

Priority functions are a natural and intuitive means for expressing functional prop-
erties such as mutual exclusion or atomicity, as well as non-functional aspects of process
interaction such as scheduling policies. It is often desirable to model properties as pri-
ority functions in a modular manner, and to compose the priority functions. Therefore,
we first define a composition operator on priority orders. Given two priority orders
<! and <2, we represent by <! @ <2 the least priority order, if it exists, that contains
<t U <2 <! @ <? is undefined if the relation <' U <? contains a circuit, indicating
contradictory priority functions. Two priority orders <! and <? for which <! @ <?
is defined, are called compatible.

We extend the operator @ to priority functions. Let pr; and prs be two priority
functions. Let s be some control state of T'S, and x be a clock valuation. If <? is the
priority order associated by pr; with the system state (s,x), for ¢ € {1,2}, then the
priority function pr; @ pre associates with (s,x) the priority order < & <2, if it is
defined.

The composition operator @ allows a modular description of different behavioral
aspects as a set of priority functions. Their composition provides a priority function
integrating the different aspects of process interaction.

Moreover, the composition of priority functions helps detecting design flaws at an
early stage, since it allows to check consistency of the priority functions to be com-
posed. This is because the composition is undefined for system states for which the
priority functions are contradictory, as in the concluding example. This is an impor-
tant argument in favor of modeling and integrating as many interactional aspects as
possible by priority functions, in order to detect possible inconsistencies. For example,
modeling both atomicity of action sequences, and resource allocation under the pri-
ority ceiling protocol in the formalism of priority functions, allows to integrate both
policies in one formal description, and to detect inconsistencies.

Mutual exclusion. Mutual exclusion can be modeled with priorities. Consider
the two processes P; and P, above with critical sections C1 = {use}l,usei?} and
Co = {use}?} respectively, where resource r; is used. Whenever P is ready to enter
C1, and P, is already in (s, then P> must leave Cy before P; can enter C', and vice
versa. This order is expressed by the priority function disabling actions entering C}
(resp. C3) whenever some transition leaving Cy (resp. C;) will eventually be enabled
in the current control state.

2.3 Modeling Scheduling Policies

Many existing scheduling policies distinguish between rules assigning process priorities
to resolve conflicts between processes on the one hand, and admission control rules
deciding whether some process is eligible for resource allocation on the other hand. For
example, the priority ceiling protocol schedules the process with the highest current
priority among the processes that are waiting for the processor, whereas a process P;
is eligible for the allocation of a free resource if the current priority of P; is higher
than the priority ceilings of all resources currently allocated to processes other than
P;. As discussed in [2], we formalize this decomposition of a scheduling policy as a



conjunction of two priority functions: prool = pradm @ Pries, where prigm defines an
admission control that restricts resource allocations according to a given condition,
whereas prs resolves conflicts between two or more processes waiting for the same
resource.

We assume that for each resource r, conflicts are resolved according to a partial
order on the set of processes {P; | ¢ € {1,...,n}}. The partial order is specified as a
set of state constraints {C@rj}z’,je{l,...,n}- When C]; holds, process P; has priority over
process P; for using resource r. Notice that C]; may depend on clock valuations as
well as on control states. As an example, the earliest-deadline-first policy (EDF) on
resource 1 specifies that r is granted to the waiting process that is closest to its relative
deadline. If we assume that the deadline of a process P; is equal to its period T;, then
the EDF policy is defined by

Ch = Ti—ti <Tj—t))V(Ti—ti =Tj —t; Ni < j) .

The first term of C; means that whenever two processes P; and P; are both waiting for
r, then the actions granting r to P; have immediate priority over the actions granting
r to P; if P; is closer to its relative deadline than P; (namely, T; —t; < T; — t;).
The second term ensures a strict allocation order in case of conflict (that is, when
T; —t; = T; —t;). Applied to the previous two-process example, the priority function
modeling EDF scheduling with respect to resource r; is

{(10—t; <12 —to, {bgn} < bgny}), (10—t > 12 —ts, {bgny < bgn3})} .

Intuitively, if P; is closer to its deadline, then its action bgn} acquiring r1 is given
priority over action bgnd allocating r; to Py, and vice versa; in case of equal distance,
P, wins.

3 PROMETHEUS

3.1 The Architecture of PROMETHEUS

Figure 3 shows the global architecture of PROMETHEUS. As an input, PROMETHEUS
reads a file describing the global system configuration including the process decla-
rations, available resources, synchronizing actions, and optionally the name of a file
specifying the scheduler to be used. The processes can be specified directly in the sys-
tem file, or instantiated from process templates. From this description, PROMETHEUS
generates an IF specification of the processes, the priority function describing the co-
ordination between the processes, including the scheduling policy, and optionally a
timed automaton representing the product timed system with priorities.

3.1.1 The System Description

This file declares the different components of the system, as well as some high-level
aspects of their interaction. It declares the available preemptable and non-preemptable
resources, the component processes, which can be described directly, or instantiated
from templates, and synchronization between actions of the processes. An optional
scheduler can be instantiated.

System 1 shows a system description declaring a non-preemptable resource cpu,
and instantiating three periodic processes that are scheduled under a scheduler called
edf.sched.
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Figure 3: Overview of the tool PROMETHEUS.

System 1 Three periodic processes, scheduled under EDF.

SYSTEM edf_test
NONPREEMPTABLE cpu;

periodic.proc
pl (0, 2, 5), // fixed priority, exec. time, period
p2 (0, 3, 11),
p3 (0, 4, 17)

SCHEDULER edf.sched()
END edf_test

3.1.2 The Process Description

The description of a process can be part of the system description file, the scheduler
description file, or make a file of its own. A process description essentially defines a
Petri net with urgency. It can be parameterized by a list of integer parameters that are
instantiated in the system description file. In the remainder of the process description,
a parameter may replace any integer expression. The resources used by the process
are specified by declaring, for each used resource, the set of places where it is used.

Process 1 shows the process template periodic.proc included by system 1. Tran-
sitions arrive and rl are uncontrollable, whereas transition bgn acquiring the resource
cpu is controllable. $T and $E reference the parameters T and E, respectively.

3.1.3 The Scheduler Description

This file serves to specify the admission control, and conflict resolution policies. More
generally, any priority function can be specified. As the process description, the sched-



Process 1 Template periodic.proc specifying a simple periodic process.

PND periodic (prio, E, T)
PLACES sleep wait use
RESOURCE cpu: use
CLOCKS t x
INIT: sleep;

arrive: UNCTRL
IN: sleep
0UT: wait
GUARD t = $T DELAYABLE
RESETS t;

bgn: IN: wait
OUT: use
GUARD TRUE EAGER
RESETS x;

rl: UNCTRL
IN: use
O0UT: sleep
GUARD x = $E DELAYABLE;
END periodic

uler can be parameterized. An optional Petri net with urgency may be used to define
schedulers that have a memory, such as event handlers that keep trace of requests that
have not been served yet. The scheduler may redeclare preemptable resources of the
system description to be non-preemptable.

The admission control policy is defined by state constraints blocking;; specifying

when process P; blocks process P; on some non-preemptable resource, as discussed in
[2]. The definition of blocking is of the form

[FORALL pid;: PROCESS] [FORALL pidp: PROCESS]
BLOCKING (pid;,pids) := state_constraint

The process identifiers can be universally quantified. state_constraint can be pre-
fixed by a list of existential and universal quantifications on the domains of processes,
resources, preemptable resources, and non-preemptable resources. It may contain
propositions on control states and clock states, as well as the pre-defined predicates
using(P,r) and waiting(P,r) characterizing the control states where process P uses
resource r, and process P waits for resource r, respectively. Moreover, integer expres-
sions occurring in blocking may use the pre-defined expressions prio(P) for the fixed
priority of some process P, and ceiling(r) for the priority ceiling [10] of some resource
r.

A priority function defining the conflict resolution policy [1], can be given as a list
of priority rules of the form

aid; <0 aidy [ IF state_constraint |



where aid;, aids are action identifiers, or of the form

[FORALL pid;: PROCESS] [FORALL pids: PROCESS]
pidy <0 pidy [ IF state_constraint ]

In the first case, the priority is assigned between the specified actions; in the second
case, the priority applies to all actions of the specified processes which acquire some
resource. The optional state_constraint specifies the system states where the pri-
orities apply. It has the same structure as for blocking. In addition, it can contain the
predicate blocking.

Scheduler 1 shows the EDF scheduler used by system 1: for any two processes P;,
P;, the actions of the latter acquiring some resource (in the case of system 1, the CPU)
dominate the acquiring actions of the further if either P; is closer to its deadline, or
if both processes have the same distance to their deadlines, and the parameter pid of
P;j is less than that of P;.

Scheduler 1 Specification of an EDF scheduler.

SCHEDULER edf ()
PRIORITIES // conflict resolution
FORALL Pi: PROCESS
FORALL Pj: PROCESS
Pi <0 Pj IF [ Pi.t - Pj.t < $Pi.T - $Pj.T 1 OR
[ Pi.t - Pj.t = $Pi.T - $Pj.T 1 AND
$Pi.pid > $Pj.pid
END edf

Scheduler 2 specifies the priority ceiling protocol, as shown in [2]. In the first part
of the scheduler specification, the state constraint blocking is defined. The second part
specifies with two priority rules the conflict resolution policy. All three state predicates
use quantifications.

3.2 How PROMETHEUS Works

On invocation of PROMETHEUS, the processes specified in the system description file
are read. For each process, a detailed diagnostic of its liveness properties is printed,
including information about its (non)zenoness, its minimal inter-arrival time, and its
livelock-freedom. In case some property is not verified, a diagnostic with the concerned
transitions and/or states is printed.

Next, PROMETHEUS introduces preemption transitions and places and resuming
transitions for all states that use some preemptable resource, and synchronizes re-
source allocation actions with the compatible preemption actions [2]. According to
the declaration of the resource using places of the processes, the priority function
modeling mutual exclusion is automatically computed.

After the construction of the synchronized system of processes, the scheduler, if
specified, is interpreted, and the priority function pryo representing the scheduling
policy is added to the priority function computed so far. If the priority functions are



Scheduler 2 Specification of a PCP scheduler.

SCHEDULER pcp()
FORALL Pi: PROCESS
FORALL Pj: PROCESS
BLOCKING (Pi, Pj) := // admission control
EXISTS r1: NONPREEMPTABLE
EXISTS r2: NONPREEMPTABLE
USING (Pi, r1) AND WAITING (Pj, r2) AND
CEILING (r1) >= PRIO (Pj)

PRIORITIES // conflict resolution
FORALL Pi: PROCESS
FORALL Pj: PROCESS
Pj <0 Pi IF
FORALL Pk: PROCESS
PRIO (Pi) > PRIO (Pj) AND
(PRIO (Pk) < PRIO (Pi) OR NOT BLOCKING (Pj, Pk))

FORALL Pi: PROCESS
FORALL Pj: PROCESS
Pj <0 Pi TIF
EXISTS Pk: PROCESS
PRIO (Pi) < PRIO (Pj) AND
PRIO (Pk) > PRIO (Pj) AND BLOCKING (Pi, Pk)
END pcp

found to be inconsistent, a warning message is issued informing about the states for
which the problem appears, and the set of conflicting actions.

If the option -d is selected, then the system is made deterministic by completing
the priority orders associated with any system state to a total order on all controllable
actions.

Hereafter, a diagnostic about safety and liveness of the composed system is printed,
which has been derived from the individual diagnostics and the way the system is
composed. In particular, PROMETHEUS analyzes local structural properties of the
processes that are a sufficient condition for the unreachability of states where mutual
exclusion is violated or the priority function is not defined. If some hypotheses are
met, the minimal inter-arrival time, the worst-case completion time, and their ratio
are shown for each process. The minimal inter-arrival and maximal execution times
are obtained automatically by analyzing the processes.

If the option -a has been selected, the product timed system is constructed and
written to a file. If one of the options -i, -j has been selected, the product system is
output in the form of a timed automaton, or a timed automaton with convex invari-
ants, respectively. The output of the product timed system allows, for small systems,
to directly use KRONOS in order to carry out verification of the constructed system.
Without any of the options -a, -i, or -j, the set of processes, together with the syn-
chronizations, is output as an IF specification, and the priority function is written to
a separate file.



Execution 1 shows the output of PROMETHEUS for the example of figure 2. Both

Execution 1 The resource allocation example.

rechasse> prometheus crossover.system
Properties of P1:
structurally non-Zeno with minimal loop time 10
minimal inter-arrival time 10
locally timelock-free
timelock-free
locally livelock-free
livelock-free
structurally live

Properties of P2:
structurally non-Zeno with minimal loop time 12
minimal inter-arrival time 12
locally timelock-free
timelock-free
locally livelock-free
livelock-free
structurally live

Computing mutex priorities.. domne.
Warning: priority circuit { P1.bgn2 P2.bgn2 } in (Pl.usel P2.use2 )

Product:
potentially unsafe
potentially not structurally live
non-zZeno
potentially not locally deadlock-free

Writing IF file... done.
Writing priority file... done.

processes are found to be structurally live. The minimal inter-arrival times of Py
and P, are found to be 10 and 12, respectively. When composing the processes,
PROMETHEUS detects an inconsistency of the priority functions modeling mutual ex-
clusion in state (P;.use;, Py.uses). Indeed, mutual exclusion on the use of the resources
causes the system to deadlock in that state, where each process has acquired one re-
source, and is waiting for the resource held by the other process. This well-known
example illustrates how the composition of priority functions provides diagnostics for
contradictory specifications.

Let us now schedule the same system under the priority ceiling protocol (scheduler
2). Execution 2 shows the output of PROMETHEUS. The priority function is still
undefined in (P;.usey, P>.uses), but this time, the priority function representing the
priority ceiling protocol makes state (P;.use;, Pr.uses) unreachable. According to
the criteria in [3], the composed system is structurally live. Next, the worst-case
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Execution 2 The resource allocation example, scheduled with PCP.

rechasse> prometheus crossover_pcp.system
Properties of P1:

[...]

Properties of P2:

[...]

Computing mutex priorities.. done.
Interpreting scheduler... done.
Warning: priority circuit { P1.bgn2 P2.bgn2 } in (Pl.usel P2.use2 )

Product:
safe
structurally live
WCCT:
P1: (P2, 3, 12) WCCT=9 Tmin=10 Tmin/WCCT=1.111
P2: (P1, 6, 10) WCCT=9 Tmin=12 Tmin/WCCT=1.333

Writing IF file... dome.
Writing priority file... done.

completion times of both processes are analyzed: P; is blocked by P, during at most
3 time units. With an execution time of 6, the WCCT of P; is 9, and therefore lower
than its minimal inter-arrival time Tmin of 10. Similarly, P; is blocked during at most
3 time units, and is guaranteed to complete before its deadline of 12. Finally, both
the IF specification and the priority function are written to files. The whole analysis
takes about 0.2 seconds on a PentiumPro under Linux.

4 Conclusion

PROMETHEUS is a useful and efficient support to automatize tedious and error-prone
tasks in modeling real-time applications. Its connection to the platform IF allows the
user to take advantage of the existing toolset connected to IF, in order to perform
static analysis, simulation, model-checking, or test generation on the IF specification
generated by PROMETHEUS. The independence between the scheduler description and
the specification of the system of processes to be scheduled, introduces a great deal of
flexibility, since any of them can be modified independently. This allows, for example,
to refine a scheduler, according to the diagnostic provided by PROMETHEUS and other
tools, until it ensures liveness of the processes, without the need of modifying the
latter.

However, PROMETHEUS is still a prototype. The integration into the IF platform
is one-way, since the input language is proper to PROMETHEUS; accepting system
descriptions in SDL or IF would further increase its usefulness.

Some models of real-world applications have been treated successfully with PROME-
THEUS; the results are convincing. The powerful high-level modeling formalism has
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turned out to be of great help for efficiently designing and engineering models of
real-time applications, and in particular schedulers. As a side effect, many low-level
modeling errors, which can be hard to find, are avoided. Since compositional modeling
with priority functions, and the analysis of structural properties, do not require explicit
construction of the product system, we think that even complex real-time systems can
be tackled using PROMETHEUS.
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