Synthesis of component adaptor via quotient of specifications

Jean-Baptiste Raclet

INRIA Rennes, France, Jean-Baptiste.Raclet@irisa.fr

Supervisor: Eric Badouel, INRIA Rennes, France,
Keywords: Component-based System, Adaptor, Modal Specifications

Abstract. We address the problem of reuse of a component as the synthesis of an adaptor that moderate a given component in order to realize a prescribed behaviour. We propose a solution for this problem when behaviours are given by modal specifications. The adaptor synthesis algorithm relies on a quotient operation that computes the residual specification.

1 Introduction

Component-based design is acknowledged as an relevant approach to improving productivity in the design of complex software systems as it allows pre-designed reactive components to be reused in larger systems. Reuse can be addressed as wrapping a reactive component with given behaviour into an adaptor, so as to realize a global prescribed behaviour. It can thus be seen as a kind of extended supervisor synthesis with the main difference that adaptor are general transducers, hence they can both relabel sequences of component events to (longer or shorter) sequences of system events, and also contribute directly to sequences of system.

In this paper, we propose a solution to this problem when behaviours are modal specifications: given a component C_1, model of a modal specification S_1, and a modal specification S for the desired behaviour of the overall system, we compute the residual specification S/S_1 characterizing those components C_2 that, when composed with C_1, provide a system satisfying S.

In section 2, we define modal specification. In section 3, we explain how to compute S/S_1 and how to build a suitable adaptor from such a modal specification.

2 Definition of modal specifications

A modal specification can be seen as a simple automaton with a modality on each labeled transition: we distinguish events that necessarily occur (must modality graphically represented by plain arrows) and events that possibly occur (may modality graphically represented by dashed arrows). Moreover, the absence of
a transition labeled by an event a from a state points out that this event is forbidden in this state. Because of the may modality, this model is well suited to represent partially specified systems.

An example of modal specification defined on the alphabet $\{a,b\}$ is depicted in fig.1(a); it specifies that, after the event a, the event a is available and b may occur.

More formally, a modal specification S over an alphabet Σ is a tuple $(Q, q^0, \Delta, may, must)$ where Q is a non-empty and finite set of states and $q^0 \in Q$ is the initial state. The function $\Delta : Q \times \Sigma \rightarrow Q$ is a partial function describing a deterministic transition system. The functions $may, must : Q \rightarrow \mathcal{P}(\Sigma)$ are partial functions that types events: $a \in may(q)$ means that a is allowed from q; $a \in must(q)$ means that a is required from q; $a \notin may(q)$ means that a is forbidden in q. We require that for all state q, $must(q) \subseteq may(q)$ which expresses that anything that is required should also be allowed. Modal specifications are supposed well-formed: $a \in may(q)$ if and only if $\Delta(q, a)$ is defined.

In the sequel, we shall freely use the following notations:
- if $a \in must(q)$: we write $q \xrightarrow{a} q'$ for $\Delta(q, a) = q'$ and $q' \xrightarrow{a}$ for $\exists q', \Delta(q, a) = q'$
- if $a \in may(q) \setminus must(q)$: we write $q \xrightarrow{a}$ for $\Delta(q, a) = q'$
- if $a \notin may(q)$: we write $q \xrightarrow{a}$.

Since the underlying transition system is deterministic, we adopt the notation $q \bullet u$ to denote the state q' reached from q by reading the word u. The partial function $\bullet : Q \times \Sigma^* \rightarrow Q$ is given by :
- $q \bullet \epsilon = q$
- $q \bullet a = q'$ iff $\Delta(q, a) = q'$
- $q \bullet ua = q'$ iff $q \bullet u = q'' \wedge \Delta(q'', a) = q'$

Such a sequence u of events is called a trace of S.

A model of a modal specification S is a deterministic automaton $C = (R, r^0, \delta)$ with R a non-empty finite set of states, $r^0 \in R$ the initial state, $\delta : R \times \Sigma \rightarrow R$ a partial function of transition. We let $out(r)$ be the set of events a such that $\delta(r, a)$ is defined. As previously, we shall use $r \xrightarrow{a} r'$ for $\delta(r, a) = r'$. Moreover $r' = r \bullet u$ express that the state r' is reached from r after the sequence of events u. We note $C_1 \times C_2$ the synchronous product of C_1 and C_2.

The automaton C is a model of the modal specification S (noted $C \models S$) if there exists a relation $\sim \subseteq R \times Q$ such that:
Thus, every trace u of a model C of S is also a trace of S and if $r = r^0 \cdot u$ and $q = q^0 \cdot u$ then $must(q) \subseteq out(r) \subseteq may(q)$. By determinacy, the relation \sim is unique when it exists.

For technical reasons, we shall consider modal specifications that have states such that $must(q) \subsetneq may(q)$. An event a that must occur ($a \in must(q)$) but that is also not allowed ($a \notin may(q)$) is said incoherently specified (noted $q \not\subseteq a$). Such a state can’t belong to a simulation relation stating that $C \models S$ because this would imply, for a state q such that $r \sim q$ and $must(q) \subsetneq may(q)$, on one hand that $r \overset{a}{\rightarrow} (a \in must(q))$ and, on the other hand, that $r \not\overset{a}{\rightarrow} (a \notin may(q))$. In the sequel, these particular modal specifications will be called pseudo-modal specifications. We can note two particular pseudo-modal specifications:

- $(\{q^0\}, q^0, \Delta, may, must)$ with, for all event $a \in \Sigma$, $q^0 \overset{a}{\rightarrow} q^0$ (ie. $must(q^0) = \emptyset$ and $may(q^0) = \Sigma$), admit every automaton over Σ as model.
- $(\{q^0\}, q^0, \Delta, may, must)$ with, for all event $a \in \Sigma$, $q^0 \not\subseteq a$ (ie. $must(q^0) = \Sigma$ and $may(q^0) = \emptyset$), has no model.

Remark 1: if S is a pseudo-modal specification, it is always possible to construct an equivalent modal specification (ie. a modal specification that has exactly the same models) using the algorithm 1. This algorithm consists in first, marking all states that can reach a state having incoherently specified event by a sequence of ”must” transitions, and then pruning the pseudo-modal specification by cutting ”may” transitions leading to marked states. For example, the pseudo-modal specification in fig 2(a) is equivalent to the modal specification in fig 2(b).

3 Quotient of modal specifications

We define the pseudo-modal specification S/S_1 where $S = (Q, q^0, \Delta, may, must)$ and $S_1 = (Q_1, q_1^0, \Delta_1, may_1, must_1)$ are modal specifications defined over Σ. The set of states Q_f of S/S_1 is $(Q \times Q_1) \cup \{\top\}$ and the initial state is $q^0_f = (q^0, q_1^0)$. The functions Δ_f and may_f and $must_f$ are defined according to the following rules:

- for the state \top, we have : $\top \overset{a}{\rightarrow} \top$, $\forall a \in \Sigma$
- and for each pair (q, q_1):
 - if $q \overset{a}{\rightarrow} q'$ and $q_1 \overset{a}{\rightarrow} q_1'$ then $(q, q_1) \overset{a}{\rightarrow} (q', q_1')$
 - if $q \overset{a}{\rightarrow} q'$ and $(q_1 \overset{a}{\rightarrow} q_1' \text{ or } q_1 \overset{a}{\not\rightarrow})$ then $(q, q_1) \overset{a}{\not\rightarrow}$
 - if $q \overset{a}{\not\rightarrow}$ and $(q_1 \overset{a}{\rightarrow} q_1' \text{ or } q_1 \overset{a}{\not\rightarrow})$ then $(q, q_1) \overset{a}{\not\rightarrow}$
 - if $q \overset{a}{\not\rightarrow}$ and $q_1 \overset{a}{\not\rightarrow}$ then $(q, q_1) \overset{a}{\not\rightarrow} \top$
 - if $q \overset{a}{\not\rightarrow}$ and $q_1 \overset{a}{\rightarrow}$ then $(q, q_1) \overset{a}{\rightarrow} \top$
 - if $q \overset{a}{\not\rightarrow}$ and $(q_1 \overset{a}{\rightarrow} q_1' \text{ or } q_1 \overset{a}{\not\rightarrow})$ then $(q, q_1) \overset{a}{\not\rightarrow} (q', q_1')$
Proof

Proposition 1. Let S and S_1 be two modal specifications over Σ, C_2 is a model of $S \parallel S_1$ if and only if, for all C_1 model of S_1, we have $C_1 \times C_2 \models S$.

Proof \((\Rightarrow)\) We let \sim_1 and \sim_2 be the simulation relations that respectively state that $C_1 \models S_1$ and $C_2 \models S \parallel S_1$. We consider the least relation $\sim \subseteq (R \times R) \times Q$ such that:

1. $(r_1^0, r_2^0) \sim q^0$
2. $\forall((r_1, r_2), q)$ such that $(r_1, r_2) \sim q$, $\forall a \in \text{out}(r_1, r_2)$, we have $(r_1', r_2') \sim q'$ with $(r_1, r_2) \xrightarrow{a} (r_1', r_2')$ and $\Delta(q, a) = q'$.

In order to prove that \sim is a simulation stating that $C_1 \times C_2 \models S$, we have to check that $(r_1, r_2) \sim q$ entails $	ext{must}(q) \subseteq \text{out}(r_1, r_2) \subseteq \text{may}(q)$. For all $a \in \text{out}(r_1, r_2)$, $(r_1, r_2) \xrightarrow{a} (r_1', r_2')$ in $C_1 \times C_2$ implies $r_1 \xrightarrow{a} r_1'$ in C_1 and $r_2 \xrightarrow{a} r_2'$ in C_2. As $C_1 \models S_1$, there exists a state q_1 such that $r_1 \sim_1 q_1$. Moreover, according to the definition of the quotient and to the fact that $C_2 \models S \parallel S_1$, $r_2 \sim_2 (q, q_1)$. So $a \in \text{out}(r_1)$ and $a \in \text{out}(r_2)$ implies respectively that $a \in \text{may}(q_1)$ and $a \in \text{may}((q, q_1))$.

1. if $(q, q_1) \xrightarrow{a}$, necessarily $q \xrightarrow{a}$ and $a \in \text{may}(q)$
2. if $(q, q_1) \xrightarrow{a} (q', q_1')$ then $q \xrightarrow{a}$ and $(q_1 \xrightarrow{a} q_1'$ or $q_1 \xrightarrow{a} q_1'$) and $a \in \text{may}(q)$
3. if $(q, q_1) \xrightarrow{a}$, $q \xrightarrow{a}$ then $(q \xrightarrow{a}$ and $q_1 \xrightarrow{a}$) or $(q \xrightarrow{a}$ and $q_1 \xrightarrow{a})$; this situation is impossible because $a \in \text{may}(q_1)$

Algorithm 1: Construction of a coherently specified modal specification
By the previous case analysis, if \(a \in \text{out}((r_1, r_2)) \) then \(a \in \text{may}(q) \). Next we have to check that if \(a \in \text{must}(q) \) then \(a \in \text{out}((r_1, r_2)) \) : for all \(a \in \text{must}(q) \), as \(r_2 \sim q \), we necessarily have that \(a \) is coherently specified in \((q, q_1) \) and \(q_1 \rightarrow a \) and \((q, q_1) \rightarrow \) hence \(r_1 \rightarrow a \) and \((r_1, r_2) \rightarrow \).

\[
(\Leftarrow) \text{By contraposition, it suffices to prove that if } C_2 \not\preceq S/S_1 \text{ then there exists an automaton } C_1 \text{ such that } C_1 \models S_1 \text{ and } C_1 \times C_2 \not\preceq S.
\]

If \(C_2 \not\preceq S/S_1 \) then there exists a trace \(u = a_0a_1...a_n \) such that if we let \(u_i = a_0a_2...a_i \) for \(0 \leq i < n \) then:

- \(\text{must}((q^0_0, q^0_1) \bullet u_i) \subseteq \text{out}(r^0_2 \bullet u_i) \subseteq \text{may}((q^0_0, q^0_1) \bullet u_i) \)
- and there is no coherently specified event in each \((q^0_0, q^0_1) \bullet u_i)\).
- but \(\text{must}((q^0_0, q^0_1) \bullet u) \not\subseteq \text{out}(r^0_2 \bullet u) \) or \(\text{out}(r^0_2 \bullet u) \not\subseteq \text{may}((q^0_0, q^0_1) \bullet u) \) or there exists an event \(a \) such that \((q^0_0, q^0_1) \bullet u \not\rightarrow a \)

As \(\text{may}(\top) = \Sigma \) and \(\text{must}(\top) = \emptyset \), \((q^0_0, q^0_1) \bullet u \not\in \top \), hence, \((q^0_0, q^0_1) \bullet u_i \not\in \top \). Furthermore, according to the definition of the quotient and to the absence of coherently specified event for each \((q^0_0, q^0_1) \bullet u_i \), \(u \) is a trace common to \(S \) and \(S_1 \). We build the automaton \(C_1 \) model of \(S_1 \) such that for every pair \((r^1_0 \bullet u_i, q^0 \bullet u_i) \) with \((r^1_0 \bullet u_i) \sim_q (q^0 \bullet u_i) \) we have \(a_i \in \text{out}(r^1_0 \bullet u_i) \). Thus, \(u \) is a trace of \(C_1 \) and hence, a trace of \(C_1 \times C_2 \). Three possibilities can lead to \(C_2 \not\preceq S/S_1 \):

- \(\exists a \text{ s.t. } r^1_2 \bullet u \not\rightarrow a \) and \((q^0_0, q^0_1) \bullet u \not\rightarrow a \) : \((q^0_0, q^0_1) \bullet u \not\rightarrow a \) iff \(q^0_0 \bullet u \not\rightarrow a \) or \(q^0_1 \bullet u \not\rightarrow a \). If \(r^1_1 \bullet u \not\rightarrow a \) in \(C_1 \) then \((r^1_1, r^1_2) \bullet u \not\rightarrow a \) \text{ in } C_1 \times C_2\. As \(q^0_0 \bullet u \not\rightarrow a \), \(C_1 \times C_2 \not\preceq S \)

- \(\exists a \text{ s.t. } r^1_2 \bullet u \not\rightarrow a \) and \((q^0_0, q^0_1) \bullet u \not\rightarrow a \) : \((q^0_0, q^0_1) \bullet u \not\rightarrow a \) iff \(q^0_0 \bullet u \not\rightarrow a \) or \(q^0_1 \bullet u \not\rightarrow a \). But, as \(r^1_1 \bullet u \not\rightarrow a \) in \(C_2 \) then \((r^1_1, r^1_2) \bullet u \not\rightarrow a \) and \(q^0_0 \bullet u \not\rightarrow a \) then \(C_1 \times C_2 \not\preceq S \)

- \(\exists a \text{ s.t. } (q^0_0, q^0_1) \bullet u \not\rightarrow a \) : \(\text{It occurs when } q^0_0 \bullet u \not\rightarrow a \) and \((q^0_0, q^0_1) \bullet u \not\rightarrow a \). If \(r^1_1 \bullet u \not\rightarrow a \) in \(C_1 \) then \((r^1_1, r^1_2) \bullet u \not\rightarrow a \) \text{ in } C_1 \times C_2\. As \(q^0_0 \bullet u \not\rightarrow a \), \(C_1 \times C_2 \not\preceq S \)

The proposition 1 can be used to solve an adaptor synthesis problem: given a component \(C_1 \) that satisfies \(S_1 \), you can adapt it to satisfies \(S \) using a model of \(S/S_1 \). To optimize the reuse, one is interesting in having the least adaptor such that the desired behaviour is obtained. This can easily be computed when using modal specifications: if a modal specification \(S \) is satisfiable, its set of models is a distributive complete lattice for the inclusion of language. The least (respectively, the greatest) model \(C \) is the one such that for every pair \((r, q)\) such that \(r \sim q \) we have \(\text{out}(r) = \text{must}(q) \) (respectively, \(\text{out}(r) = \text{may}(q) \)). For example, the least model of the modal specification in fig.2(b) is the automaton in fig.2(c).

To sum up, whatever be the component \(C_1 \) model of \(S_1 \) and a desired behaviour \(S \): compute \(S/S_1 \) (the complexity of this step is \(O(|S| \times |S_1|) \)); compute the modal specification equivalent to the pseudo-modal specification \(S/S_1 \) using the algorithm 1; compute the least model of the previous modal specification (if it exists, i.e. if \((q^0_0, q^0_1) \) has no incoherently specified event) by cutting every dashed transition. Then the obtained automaton \(C_2 \) is the least adaptor, for every \(C_1 \) model of \(S_1 \), such that \(C_1 \times C_2 \) satisfies \(S \).
4 Conclusion and future work

In this paper, we have presented modal specifications, a simple and intuitive formalism to specify systems. Furthermore, we have defined an adaptor synthesis algorithm for a component whose behaviour is expressed via a modal specification. This algorithm computes a residual specification by quotienting the desired behaviour and the known one to be reused.

Quotient of specifications given by Mu-calculus formulas has been studied in [AVW03]. The proposition 1 is true in this framework. A benefit of using Mu-calculus formulas instead of modal specifications is expressivity (cf. [Feu05]). Nevertheless, the complexity of the quotient operation of Mu-calculus formulas is worse: the size of the automaton associated to the formula S/S_1 is $O(|S| \times m')$ where $m' = 2^{O(m \log m)}$ and $m = O(|S_1|)$ whereas for modal specifications, the size of S/S_1 is $O(|S| \times |S_1|)$. Furthermore, there is no notion of least model of a Mu-calculus formula so it is not possible to define a least adaptor.

An extension of this work could be to enrich modal specifications in order to add a mechanism to check the compatibility between two components (as in the work of [dAH01]).

A crucial aspect in component reuse is how to enforce the reuse of the given component during the adaptor synthesis. The product operation between the provided component and the synthesized adaptor can be used in this purpose. We expect to propose a solution to the problem of adaptor synthesis that considers the product operation as a parameter of the problem.

References

