Compositional Modeling in Metropolis

Gregor Gossler and Alberto Sangiovanni-Vincentelli

University of California at Berkeley, Dept. of EECS
{gregor,alberto}@eecs.berkeley.edu

Abstract. METROPOLIS is an environment for the design of heteroge-
neous embedded systems. The framework is based on a general system
representation called the METROPOLIS meta-model. This model forms
the backbone of the software system and is used to integrate a variety
of analysis and synthesis tools. Compositional modeling is a powerful
method for assembling components so that their composition satisfies a
set of given properties thus making the verification problem much sim-
pler to solve. We use the meta-model to integrate the PROMETHEUS tool
in METROPOLIS for supporting compositional modeling and verification
of METROPOLIS specifications and present a first set of results on a non-
trivial example, a micro-kernel real-time operating system, TinyOS.

1 Introduction

METROPOLIS [4] is a design environment for embedded systems. It supports
a methodology that favors the reusability of components by explicitly decou-
pling the specification of orthogonal aspects over a set of abstraction levels.
More precisely, computation, communication, and coordination are separated
by having them described by different entities: processes, media, and sched-
ulers. METROPOLIS proposes a formalism called meta-model that is designed so
that various computation and communication semantics can be specified using
common building blocks [8]. The meta-model supports progressive refinement of
components, their communication and coordination. It allows executable code
in a Java-like syntax as well as denotational formulas in temporal and predicate
logic, so that the right level of details of the design can be defined at each ab-
straction. The METROPOLIS architecture encompasses a compiler front-end to
translate a meta-model specification into an intermediate representation, and a
set of back-end tools to support tasks such as synthesis, refinement, analysis,
and verification of the model.

Building systems which satisfy given specifications is a central problem in
systems engineering. Standard engineering practice consists in decomposing the
system to be designed into a set of cooperating components. Sometimes this
decomposition is dictated by the functionality of the system: for example, a
network of sensors and actuators is naturally partitioned into components. We
are interested in assessing whether the global behavior of the system satisfies
given specifications. An essential problem to solve is how to compose the com-
ponents. If indeed a rigorous design methodology is used when assembling the

system from components, then the verification problem can be solved either by
construction or using formal methods. Unfortunately, designers are used to ad
hoc design methodologies that almost always lead to solutions that must be val-
idated by simulation, rapid prototyping and testing. In some cases, it is possible
to solve the composition problem by synthesizing a controller or supervisor that
restricts the behavior of the components [16] so that the overall system behaves
correctly by construction or is amenable to formal analysis. Both verification at
the global system level and synthesis techniques have well-known limitations due
to their inherent complexity or undecidability, and cannot be applied to com-
plex systems. As an alternative to cope with complexity, compositional modeling
techniques have been studied. By compositional modeling we understand that
the components of a (real-time) system are modeled in such a way that impor-
tant liveness and progress properties are preserved when a new component is
added to the system.

We are interested in the design of complex systems such as an embedded
system for automotive power-train control or a wireless network of sensors and
actuators. We have experience in setting up a platform-based design methodol-
ogy supported by METROPOLIS for these applications that uses extensively the
principles of successive refinement as a way of simplifying substantially the veri-
fication problem. However, there is much room for compositional methods that,
in addition to the successive refinement principle, can improve substantially the
design process in an unobtrusive way *.

In this respect, we are motivated by the analysis of a particular network of
sensors and actuators being designed at the Berkeley Wireless Research Center.
The components of this network are small, inexpensive embedded computers
called nodes, which can be distributed over a building, measure parameters such
as temperature, and communicate with each other over a low-power wireless
device. TinyOS [10] is an operating system for these embedded systems that
provides basic functionality, such as task scheduling, message passing, and inter-
rupt handling, while being extremely small (less than a kilobyte) and supporting
a modular structure of the application. Since, in this wireless network, direct
communication is only possible over short distances, most nodes cannot commu-
nicate with each other directly. A sensing and routing application running under
TinyOS on each node is in charge of periodically requesting data from a sensor,
transmitting this data, and routing incoming messages towards their destina-
tion. The question we would like to answer in an environment like METROPOLIS
is whether the nodes do not deadlock and operate in a safe mode. Applying
standard verification techniques is a hard problem because of the complexity
of their behavior. It is then essential to apply techniques such as compositional
modeling to see whether these problems can be solved in a substantially better
way.

! Let a component C satisfy a property Po that guarantees the composition of C
with the rest of the system to satisfy a property P. When C is refined into a set
of components such that their composition satisfies Pc, then the entire system still
satisfies P. This principle allows incremental verification of the system as it is refined.

2 Design Flow for Compositional Modeling in Metropolis

The basic question we address in this paper is how to link compositional mod-
eling methodologies and tools with a general framework like METROPOLIS. For
the verification of models given in an expressive modeling language like the
meta-model of METROPOLIS, it is in general necessary to represent high-level
constructs in a more basic formalism on which verification can be carried out.
The choice of their representation is crucial for the applicability of compositional
reasoning. Not all meta-model constructs can be modeled so that existing com-
positionality results can be applied. We therefore need to subset the language of
the meta-model.

Sub-setting the language allows to leverage the compositional modeling tool
PROMETHEUS [13]. In PROMETHEUS real-time processes, their synchronization,
and scheduling policies can be specified in a high-level modeling language. For
the interfacing with METROPOLIS, the parser front-end for processes has been
replaced with a parser for the METROPOLIS meta-model.

PROMETHEUS constructs the real-time system incrementally by first analyz-
ing the behavior of the processes, then taking into account their synchronization
on shared resources, and finally applying the specified scheduling policy. The
resulting model is compositionally checked for safety, liveness, and timing prop-
erties, by analyzing the properties of the processes and deriving properties of the
system. Detailed diagnostics are given to accelerate debugging and help gaining
confidence in the correctness of the specification.

The main limitation of the compositional modeling principles implemented in
PROMETHEUS comes from its conservative character. In case a property cannot
be guaranteed nor refuted by PROMETHEUS, help from “classical” verification
techniques and tools is still needed. This help is provided by the validation plat-
form IF [7] in which PROMETHEUS is integrated, allowing the user to export
models towards a large range of existing tools in order to perform static anal-
ysis, simulation, model-checking, or generation of tests on the IF specification
generated by PROMETHEUS.

In this paper, we are interested in assessing how compositional modeling
can be adopted in the framework of METROPOLIS, as well as exploring and
validating new methods for compositional design and verification. The design
flow and interaction between the tools is sketched in fig. 1 and can be described
as follows:

1. The system designer provides a restricted meta-model specification that is
compatible with the PROMETHEUS formalism, and optionally a high-level
description of a scheduling policy to be applied to the system.

2. The meta-model specifications are transformed in the PROMETHEUS formal-
ism and the model is analyzed by PROMETHEUS. If a scheduler is specified,
the behavior of the model is accordingly restricted. PROMETHEUS generates
diagnostics about properties such as consistency of the requirements, safety,
liveness, non-zenoness etc., and outputs dynamic priority rules describing
the optional scheduling policy.

scheduler
description

'

Metropolis P h
backend

specification
1

dynamic
priorities

P

simulator
backend

Fig. 1: Design flow and interaction between the tools.

3. The model can be executed using a simulator back-end. If desired, the model
is equipped with a generic scheduler applying the priority rules generated
by PROMETHEUS. The model can also be exported towards the validation
platform IF, which is not shown in the figure.

The remainder of the paper is organized as follows. Section 3 gives an informal
overview of the modeling formalism used by PROMETHEUS. In section 4 we show
how some important constructs of the METROPOLIS meta-model are represented
in the modeling formalism of PROMETHEUS such that compositional analysis
techniques apply. Section 5 presents a case study, and section 6 discusses our
approach and future work.

3 Modeling in Prometheus

In PROMETHEUS, real-time systems are modeled by timed systems with dynamic
priorities. We give here a simplified presentation; a formal discussion can be
found in [5,12].

3.1 Timed Systems

We model real-time processes as timed systems, a variant of timed automata
[2]. Consider the timed system of fig. 2 modeling a process with period T and
execution time E. Each transition is labeled by an action name, a guard, and
possibly one or more clocks being reset. A state of a timed system is a tuple
(s,x), where s is a control state, and x is a clock valuation. The timed system
can evolve in two different ways: by letting time pass (which means that the
values of all clocks increase uniformly), or by taking some transition that is
enabled — which means that its guard is verified for the current clock valuation
— and resetting the specified clocks to zero. Taking a transition is instantaneous.

arrive run

sleeping t=T waiting t<T _OE running
done
r=EANtLT

Fig. 2: Timed system modeling a simple process.

An enabled transition becomes urgent and must be taken before it gets disabled
forever.

From control state sleeping, transition arrive leading to control state state
waiting becomes enabled and urgent when the value of clock ¢ reaches T. ¢ is
reset by arrive; it is used to measure the time elapsed since the last occurrence
of arrive. Transition run leading from waiting to running must be taken by
t = T — FE and resets another clock x measuring the time passed in state running.
Finally, with transition done, the process returns to sleeping after having spent
FE time units in running.

We use a flezible parallel composition || of timed systems [6]. Mazimal progress
semantics ensures that synchronization transitions are taken whenever this is
possible; a synchronizing transition may interleave only when no synchronization
is possible. We refer to the parallel composition of timed systems as a timed
system of processes.

3.2 Coordination

Priorities are widely used for scheduling [15,17], and for conflict resolution in
modeling formalisms for concurrent systems, such as process algebras, see for
example [3,9]. In most approaches, absolute priority levels are assigned to pro-
cesses or transitions. This approach suffers from two problems that take away
much of the potential strength of priorities as a modeling tool. First, absolute
priority levels lead to models that are not incremental, in the sense that adding
a process in general requires recomputing the priorities. Second, priority layers
are not composable, in the sense that two priority assignments expressing two
properties cannot be easily composed to a single priority assignment ensuring
both properties. For these reasons, partial priority orders between the actions of
processes are particularly interesting, since they allow to express local properties
as priority relations that only apply between certain transitions, without side
effect on other transitions.

We adopt the approach developed in [6,5,12], providing a general framework
for dynamic priorities on the actions of a timed system of processes T'S. The key
to a modular description of different behavioral aspects by dynamic priorities is
the composability principle studied in [1].

A priority order is a strict partial order < on the set of actions of T'S. A
priority function associates priority orders with subsets of states of the system.
More formally, a priority function pr is a set of priority rules {(C7, <%)};ey,

where J is a finite index set, and for any j € J, C7 is a predicate on the control
states and clock valuations of TS, specifying when the priority order <7 applies.
We require the C7 to be invariant under the progression of time. A timed system
with priorities is a tuple (TS, pr).

In order to allow composition of priority functions, we first define a com-
position operator on priority orders. Given two priority orders <! and <2, we
represent by <! @ <2 the least priority order, if it exists, that contains <! U <2.
<! ® <? is undefined if the relation <! U <2 contains a circuit, indicating con-
tradictory priority orders. We now extend the partially defined operator & to
priority functions. Let pr; and pr, be two priority functions, and (s,x) be a state
of TS. If <¢ is the priority order associated by pr; with the system state (s, x), for
i € {1,2}, then the priority function pr, & pr, maps (s,x) to <! & <2. A priority
function that maps any system state to a priority order is called well-defined.
Two priority functions are consistent if their composition is well-defined.

On the background of the growing complexity of real-time systems, it is a
crucial, but more and more complex task to guarantee the absence of unwanted
interference between the processes, which make the system behavior hard or
impossible to predict. Priority functions are a natural and powerful means for
modeling coordination between processes, including functional requirements such
as mutual exclusion or atomicity, as well as non-functional aspects of process
interaction like scheduling policies [5,12]. Modeling and composing different in-
teractional aspects by priority functions helps detecting design flaws at an early
stage. Inconsistencies can be backtracked up to a set of contradictory require-
ments. The diagnostic provided by the composition operation comprises the set
of states for which the problem appears, and of the set of conflicting actions.

Scheduler modeling. A general modeling framework for scheduling policies based
on priority functions has been discussed in [12,1] and implemented in PROME-
THEUS. It has been shown how frequently used scheduling policies such as rate
monotonic (RM) and earliest deadline first (EDF) scheduling [15], and the pri-
ority ceiling protocol [17], can be modeled in the scheduler description language
of PROMETHEUS, and represented as priority functions.

Consider n instances T'S;, ¢ € {1,...,n} of the periodic process of fig. 2 with
periods T; and execution times E;. We suppose that they use a shared CPU in
the running states. Scheduling the processes according to the EDF policy means
that the CPU is granted to the waiting process that is closest to its relative
deadline. If we assume that the deadline of a process T'S; is equal to its period
T;, and the time elapsed since the beginning of its period is measured by a clock
t;, then the EDF policy is modeled by the priority function

Plpol = @Z#{(Tz —t; < Tj —tj, {run; < run;})} .

Intuitively, if T'S; is closer to its deadline than T'S;, then its action run; is given
priority over action run;.

e

Fig. 3: Method call between process (top) and method (bottom). Transitions call.m
and call synchronize, as well as return_m and return.

4 Translation of Some Meta-Model Constructs

This section shows how a timed system of processes and a priority function,
which can be analyzed by PROMETHEUS, are constructed from a meta-model
specification. The current implementation of the PROMETHEUS back-end makes
abstraction from data values, keeping only information about control, timing,
and coordination. Translation of many meta-model constructs is simplified by the
fact that in PROMETHEUS, as in METROPOLIS, computation and coordination
are modeled separately. In the translation, components are represented by timed
systems, whereas constraints on the coordination of components are modeled by
priority functions that are then composed. As both the meta-model and timed
systems with priorities have formal semantics, correctness of the translation can
be formally proven, which is however beyond the scope of this paper. A back-
end tool translating meta-model code into timed systems with priorities has been
implemented.

Processes and Media. Each process or medium of a meta-model specification is
represented by a timed system in PROMETHEUS, which is constructed bottom-
up from the control structure of the process or medium: an atomic statement
is represented by a single transition leading from an initial to an end state; a
sequence of two statements is modeled by merging the end state of the first
statement with the initial state of the second.

The meta-model enforces a strict separation between computation and com-
munication. The only way for a process to communicate with another process
is to call an interface method implemented by some medium. This is modeled
under PROMETHEUS by decomposing each method call in two transitions, for the
call and the return of control. They synchronize with corresponding transitions
of the medium, as shown in fig. 3. This translation of method calls requires that
any method of a given medium is executed by no more than one process at the
same time, such that transition return synchronizes with transition return m
of a unique process.

Schedulers. The meta-model provides a class Scheduler whose instances can
be connected to processes in order to coordinate their execution. Meta-model
schedulers may contain executable code that is difficult to analyze, and more

expressive than timed systems with priorities. In particular, it cannot exclude
deadlocks. For this reason, PROMETHEUS currently does not support the full gen-
erality of the class but provides high-level language constructs to build dynamic
priority schedulers.

Constraints. The meta-model allows the description of very general constraints
including LTL (linear-time temporal logic) and first-order logic formulas. We
focus on timing and synchronization requirements, for which the meta-model
provides macro notations, and show how they can be modeled.

The maximal rate of an event, and the maximal latency between two events,
can be specified by the statements

maxrate (block, d) and maxlate (block;, blocks, d),
where block, block;, and blocks are labels referring to blocks of statements. The
meaning of maxrate is that block may be entered at most every d time units.
This is modeled in PROMETHEUS by having some clock x reset by all transitions
entering block, and constraining the guards of all transitions entering block by
x > d. The maxlate constraint signifies that block; must be left at most d time
units after block; has been entered, which is modeled by resetting a clock z at
all transitions entering block;, and constraining all transitions leaving blocks; by
rz <d.

Mutual exclusion between two critical sections labeled by block; and blocks
belonging to two different processes P; and Ps are specified in METROPOLIS by
the primitive

mutex (Pl, blockl, PQ, blOCkg).

We adopt the Petri net notations S to denote the set of actions entering a set
of states S, and So for the set of actions internal to or leaving S. Using the
shorthand notation A < B with action sets A and B for the order {a < b |
a € A A b€ B}, the mutual exclusion constraint is represented by the priority
function pryex = {(blockl, eblocky < block; o), (blockg, eblock; < blocks o)}
By abuse of notation, block; and blocks here denote the sets of control states in
the timed system representation of the meta-model statements block; and blocks.
Whenever P; is in block;, and P; is ready to enter blocks, then P; must leave
block, before P, can enter blocks, and vice versa. This order is expressed by the
priority function pr disabling actions entering blocky (resp. block;) whenever

mutex
some transition of a process in block; (resp. blocks) will eventually be enabled.

Await. The await statement of the meta-model is a powerful means to specify
synchronization between processes. Its syntax is

await {
(guardy; testListy; setList;) statementsy;
(guardy; testListy; setListy) statementss;

}

where guard; are predicates, and testList and setList define a subset of the inter-
face methods of media to which the object in which the await statement resides,

r v enter;
guard; ———————statements;

N

|
h
7

Fig. 4: Modeling the await statement.

is connected. statements; is a block of statements. Intuitively, the semantics is as
follows: if a process P comes to the await statement, then it can enter the crit-
ical section statements; provided that guard; is verified, and no other process is
in one of the interface methods given in testList;. As long as P is in statements;,
no other process can enter any of the interface methods specified in setList;.

One possibility to represent await would be using explicit synchronization
on semaphores. However, this solution would lead to a model that is difficult
to analyze compositionally, especially if other requirements of coordination or
timing constraints need to be taken into account. We have therefore chosen
to represent the behavioral restriction imposed by await entirely by dynamic
priorities. The control structure of the await statement is represented by the
piece of automaton shown in fig. 4. The behavioral restriction is modeled by the
priority function

Praait = @; ({guard;, enter; < testList;o } &

{statementsi, esetList; < statements; o })

saying that from the control states of the timed system modeling guard;, internal
and return transitions from one of the methods in testList; have priority over the
transition entering statements;; similarly, in any state that is part of statements;,
transitions issued from there have priority over the transitions calling a method
in setList;. It can be shown that mutex and await statements do not introduce
any deadly embrace between processes if the priority functions modeling the
statements are consistent. Intuitively, a deadly embrace between processes comes
from a cyclic waiting relation, which manifests as a circuit in the composition of
the priority orders associated with the deadlocking process states.

Thus, a meta-model specification using the currently supported meta-model
constructs is automatically translated into a timed system of processes with pri-
orities, which can be analyzed by PROMETHEUS. The compositional modeling
methodology discussed in [5,12] allows to combine parallel composition and dy-
namic priorities to build live systems from live components. To this end, we
define three structural properties whose conjunction is a sufficient condition for
liveness, and that are preserved under parallel composition and the restriction
with a well-defined priority function. Informally, a timed system is

— structurally non-zeno if in any circuit of the discrete transition graph at
least one clock is reset, and it is tested against some positive lower bound.

Structural non-zenoness implies that there is a positive lower bound to the
execution time of any circuit;

— locally timelock-free if from any state, time can pass, or some transition is
enabled. Local timelock-freedom excludes the physically unsound behavior
where time progress is blocked, and is guaranteed by our model;

— locally livelock-free if for any control state, the post-condition of any enter-
ing transition implies that some outgoing transition will eventually become
urgent.

These properties ensure common-sense requirements relying time progress and
occurrence of events in the timed system: time must always diverge (local time-
lock-freedom); only a finite number of events can occur within some finite amount
of time (structural non-zenoness); the system will always progress (local livelock-
freedom). Structural liveness is defined as the conjunction of the three properties.
For example, the timed system of fig. 2 is structurally live if 0 S E <X TA T > 0.

If the timed systems TSi,..., T'S, obtained by the above translation sat-
isfy one of the structural properties, then their parallel composition TS =
|[{ TSy, ..., TSy} satisfies the same property. If the priority function pr = pryiex
BPTawait D Ppo modeling coordination is well-defined, then the same structural
property is still verified by ('S, pr) [5, 12]. The goal of compositional modeling in
METROPOLIS is therefore to obtain a meta-model specification that is translated
into a set of structurally live timed systems, such that liveness of the composed
system is guaranteed by the compositionality results. If any of the properties is
not verified by the PROMETHEUS model, this may indicate an unwanted behavior
of the meta-model specification. PROMETHEUS checks the structural properties
on each timed system, and outputs diagnostics. In case local livelock-freedom
is not verified on some timed system, PROMETHEUS propagates the specified
timing constraints over the transitions of this component, and checks again. For
instance, when specifying a process as in fig. 2, it is possible to constrain only
the period and execution time of a process, having the transition run automat-
ically restricted by the constraint when execution must begin in order to keep
the process live.

5 Case Study: TinyOS

TinyOS [10] is an extremely small (less than a kilobyte) foot-print operating
system for embedded systems that provides basic functionality, such as task
scheduling, message passing, and interrupt handling, and supports a modular
structure of the application. TinyOS has been conceived to run on small, in-
expensive embedded computers called nodes, which can be distributed over a
building, measure parameters such as temperature, and communicate with each
other over a low-power wireless device. Since direct communication is only pos-
sible over short distances, most nodes cannot communicate with each other di-
rectly. A sensing and routing application running under TinyOS on each node is
in charge of periodically requesting data from a sensor, transmitting this data,
and routing incoming messages towards their destination.

application application
command event

=

active message sensor active message

command event
packet packet
command event

Fig. 5: Simplified METROPOLIS model of the TinyOS application.

A TinyOS application consists of a set of modules that interact through
two types of communication: commands, and signaling of events. Both are non-
blocking; command invocation only initiates the command execution and returns
control to the caller. A TinyOS application therefore has a high degree of logical
concurrency. Due to the boundedness of buffers, commands can be refused. In the
application we consider, modules form a layered structure: higher-level modules
call methods of lower-level modules, which in turn signal events to higher-level
modules. In spite of the comparatively small size of the application, verifying its
correctness with respect to properties such as liveness is non-trivial. Although
TinyOS is not a real-time operating system, its modeling and verification under
PROMETHEUS allows to check consistency of the safety constraints and structural
liveness, and to generate dynamic priorities in order to simulate its behavior for
different timing assumptions and scheduling policies.

We have modeled the sensing and routing application running on one node,
in METROPOLIS by 7 processes and 8 media forming a protocol stack as shown
in fig. 5. According to the METROPOLIS meta-model, processes (represented
by rectangles) communicate by calling methods implemented by media (ovals).
In TinyOS, commands and events are handled within the same module, with
events preempting the execution of commands. Since the METROPOLIS meta-
model assumes exactly one thread per process, and thus excludes intra-process
preemption, we have chosen to render the TinyOS semantics by modeling each
TinyOS module where command processing can be preempted by events, by two
processes: one for executing commands, the other for processing events. Arrows
in the figure indicate the direction of command invocation and event signaling
of the TinyOS application: application_command periodically requests data from
the sensor module that signals the sampled data to application_event as soon as
the data are available. application_command then broadcasts these data through
the protocol stack. Similarly, incoming messages are signaled through the stack

process Packet_event { ps.set_tx_bytes (true);

port handles rx_byte_ready, tx_byte_ready; tx_byte_ready.clear();
port signals rx_packet_done, tx_packet_done; }
port p_shared ps; (rx_byte_ready.event();;) {
block(d1l) {}
void thread() { rx_byte_ready.clear();
while(true) { }
block(arrival) { (rx_byte_ready.event();;) {
await { block(d2) {}
(tx_byte_ready.event();;) { rx_packet_done.signal();
tx_packet_done.signal(); rx_byte_ready.clear();
tx_byte_ready.clear(); }X>3r1r1}
}

(tx_byte_ready.event() && !ps.tx_bytes();;) {

Fig. 6: Process packet_event.

to application_event, and forwarded by application_command. Our METROPOLIS
model simplifies the actual TinyOS application in that the medium between
packet_command and packet_event abstracts away lower levels of the protocol
stack. The description consists of about 700 lines of meta-model code.

Figure 6 shows the functional METROPOLIS model of process packet_event.
The process declares five ports over which it can communicate with the media to
which it is connected. The interfaces handles, signals, and p_shared provide
methods for handling an incoming event, signaling an event to another process,
and sharing information with packet_command, respectively; their specification
is not shown here. The thread of the process repeats an await statement with
empty testList and setList in a loop so as to react to incoming events. The await
guards are not pairwise disjoint; this non-determinism comes from the fact that
abstraction has been made from some TinyOS data variables in our model.
For example, on a tx_byte_ready event signaling that the transmission of a
byte has been completed, Packet_event reacts either by signaling the successful
transmission of a packet (if it was the last byte of the packet) to the layer above,
or — if no byte is currently being transmitted — it requests through the medium
p-shared the transmission of the next byte (ps.set_tx_bytes(true)). In both
cases, the event is then cleared (tx_byte_ready.clear()). The last two clauses
of the await statement have a similar meaning for the reception of bytes. The
blocks arrival, d1, and d2 are annotated with timing constraints in the sequel of
the model. Such timing constraints, in terms of maxrate and maxlate, specify
the minimal inter-arrival times of the processes, worst-case execution times of
the blocks using the CPU, and latencies of the media.

The actual role of TinyOS, that is, scheduling the computation within dif-
ferent modules and their communication with each other, is modeled by a PRO-
METHEUS scheduler. It declares in which blocks of the model the CPU is used,
and gives priority to event handling over command processing as to accessing
the CPU.

The meta-model specification and the scheduler are then translated and ana-
lyzed by the PROMETHEUS back-end. The meta-model processes are represented
by timed systems having between 13 and 34 control states, and up to 41 transi-
tions each. Fig. 7 shows the timed system modeling the process packet_event; tim-

Fig. 7: Timed system modeling the process packet_event.

ing information has been omitted. Fat transitions indicate method calls, dashed
transitions return from a method call. Boxes show the critical sections of the
await statement. Its four clauses represent reactions depending on which event
has occurred. The guards consist of method calls. Since data are not distin-
guished, the return transitions nondeterministically enter the critical section,
and loop back to the initial state of the await statement. The meta-model does
not specify how often the guards are evaluated; in our timed system model, an
arbitrary lower bound on the delay between two evaluations of the same guard
makes the loop structurally non-zeno.

The coordination constraints expressed by the await statements, mutual ex-
clusion between the blocks using the CPU, and the scheduling policy are trans-
lated into 43 priority functions, and their consistency is verified. By applying the
compositionality results, PROMETHEUS determines the model to be deadlock-
free, non-zeno, and safe with respect to the mutual exclusion constraints on
the CPU. However, there exist states in which a process can potentially stay
forever since no timing constraints require it to eventually take a transition.
Consequently, the model is not livelock-free. In fact, we have specified minimal,
but no maximal inter-arrival times for the processes. After adding appropriate
maxlate constraints in the METROPOLIS model, PROMETHEUS reports the pro-
cesses to be structurally live. The timed systems modeling media are still not
locally livelock-free: according to their role in METROPOLIS, media passively wait
to be called. Applying compositional analysis, the composed system is reported
to be deadlock-free, but structural liveness cannot be assured due to media not
being locally livelock-free. This problem has been resolved in a later version of
PROMETHEUS where methods are not modeled as timed systems of their own,
but inlined by the calling process.

In spite of tight synchronization between processes and media, the product
timed system would have more than half a billion control states, making non-
compositional verification a hard problem. PROMETHEUS completes the verifica-
tion above in less than 5 minutes. Verification of the structural liveness properties
is done by verifying them on each component, and applying the compositionality
results. The main source of complexity is the check for safety with respect to the
mutex and await constraints. In contrast to formalisms where safety properties
are ensured for example by using semaphores, modeling safety properties using
priority functions relies on the fact that transitions violating the property, are

disabled by dominating actions. Structural safety [12] is a sufficient condition
for safety with respect to the invariance of a set of control states, which can
be checked compositionally. In contrast to the check for structural liveness, its
complexity grows polynomially with the number of transitions in the processes,
and with the size of the priority function.

6 Discussion

We have presented a framework and tool support for compositional modeling and
analysis of METROPOLIS models. The integration of PROMETHEUS in METROPO-
LIS constitutes a modeling and verification platform for the application of exist-
ing, and the development and experimentation of new methods for compositional
modeling and analysis. The METROPOLIS meta-model is a particularly interest-
ing case for compositional modeling and analysis: on the one hand, its expres-
siveness makes non-compositional verification difficult or infeasible, especially
when a higher degree of refinement has been reached. Compositional verification
seems a natural way to incrementally verify the model as it is progressively re-
fined. On the other hand, the philosophy of separation of concerns encouraged
and in part enforced by the meta-model helps making compositional modeling
applicable.

PROMETHEUS translates a METROPOLIS model into a timed system of pro-
cesses and a priority function, keeping descriptions about the components and
their coordination separate. The obtained model allows to apply composition-
ality results in order to verify consistency, safety, and liveness properties of the
model. The priority function helps to understand the modeled system and pre-
dict its behavior. Future effort is likely to aim at exploiting this rich source of
information to verify more, also quantitative, properties of the model.

The TinyOS case study has shown the power of compositionally verifying
the liveness and soundness of a non-trivial example, but also current limitations.
Future work will explore two complementary directions to obtain stronger com-
positionality results for “difficult” properties such as schedulability or individual
liveness of the processes in the system: first, to extend and generalize composi-
tionality results, for example by applying assume-guarantee-reasoning [14], and
by disposing of more information about the interaction between components,
e.g. by typing their behavior using interface automata [11]. Second, to develop
modeling guide-lines to enable compositional reasoning: in order for the results
to fully apply, help in the form of an adapted programming style is needed. The
meta-model has been designed so as to support a variety of design styles, allowing
to adopt compositional modeling principles. Some guide-lines are already pro-
vided by existing compositionality results, for example, to model coordination
in a declarative way (e.g., using await) rather than by an operational restriction
such as semaphores.

Acknowledgment. The authors would like to thank the referees for their con-
structive comments.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

K. Altisen, G. Gossler, and J. Sifakis. Scheduler modeling based on the controller
synthesis paradigm. Journal of Real-Time Systems, special issue on ”control-
theoretical approaches to real-time computing”, 23(1/2):55-84, 2002.

R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126:183-235, 1994.

J. Baeten, J. Bergstra, and J. Klop. Syntax and defining equations for an interrupt
mechanism in process algebra. Fundamenta Informaticae, 1X(2):127-168, 1986.
F. Balarin, L. Lavagno, C. Passerone, A. Sangiovanni-Vincentelli, Y. Watanabe,
and G. Yang. Concurrent execution semantics and sequential simulation algorithms
for the metropolis meta-model. In Proc. CODES’02, 2002.

S. Bornot, G. Gossler, and J. Sifakis. On the construction of live timed systems.
In S. Graf and M. Schwartzbach, editors, Proc. TACAS’00, volume 1785 of LNCS,
pages 109-126. Springer-Verlag, 2000.

S. Bornot and J. Sifakis. An algebraic framework for urgency. Information and
Computation, 163:172—-202, 2000.

M. Bozga, J.-C. Fernandez, L. Ghirvu, S. Graf, J.-P. Krimm, and L. Mounier. IF:
A validation environment for timed asynchronous systems. In E. Emerson and
A. Sistla, editors, Proc. CAV’00, volume 1855 of LNCS, pages 543-547. Springer-
Verlag, 2000.

J. Burch, R. Passerone, and A. Sangiovanni-Vincentelli. Overcoming heteropho-
bia: Modeling concurrency in heterogeneous systems. In Proc. 2nd International
Conference on Application of Concurrency to System Design, 2001.

J. Camilleri and G. Winskel. CCS with priority choice. Information and Compu-
tation, 116(1):26-37, 1995.

D. Culler, J. Hill, P. Buonadonna, R. Szewczyk, and A. Woo. A network-centric
approach to embedded software for tiny devices. In T. Henzinger and C. M. Kirsch,
editors, Proc. EMSOFT’01, volume 2211 of LNCS, pages 114-130. Springer-Verlag,
2001.

L. de Alfaro and T. Henzinger. Interface theories for component-based design. In
T. Henzinger and C. M. Kirsch, editors, Proc. EMSOFT’01, volume 2211 of LNCS,
pages 148-165. Springer-Verlag, 2001.

G. Gossler. Compositional Modelling of Real-Time Systems — Theory and Prac-
tice. PhD thesis, Université Joseph Fourier, Grenoble, France, 2001.

G. Gossler. PROMETHEUS — a compositional modeling tool for real-time systems.
In P. Pettersson and S. Yovine, editors, Proc. Workshop RT-TOOLS’01. Technical
report 2001-014, Uppsala University, Department of Information Technology, 2001.
L. Lamport. Specifying concurrent program modules. ACM Trans. on Program-
ming Languages and Systems, 5:190—-222, 1983.

C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard-
real-time environment. Journal of the ACM, 20(1), 1973.

O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for timed
systems. In E. Mayr and C. Puech, editors, STACS’95, volume 900 of LNCS, pages
229-242. Springer-Verlag, 1995.

L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance protocols: An approach
to real-time synchronization. IEEE Transactions on Computers, 39(9):1175-1185,
1990.

