
Modal Contracts for Component-based Design
Gregor Goessler and Jean-Baptiste Raclet

INRIA Grenoble – Rhône-Alpes
France

Email: firstname.lastname@inria.fr

Abstract—Contracts and their composition may be used with
different goals in a component-based design flow: on the one
hand, a component contract describes the guarantees a compo-
nent is able to give, depending on its environment. On the other
hand, a requirement contract, or aspect, specifies a guarantee that
must be ensured under some hypothesis. For component contracts
we define a “best effort” composition satisfying the property of
independent implementability. For aspects we define a composition
based on modal conjunction, which is shown to besound. Modal
contracts allow keeping a larger design space than their non-
modal version, and thus avoid prematurely ruling out possible
implementations.

Index Terms—Component-based design, contract, modalities,
composition.

I. I NTRODUCTION

Contracts have first been introduced as a type system
for classes [1]: a method guarantees some post-condition
under the assumption that its pre-condition is satisfied. In
the component-based programming community, contracts are
increasingly focus of research as a means to achieve one of the
main goals of the component paradigm, namely the deploy-
ment and reuse of components in different, a priori unknown
contexts. As components may interact under various models
of communication, the notion of contract has been generalized
from pre- and post-conditions in the form of predicates to
behavioral interfacessuch asinterface automata[2], allowing
to reason about the temporal behavior of environments with
which a component can be composed.

In contrast to aspecificationdefining how a component
mustbehave, contracts can be seen as implications, providing
a guarantee depending on an assumption on the context.
Accordingly, different semantics of contract compositionare
conceivable, with the two special cases ofconjunction of
implicationsyielding a lazy composition, andimplication of
a conjunctionfor an eagercomposition. The latter approach
is adopted by [3], where the assumption of the composed
contract is defined as the weakest assumption ensuring the
conjunction of both guarantees. In the present work we choose
the former approach: a component satisfying the composition
of two contracts must satisfy each guarantee if and only if
the corresponding assumption holds. This notion of compo-
sition is consistent with the component paradigm mentioned
above, enabling the component to offer different guarantees
depending on the context.

This work was funded by the European STREP COMBEST project number
215543.

Accepted at SEFM’09.

In a component-based design flow, contracts and their
composition may be used with different goals in the design
flow: on the one hand, a contract may be used to describe
the guarantees a component is able to give, depending on its
environment. We call this acomponent contract. Component
contracts can be used top-down to successively refine an
abstract component, or bottom-up to build a system from
previously constructed components. On the other hand, a
contract may specify arequirementas a guarantee that must
be ensured under some hypothesis. We call this a requirement
contract, or aspect. Aspects are usually implemented top-
down. Therefore, contracts are an elegant way to combine
bottom-up and top-down design. Although syntactically there
is no difference between both kinds of contracts, the difference
comes from the way they are composed.

For component contracts over disjoint components we de-
fine a “best effort” composition operation that is parametrized
by an interaction modelinspired by the BIP framework [4],
[5]. The composition ensures each guarantee depending on
the satisfaction of its assumption, provided that the guarantee
is feasible under the specified interaction model. We show
that this operation satisfies the property ofindependent imple-
mentability.

For aspects on the same component or sub-system we define
a composition operation based on modal conjunction to ensure
that the composition refines both contracts. This is motivated
by the fact that different aspects express different requirements
whose conjunctions is to be satisfied. The same operation
serves to compose an aspect with a component. It is shown
to be soundand, under some conditions, complete. To our
knowledge this is the first work formalizing and allowing to
effectively combine both types of contract composition.

Furthermore, we define a prioritized composition of aspects
whose result refines the composed aspects, such that in case
of inconsistencies among them, an aspect of higher priority
“overrides” a lower-priority contract.

We define contracts in terms ofmodal automata[6] extend-
ing automata with a modality that indicates for each transition
whether itmayor mustbe implemented. This additional typing
has the advantage of keeping a larger design space, whereas a
premature choice of implementing or not a given transition
would prematurely narrow the design space, and rule out
possible implementations.

Related work.Modal specifications benefit from a well-
established theory and a set of results that we build upon, in
particular work on modal residuation [7]. A detailed discussion

of benefits of modalities for interface theories, in particular
for fitting together contracts over different action vocabularies,
can be found in [8]. Since we introduce two distinct operations
for composing contracts over disjoint interaction models and a
common interaction model, respectively, we do not encounter
this issue here.

Verification based on modal contracts in BIP is studied
in [9], where a decomposition of contracts is used to
define compositional refinement of component contracts.
[10] discusses a contract-based design flow for a rich
component framework. Aspects are formalized in terms of
pairs (assumption, guarantee) of sets of traces. Conjunction
of non-modal specifications has been introduced in [11] with
the goal of enabling heterogeneous specifications mixing
operational and logical parts.

This paper is organized as follows. Section II defines
modal specifications. Section III introduces contracts as
pairs of modal specifications. Furthermore, weak implication
between modal specifications is introduced, and its properties
are discussed. Using these results, Section IV defines several
composition operations for contracts, and Section V concludes.

II. M ODAL SPECIFICATIONS

Automata enriched with modalities on transitions have been
introduced in [6] twenty years ago (see [12] for a complete
survey). Basically, modal specifications possess two typesof
transitions:may-transitions that are optional, as opposed to
must-transitions that are obligatory.

Definition 1 (Modal specification). A modal specificationis
a tuple S = 〈Q, q0, Σ, ∆m, ∆M 〉 whereQ is a finite set of
states,q0 ∈ Q is the unique initial state,Σ is a finite set of
actions (or ports), and∆m, ∆M ⊆ Q×Σ×Q are respectively
the set ofmay-transitions and ofmust-transitions. We require
that ∆m is deterministic (that is,(q, a, q′) ∈ δ ∧ (q, a, q′′) ∈
δ =⇒ q′ = q′′) and that∆M ⊆ ∆m.

The condition∆M ⊆ ∆m naturally imposes that every
required transition (i.e., in∆M) is also allowed (i.e., is also
in ∆m).

For short, we shall write or draw:q
a
→ q′ when(q, a, q′) ∈

∆M ; q
a

99K q′ when (q, a, q′) ∈ ∆m \ ∆M ; q
a
9 when∀q′ :

(q, a, q′) /∈ ∆m.

Example 1 (adapted from [13]). Consider a communication
channel whose alphabet of actions includesmsgfor a sending
request and two kinds of acknowledgment for transmission:
ack in case of success andnack in case of failure. The upper
modal specification in Fig. 1 specifies that every message sent
must be acknowledged.

Definition 2 (Behavior). We callbehaviora modal specifica-
tion 〈Q, q0, Σ, ∆m, ∆M 〉 where∆M = ∆m.

When composing specifications (several composition oper-
ations will be introduced later on), inconsistencies between

GFun

msg

nack

ack

AFun

msg

nack

ack

msg

Fig. 1. Communication channel – functional aspectCF un

the modalities may appear. We thus consider an extension of
modal specification calledpseudo-modal specifications, which
possesses a distinctinconsistentstate⊥.

Definition 3 (Pseudo-modal specification). A pseudo-modal
specificationis a tuplepS = 〈Q∪{⊥}, q0, Σ, ∆m, ∆M 〉 where
Q ∪ {⊥} is a finite set of states with⊥ /∈ Q, q0 ∈ Q is the
unique initial state and∆m, ∆M ⊆ Q × Σ × (Q ∪ {⊥})
are two transition relations such that∆m is deterministic and
∆M ⊆ ∆m.

Modal specifications correspond to the subclass of pseudo-
modal specifications for which⊥ is not a reachable state.
As a consequence, the definitions below for pseudo-modal
specifications also apply to modal specifications. Forq ∈ Q,
we denote:

• may(q) the set of actionsa for which there exists a state
q′ ∈ Q ∪ {⊥} with (q, a, q′) ∈ ∆m;

• must(q) the set of actionsa for which there exists a state
q′ ∈ Q ∪ {⊥} with (q, a, q′) ∈ ∆M ;

• mustnot(q) the set of actionsΣ \ may(q).

Definition 4 (Refinement). A pseudo-modal specification
pS1 = 〈Q1 ∪ {⊥1}, q0

1, Σ, ∆m
1 , ∆M

1 〉 refines a pseudo-modal
specificationpS2 = 〈Q2 ∪ {⊥2}, q

0
2 , Σ, ∆m

2 , ∆M
2 〉, written

pS1 � pS2, if there exists a simulation relationθ ⊆ Q1 ×Q2

such that:(q0
1 , q0

2) ∈ θ, and for all (q1, q2) ∈ θ, the following
holds:

• for every(q2, a, q′2) ∈ ∆M
2 there exists(q1, a, q′1) ∈ ∆M

1

and (q′1, q
′
2) ∈ θ;

• for every(q1, a, q′1) ∈ ∆m
1 there exists(q2, a, q′2) ∈ ∆m

2

and (q′1, q
′
2) ∈ θ.

Remark that, since the simulation relationθ is defined over
Q1 ×Q2, the inconsistent states⊥1 and⊥2 cannot appear in
the pairs of states ofθ. Moreover, for any pair(q1, q2) ∈ θ
we have by definition:

may1(q1) ⊆ may2(q2)

must1(q1) ⊇ must2(q2)

Definition 5 (Model relation). A behaviorB is a modelof a

pseudo-modal specificationpS, denotedB |= pS, if B � pS.
The set of models ofpS is denoted byMod(pS).

We write S⊤ for the modal specification
〈{q0}, q0, Σ, ∆m, ∆M 〉 with (q0, a, q0) ∈ ∆m for all
a ∈ Σ and ∆M = ∅; S⊤ is greater for� than all modal
specifications and it admits every behavior as a model.
On the other hand, letS⊥ be a modal specification with
Mod(S⊥) = ∅, refining all modal specifications.

We call ρ(pS) the reduction ofpS. It follows the obser-
vation that if there is a must-transitionq

a
→ ⊥ in pS then q

cannot belong to a simulation relationθ.

Definition 6 (Reductionρ). For U ⊆ Q, let

preM (U) = {q ∈ Q | (q, a, q′) ∈ ∆M ∧ q′ ∈ U},

preM
0 (U) = U , preM

k+1(U) = preM (preM
k (U)) for k ≥ 0,

and preM
∗ (U) =

⋃

k preM
k (U).

The reductionρ(pS) of a pseudo-modal specificationpS =
〈Q, q0, Σ, ∆m, ∆M 〉 is defined asS⊥ if q0 ∈ preM

∗ ({⊥}), and
as the modal specification〈Q \ preM

∗ ({⊥}), q0, Σ, ∆m
ρ , ∆M

ρ 〉
otherwise, where∆m

ρ ⊆ ∆m and ∆M
ρ ⊆ ∆M are the sets of

transitions ofpS whose source state and destination state do
not belong topreM

∗ ({⊥}).

This construction is similar to the one for the synthesis
of a most permissive controller [14] with⊥ interpreted as
the unique bad state and with must-transitions as transitions
labeled by uncontrollable events.

A pseudo-modal specification can be reduced into a modal
specification with preservation of its semantics.

Lemma 1 (Consistency). The modal specificationρ(pS) pos-
sesses the same set of models aspS [7].

In the sequel, pseudo-modal specifications may serve as
an artifice when composing modal specifications; conflicts
between the modalities of the composed modal specifications
may be represented thanks to a transition to an inconsistent⊥
state. By then applying the reduction operation, a semantically
equivalent modal specification is obtained.

Remark 1. The main reason for assuming determinism in
the may-transition relation for modal specifications is that the
modal refinement then coincides with the inclusion of sets of
models [7]: letS1 andS2 be two modal specifications:

S1 � S2 ⇔ Mod(S1) ⊆ Mod(S2)

If nondeterminism is allowed inS1 or S2, modal refinement
is not complete [15].

Modal specifications equipped with modal refinement form
a complete lattice; letS1 = 〈Q1, q

0
1 , Σ, ∆m

1 , ∆M
1 〉 andS2 =

〈Q2, q
0
2 , Σ, ∆m

2 , ∆M
2 〉 be two modal specifications, their infi-

mum and their supremum are the following:

Definition 7 (Greatest lower bound∧). The greatest lower
boundof S1 andS2 is S1 ∧S2 = ρ(S1&S2) whereS1&S2 =

〈(Q1 × Q2) ∪ {⊥}, (q0
1, q

0
2), Σ, ∆m, ∆M 〉 with the transitions

given by Table I.

Observe that then for all state of the form(q1, q2) of S1&S2

we have:

may((q1, q2)) = may1(q1) ∩ may2(q2)

must((q1, q2)) = must1(q1) ∪ must2(q2)

Remark 2. Mod(S1∧S2) = Mod(S1)∩Mod(S2); thus great-
est lower bound operation coincide with a logical conjunction
[16].

Definition 8 (Least upper bound∨). The least upper bound
S1 ∨ S2 of S1 and S2 is the tuple 〈(Q1 × Q2) ∪ Q1 ∪
Q2, (q

0
1 , q

0
2), Σ, ∆m, ∆M 〉, where∆m = ∆m

1 ∪ ∆m
2 ∪ (∆m)′,

∆M = ∆M
1 ∪∆M

2 ∪(∆M)′, and(∆m)′ and(∆M)′ are defined
by Table II.

Then, all states(q1, q2) of S1 ∨ S2 satisfy:

may((q1, q2)) = may1(q1) ∪ may2(q2)

must((q1, q2)) = must1(q1) ∩ must2(q2)

III. CONTRACTS ASPAIRS OF MODAL SPECIFICATIONS

We now enrich our component-based framework with a
notion of contracts. As briefly indicated in the introduction, a
contract is a pair of specifications: one describes an assumption
on the usage of the component made by its environment; the
other one corresponds to a guarantee offered by the component
as long as the assumption is satisfied.

A. Contracts

Definition 9 (Contract). A contractC over Σ is a pair (A,G)
of modal specifications overΣ, whereA is calledassumption
andG guarantee.

A contractC = (A,G) on a component with alphabetΣ
guarantees any implementation to satisfyG, provided that
A is satisfied. Since the context in which the component
will be deployed is unknown at design time,A can only
make assumptions about the locally observable behavior of
the component when integrated in its environment, not about
the behavior of the environment itself.

Example 2. The contract(AFun,GFun) consisting of the pair
of modal specifications in Fig. 1 specifies that every message
sent must be acknowledged, provided that a sent message is
re-emitted as long as it has not been acknowledged.

Definition 10 (Implementation). A modal specificationS
satisfies a contractC = (A,G) if A ∧ S � G. ModelsB
of such anS are then called implementations ofC, denoted
B |= C.

Refining a contract means weakening assumptions and
strengthening guarantees:

Definition 11 (Refinement). A contract (A′,G′) refines
(A,G), written (A′,G′) � (A,G) if A � A′ andG′ � G.

∧ q2

a
→2 q′

2
q2

a
99K2 q′

2
q2

a92

q1

a
→1 q′

1
(q1, q2)

a
→ (q′

1
, q′

2
) (q1, q2)

a
→ (q′

1
, q′

2
) (q1, q2)

a
→ ⊥

q1

a
99K1 q′

1
(q1, q2)

a
→ (q′

1
, q′

2
) (q1, q2)

a
99K (q′

1
, q′

2
) (q1, q2)

a9
q1

a91 (q1, q2)
a
→ ⊥ (q1, q2)

a9 (q1, q2)
a9

TABLE I
TRANSITIONS RELATIONS OFS1 ∧ S2

∨ q2

a
→2 q′

2
q2

a
99K2 q′

2
q2

a92

q1

a
→1 q′

1
(q1, q2)

a
→ (q′

1
, q′

2
) (q1, q2)

a
99K (q′

1
, q′

2
) (q1, q2)

a
99K q′

1

q1

a
99K1 q′

1
(q1, q2)

a
99K (q′

1
, q′

2
) (q1, q2)

a
99K (q′

1
, q′

2
) (q1, q2)

a
99K q′

1

q1

a91 (q1, q2)
a

99K q′
2

(q1, q2)
a

99K q′
2

(q1, q2)
a9

TABLE II
TRANSITIONS RELATIONS OFS1 ∨ S2

Contracts can also be ordered by comparing their sets of
implementations:

Definition 12 (Model inclusion). We write(A′,G′) ⊑ (A,G)
if every implementation of(A′,G′) is also an implementation
of (A,G). We write (A′,G′) ≡ (A,G) if (A′,G′) ⊑ (A,G)
and (A,G) ⊑ (A′,G′).

Proposition 1. (A′,G′) � (A,G) =⇒ (A′,G′) ⊑ (A,G). The
converse is not true.

One important question following Definition 10 is then:
can we compute a modal specification having the same set
of implementations as a given contract? This question is
addressed by studying the operation inverse to conjunction∧.

B. Weak Implication

This section introduces a new operation on modal specifi-
cation calledweak implicationwhich is a partial adjoint of
the conjunction. In other words, the weak implicationS ÷ S1

solves the equationS1 ∧ X ≤ S.

Definition 13 (Weak implication÷). Theweak implicationof
two modal specificationsS1 andS2 is S1÷S2 = 〈(Q1×Q2)∪
{⊤}, (q0

1, q
0
2), Σ, ∆m, ∆M 〉 with transitions given by Table III,

and⊤
a

99K ⊤ for all a ∈ Σ.
Let S⊥ ÷ S = S⊥ whenS 6= S⊥ andS ÷ S⊥ = S⊤.

The rules in Table III are such that forS1÷S2 with S1,S2 6=
S⊥, we have:

may((q1, q2)) = may1(q1) ∪ mustnot2(q2)

must((q1, q2)) = must1(q1) \ must2(q2)

Intuitively, for a given pair of states, the modality of
each action is defined as the weakest modality such that the
conjunction withS2 refinesS1.

Proposition 2. Given three modal specificationsS1,S2 and
S, the following implication holds:

S2 � S ÷ S1 =⇒ S1 ∧ S2 � S.

a

b

S1

a

S2

a

a

S

⊥

a

b

S1&S2 S1 ∧ S2

⊤

a b

a

Σ

S ÷ S1

Fig. 2. Counterexample showing the incompleteness of weak implication÷

The converse does not hold in general. Consider the modal
specifications in Fig. 2 defined over the alphabet{a, b}, we
haveS1 ∧S2 � S but S2 � S ÷S1 as after a first occurrence
of a, the actiona is required inS ÷ S1 whereas, inS2, a is
forbidden.

We now define a relation between modal specifications
called non-conflicting under which completeness of weak
implication is ensured. Intuitively two modal specifications
S1 andS2 are non-conflictingif any action required by one
is not forbidden by the other. In [17], this relation is called
independence.

Definition 14 (Non-conflicting). Two modal specificationsS1

andS2 are non-conflictingif there exists a relationΓ ⊆ Q1×
Q2 such that(q0

1 , q0
2) ∈ Γ and for all pairs (q1, q2) ∈ Γ:

• for every(q1, a, q′1) ∈ ∆M
1 there exists(q2, a, q′2) ∈ ∆m

2

and (q′1, q
′
2) ∈ Γ;

• for every(q2, a, q′2) ∈ ∆M
2 there exists(q1, a, q′1) ∈ ∆m

1

and (q′1, q
′
2) ∈ Γ;

• if (q1, a, q′1) ∈ ∆m
1 and (q2, a, q′2) ∈ ∆m

2 then (q′1, q
′
2) ∈

÷ q2

a
→2 q′

2
q2

a
99K2 q′

2
q2

a92

q1

a
→1 q′

1
(q1, q2)

a
99K (q′

1
, q′

2
) (q1, q2)

a
→ (q′

1
, q′

2
) (q1, q2)

a
→ ⊤

q1

a
99K1 q′

1
(q1, q2)

a
99K (q′

1
, q′

2
) (q1, q2)

a
99K (q′

1
, q′

2
) (q1, q2)

a
99K ⊤

q1

a91 (q1, q2)
a9 (q1, q2)

a9 (q1, q2)
a

99K ⊤

TABLE III
TRANSITIONS RELATIONS OFS1 ÷ S2

Γ.

Example 3. The modal specificationsS1 andS2 in Fig. 2 are
not non-conflicting as, after the occurrence ofa, the actionb
is required inS1 and forbidden inS2.

If S1 andS2 are non-conflicting then the computation of the
greatest lower boundS1 ∧S2 does not produce inconsistency,
as the ruleq1

a
→ q′1 andq2

a
9, which entails a must-transition

(q1, q2)
a
→ ⊥, is never applied.

Proposition 3. Given three modal specificationsS1,S2 and
S such thatS1 andS2 are non-conflicting:

S1 ∧ S2 � S =⇒ S2 � S ÷ S1.

Weak implication is called apartial adjoint of conjunction
as it is correct (Prop. 2) but complete only under certain
assumption (Prop. 3). A correct and complete construction
which would then be an adjoint of conjunction does not exist
for modal specifications.

Lemma 2. For modal specificationsS,S′,S1, and S2, S ∧
S1 � S′ andS ∧ S2 � S′ does not implyS ∧ (S1 ∨S2) � S′

in general.

Proof: Consider the modal specifications in Fig. 3:S ∧
S1 � S′ andS ∧ S2 � S′ but S ∧ (S1 ∨ S2) � S′.

Theorem 1. Conjunction for modal specification does not
have an adjoint.

Proof: Suppose that there exists a construction denoted⋄
which is an adjoint of conjunction. We would thus have, for
any modal specificationsS,S′ andSi, i = 1, 2:

S ∧ Si � S′ ⇐⇒ Si � S′ ⋄ S

If Si � S′ ⋄ S thenS1 ∨ S2 � S′ ⋄ S, by definition of the
least upper bound. By correctness of⋄ we would then have:
S ∧ (S1 ∨ S2) � S′, in contradiction with Lemma 2.

Proposition 4. Given four modal specificationsS1,S2,S3 and
S4:

1) S1 � S2 andS3 � S4 =⇒ S1 ÷ S4 � S2 ÷ S3

2) S2 ∧ (S1 ÷ S2) � S1 � S1 ÷ S2

For a given contractC = (A,G), the weak implicationG÷A
is called theimplicit form of C. It is refined by all specification
S satisfyingC and such thatS andA are non-conflicting.

Example 4. The implicit form of the contractCFun in Fig. 1
is depicted in Fig. 4. Whileack and nack are forbidden in
the initial state of the assumptionAFun, the implicit form of

⊤

msg

ack

ack, nack

nack

ack,nack,msg

Fig. 4. Implicit form of the contractCF un

CFun has amay-transition from the initial state to a⊤-state
labelled byack and nack. This represents the consequence
of the violation of the assumption: ifack or nackoccur then
the contract is relaxed and no more guarantee is provided.

IV. COMPOSITION OFCONTRACTS

Composition operations for contracts may be used with
different goals in a design flow, and hence, be given different
semantics: on the one hand, a contract may describe the
guarantees a component is able to give, depending on its
environment. Accordingly, thecomponent compositionof two
contracts is thestrongestcontract satisfied by the composition
of any pair of implementations of both contracts.

On the other hand, a contract may be used to specify a
requirementas a guarantee that must be ensured under some
hypothesis. We call this a requirement contract, oraspect.
We define two operations foraspect compositionof two
contracts: one with a conjunctive semantics, defined as the
weakestcommon refinement of both contracts, andpriority
composition, allowing a contract of higher priority to override
a lower-priority contract in case of conflict.

A. Component Composition

For disjoint component contracts we define a “best effort”
composition operation that is parametrized by aninteraction
modelinspired by the BIP framework [4], [5]. The composition
ensures each guarantee depending on the satisfaction of its
assumption, provided that the guarantee is feasible under the
specified interaction model.

Definition 15 (Interaction model). An interactionover an al-
phabet of actionsΣ is a non-empty subset ofΣ. An interaction

a

b

S

a

a

S′

a

a b

S1

a

a

S2 S ∧ S1 S ∧ S2

a

a b

S1 ∨ S2

a

b

(S2 ∨ S1) ∧ S

Fig. 3. Example whereS ∧ S1 � S′ andS ∧ S2 � S′ but S ∧ (S1 ∨ S2) � S′.

a b

S1

c

S2

b a|c

S1‖ICS2

Fig. 5. Example of composition‖IC

modelover Σ is a setIC ⊆ 2Σ of interactions overΣ such
that

⋃

α∈IC α = Σ.

An interaction between behaviors is a set of actions taking
place simultaneously. An interaction model defines the set of
all possible interactions. For disjoint alphabetsΣi, i = 1, ..., n,
and an interactionα over

⋃

i Σi, let α[i] = α ∩ Σi.

Definition 16 (Composition‖IC). The composition of two
modal specificationsSi = 〈Qi, q

0
i , Σi, ∆

m
i , ∆M

i 〉, i = 1, 2
with disjoint alphabets, under an interaction modelIC over
Σ1 ⊎ Σ2 is S1‖ICS2 = 〈Q1 × Q2, (q

0
1 , q

0
2), IC, ∆m, ∆M 〉,

where the transition relations∆m and ∆M are obtained by
synchronizing respectively∆m

i and ∆M
i : for any α ∈ IC,

• ((q1, q2), α, (q′1, q
′
2)) ∈ ∆m if (qi, α[i], q′i) ∈ ∆m

i when
α[i] 6= ∅, and qi = q′i otherwise,i = 1, 2;

• ((q1, q2), α, (q′1, q
′
2)) ∈ ∆M if (qi, α[i], q′i) ∈ ∆M

i when
α[i] 6= ∅, and qi = q′i otherwise,i = 1, 2.

Let S‖ICS⊥ = S⊥‖ICS = S⊥.

Example 5. Fig. 5 shows the modal specificationsS1 andS2,
defined over the alphabets{a, b} and{c, d}, respectively, and
their compositionS1‖ICS2 under the interaction model

IC =
{

{b}, {a, c}, {b, d}
}

wherea|c and b|d stand for{a, c} and {b, d}.

Refinement is a congruence with respect to composition
(this property is also calledstepwise refinementof modal
specifications):

Proposition 5. For modal specificationsS overΣ, S1,S2 over
Σ′, and IC over Σ ⊎ Σ′,

S1 � S2 =⇒ S1‖ICS � S2‖ICS

Consider two behaviorsB1 and B2 that are respectively
implementations of contractsC1 and C2. When a system is
built bottom-up by composingB1 andB2 via an interaction
model IC, one obvious question is: what can be inferred on
B1‖ICB2 thanks toC1 and C2? To this end, we define the
composition operation⊗IC on contracts.

Definition 17 (Composition⊗IC). Given contractsC1 =
(A1,G1) and C2 = (A2,G2) on disjoint alphabets and an
interaction modelIC, we defineC1⊗ICC2 = (A,G) where:

• G = (G1 ÷A1)‖IC(G2 ÷A2)
• A = (A1‖ICA2) ÷ G

Proposition 6. The composition⊗IC is associative and com-
mutative.

The property ofindependent implementability(also referred
to asconstructivityin [18]) allows to obtain an implementation
of the composition of contracts as the composition of their
implementations.

Theorem 2 (Independent implementability). Let C1, C2 be two
contracts on disjoint alphabets andIC an interaction model,
if B1 |= C1 andB2 |= C2 thenB1‖ICB2 |= C1⊗ICC2.

Since the contractC1⊗ICC2 is satisfied by the composition
underIC of any pair of implementations ofC1 and C2, the
composition operation⊗IC allows to reason about contracts
in a bottom-up manner.

Proposition 7 (Stepwise refinement). Given three contracts
C, C1, C2, the following holds:

C1 � C2 =⇒ C1⊗ICC � C2⊗ICC

Example 6. Consider a client whose alphabet consists of the
three actions:sendfor a message to be transmitted, and two
kinds of responses:ok if the message has been received, and
fail otherwise. The contract in Fig. 6 states that, under the
hypothesis thatfail never occurs, every transmitted message
is well received (i.e.,sendis acknowledged byok).

The interactions between the client and the communication
channel are given by the interaction model

IC = {{msg, send}, {ack, ok}, {nack, fail}}

The result of composingCFun of Fig. 1 andCClient of Fig. 6
is depicted in Fig. 7. In the obtained guarantee,msg|sendis

GClient

ok

send

AClient

send,ok

Fig. 6. A contractCClient for a client component

followed byack|ok unlessnack|fail occurs, which constitutes a
violation ofAClient. From then on,msg|sendmay be followed
by ack|ok or nack|fail.

By independent implementability, the composition of any
pair of implementations ofCFun and CClient satisfies
CFun⊗ICCClient. This may look surprising, since the assump-
tion A⊗IC

allows ack|ok to take place from the initial state,
whereasack was not allowed to happen from the initial state
of AFun. This is because this behavior is ruled out byCClient,
which guarantees onlysendto take place. In other words, the
information ofCClient is used to weaken the assumptionA⊗IC

.

B. Aspect Composition

It is current engineering practice to model different as-
pects of a specification separately. In terms of contracts, this
amounts to attach several contracts to a single component. A
central question is whether a set of contracts is consistent,
and how to compute a common implementation, orshared
refinement[19]. We define the composition of contractsC1

and C2 as theweakestcontractC refining each aspect, that
is, making the guarantee of each contract provided that the
corresponding assumption is met.

Definition 18 (Composition⊕). Given two contractsC1 =
(A1,G1) and C2 = (A2,G2) over the same alphabet, let

C1 ⊕ C2 =
(

A1 ∨ A2, (G1 ÷A1) ∧ (G2 ÷A2)
)

A component satisfying the composition of two contracts
must satisfy each guarantee if and only if the corresponding
assumption holds. This notion of composition is consistent
with the component paradigm mentioned above, enabling the
component to offer different guarantees depending on the
context.

Proposition 8. The composition⊕ is associative and com-
mutative. Moreover, it is≡-idempotent: for any contractC,
C ⊕ C ≡ C.

Theorem 3 (Correctness of⊕). Each implementation ofC1⊕
C2 is an implementation ofC1 and ofC2, that is,C1⊕C2 ⊑ Ci,
i = 1, 2.

msg|send

ack|ok

ack|ok,nack|fail

IC

G⊗IC

msg|send

msg|send

ack|ok

nack|fail

msg|send

ack|ok,nack|fail

nack|fail

msg|send

IC

ack|ok,nack|fail

A⊗IC

Fig. 7. The contractCF un⊗ICCClient

GRel

reset
ack, nack, msg msg, nack

overload

ARel

reset
ack, nack, msg

overload

Fig. 8. Communication channel – reliability aspectCRel

Theorem 4 (Completeness of⊕). Consider two contracts
C1 = (A1,G1) and C2 = (A2,G2) over the same alphabet.
If S is a modal specification that satisfiesC1 and C2 and is
non-conflicting withA1 andA2, thenS satisfiesC1 ⊕ C2.

Proposition 9 (Stepwise refinement). For contractsC, C1, C2

over the same alphabet,

C1 � C2 =⇒ C1 ⊕ C � C2 ⊕ C

Example 7. Consider now a second contractCRel in Fig. 8
dealing with the reliability of a communication channel. Two
new actions are introduced:overloadwhich occurs when the
maximal capacity of the communication channel is reached
and resetfor the re-initialization of the system. The contract
CRel specifies the following:

• assumptionARel: on overload, the system must be reset.
• guaranteeGRel: on overload, the communication channel

only producesnack; or, equivalently, messages can be
positively acknowledged only when the system is not
overloaded.

We revisit contractCFun of Fig. 1 and extend its alphabet
by addingmay-self-loops labeled withoverloadand reseton
every state ofAFun and GFun. Call the resulting contract
C′

Fun.
The guarantee obtained by composing the two aspectsC′

Fun

and CRel is depicted in Fig. 9. It can be decomposed in four
blocks:

• the upper left block corresponds to the situation where
none of the assumptions made in the two contracts is
violated and thus, both guarantees are verified;

• the upper right block corresponds to the case where
the assumptions ofC′

Fun has been violated. As a con-
sequence, the contractC′

Fun is disabled and onlyGRel is
ensured;

• similarly, in the bottom left block, the assumption ofCRel

have been violated and onlyG′
Fun is ensured;

• last, the bottom right block is a⊤-state corresponding to
the situation where both assumptions ofC′

Fun and CRel

have been violated and both contracts are disabled.

In practice, aspects are not equally important. For instance,
an aspect “safety” may be chosen to override an aspect “qual-
ity of service”. The operation ofpriority composes aspects
in a hierarchical order, such that in case of inconsistency,an
aspects of higher priority overrides a lower-priority contract.
A similar operation for the four-valued Belnap logic has been
introduced in [20] to compose access control policies.

Definition 19 (Priority composition). Let S1 =
〈Q1, q

0
1 , Σ, ∆m

1 , ∆M
1 〉 and S2 = 〈Q2, q

0
2 , Σ, ∆m

2 , ∆M
2 〉

be two modal specifications,S1 < S2 is the
tuple 〈(Q1 × Q2) ∪ Q2, (q

0
1 , q

0
2), Σ, ∆m, ∆M 〉 with

∆m = ∆m
2 ∪ (∆m)′, ∆M = ∆M

2 ∪ (∆M)′, and (∆m)′

and (∆M)′ are defined by Table IV.

Intuitively, S1 < S2 behaves, for each action, likeS2

whenever the modality inS2 is different from “may” (un-
determined), otherwise it behaves likeS1.

Definition 20 (Priority < on contracts). Given two contracts
C1 = (A1,G1) andC2 = (A2,G2) over the same alphabet, we
define:

C1 < C2 = (A1 ∨ A2, G1 < G2)

overload

reset

ack,nack

ack

nack
msg

reset

overload

ack,nackreset

ack,nack

overloadreset

ack,nack
overload

msg

nack

ack

ack,nack

ack,nack

overload

Fig. 9. The guarantee ofC′

F un
⊕ CRel.

msg

msg

ack

msg

ack

nack

overloadoverload resetreset

nack

ack

nack

reset,overloadreset,overload

Fig. 10. The guarantee ofCRel < C′

F un

Example 8. The guarantee obtained by composingCRel <
C′

Fun is depicted in Fig. 10. When the communication channel
is on overload, a positive acknowledgmentack may occur
as specified in the higher-priority contractC′

Fun, which was
impossible inCRel. The remaining guarantee isG′

Fun (lower
block).

Proposition 10. 1) C1 < C2 ⊑ C2;
2) C < (S⊥,S⊤) = C.

That is, all models of the priority composition satisfy the
contract of higher priority. Whenever the latter does not make

< q2

a
→2 q′

2
q2

a
99K2 q′

2
q2

a92

q1

a
→1 q′

1
(q1, q2)

a
→ (q′

1
, q′

2
) (q1, q2)

a
→ (q′

1
, q′

2
) (q1, q2)

a9
q1

a
99K1 q′

1
(q1, q2)

a
→ (q′

1
, q′

2
) (q1, q2)

a
99K (q′

1
, q′

2
) (q1, q2)

a9
q1

a91 (q1, q2)
a
→ q′

2
(q1, q2)

a9 (q1, q2)
a9

TABLE IV
TRANSITIONS RELATIONS OFS1 < S2

a choice, the models must satisfy the choice made byC1.

Proposition 11 (Associativity).

(C1 < C2) < C3 = C1 < (C2 < C3)

We can therefore extend priority composition to a hierarchy
of an arbitrary number of aspects.

V. D ISCUSSION

We have defined modal contracts as a pair of modal spec-
ifications, and introduced a new operation on modal specifi-
cation calledweak implication. Based on this operation, we
have introduced three composition operations between modal
contracts, responding to different requirements in the design
flow and satisfying different properties:

• component composition⊗IC of contracts over disjoint
sub-systems, parametrized with an interaction modelIC.
The composition is defined as thestrongest contract
satisfying the property of independent implementability;

• aspect composition⊕ of contracts over the same sub-
system, defined as theweakestcontract refining both
arguments;

• priority composition< of contracts over the same sub-
system, allowing to guarantee a hierarchy of importance
among the contracts.

Modal contracts and their compositions have been illustrated
with the example of a communication network.

In the near future, we intend to study assume-guarantee
rules for circular reasoning in this framework, lift weak
implication from modal specifications to contracts, and apply
the framework to significant case studies. Another interesting
research direction is the support of a richer deontic logic,for
instance, contracts encompassingcontrary-to-duty obligations
[21], [22] that specify how contract violations are handled.

REFERENCES

[1] B. Meyer, “Applying “design by contract”,”IEEE Computer, vol. 25,
no. 10, pp. 40–51, 1992.

[2] L. de Alfaro and T. Henzinger, “Interface automata,” inProc. FSE’01.
ACM Press, 2001, pp. 109–120.

[3] K. Larsen, U. Nyman, and A. Wasowski, “Interface input/output au-
tomata,” in Proc. FM’06, ser. LNCS, vol. 4085. Springer, 2006, pp.
82–97.

[4] G. Gössler and J. Sifakis, “Composition for component-based modeling,”
Science of Computer Programming, vol. 55, no. 1-3, pp. 161–183, 3
2005.

[5] S. Bliudze and J. Sifakis, “The algebra of connectors — structuring
interaction in BIP,” inProc. EMSOFT’07. ACM, 2007, pp. 11–20.

[6] K. Larsen, “Modal specifications,” inProc. International Workshop on
Automatic Verification Methods for Finite State Systems, ser. LNCS, vol.
407. Springer, 1989, pp. 232–246.

[7] J.-B. Raclet, “Residual for component specifications,”in Proc. FACS’07,
ser. ENTCS, 2007.

[8] J.-B. Raclet, E. Badouel, A. Benveniste, B. Caillaud, and R. Passerone,
“Why modalities are good for interface theories?” inProc. ACSD’09.
IEEE, 2009.

[9] S. Quinton and S. Graf, “Contract-based verification of hierarchical
systems of components,” inProc. SEFM’08. IEEE, 2008, pp. 377–
281.

[10] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone,
and C. Sofronis, “Multiple viewpoint contract-based specification and
design,” in Proc. FMCO’07, ser. LNCS, F. de Boer et al., Ed., vol.
5382. Springer, 2008, pp. 200–225.

[11] G. Lüttgen and W. Vogler, “Conjunction on processes: Full abstraction
via ready-tree semantics,”TCS, vol. 373, pp. 19–40, 2007.

[12] A. Antonik, M. Huth, K. Larsen, U. Nyman, and A. Wasowski, “20 years
of modal and mixed specifications,”Bulletin of European Association
of Theoretical Computer Science, vol. 1, no. 94, 2008.

[13] A. Benveniste, “Multiple viewpoint contracts and residuation,” fIT’08.
[14] C. Cassandras and S. Lafortune,Introduction to Discrete Event Systems.

Kluwer Academic Publishers, 1999.
[15] K. Larsen, U. Nyman, and A. Wasowski, “On modal refinement and

consistency,” inProc. CONCUR’07, ser. LNCS, vol. 4703. Springer,
2007, pp. 105–119.

[16] J.-B. Raclet, “Quotient de spécifications pour la réutilisation de com-
posants,” Ph.D. dissertation, Université de Rennes I, december 2007,
(In French).

[17] K. Larsen, B. Steffen, and C. Weise, “A constraint oriented proof
methodology based on modal transition systems,” inProc. TACAS’95,
ser. LNCS. Springer, 1995, pp. 17–40.

[18] T. A. Henzinger and J. Sifakis, “The embedded systems design chal-
lenge,” in Proc. FM’06), ser. Lecture Notes in Computer Science, vol.
4085. Springer, 2006, pp. 1–15.

[19] L. Doyen, T. Henzinger, B. Jobstmann, and T. Petrov, “Interface the-
ories with component reuse,” inProc. EMSOFT’08, L. de Alfaro and
J. Palsberg, Eds. ACM Press, 2008, pp. 79–88.

[20] G. Bruns, D. Dantas, and M. Huth, “A simple and expressive semantic
framework for policy composition in access control,” inProc. FMSE’07.
ACM, 2007, pp. 12–21.

[21] G. Governatori and Z. Milosevic, “Dealing with contract violations:
Formalism and domain specific language,” inProc. EDOC’05. IEEE,
2005.

[22] G. Pace and G. Schneider, “Challenges in the specification of full
contracts,” inProc. IFM’09, ser. LNCS, M. Leuschel and H. Wehrheim,
Eds., vol. 5423. Springer, 2009, pp. 292–306.

