
Static Detection of Pointer Errors:
an Axiomatisation and a Checking Algorithm

Pascal Fradet, Ronan Gaugne and Daniel Le M�etayer
Irisa/Inria

Campus de Beaulieu,
35042 Rennes, France

[fradet,gaugne,lemetayer]@irisa.fr

Abstract. The incorrect use of pointers is one of the most common
source of bugs. As a consequence, any kind of static code checking capa-
ble of detecting potential bugs at compile time is welcome. This paper
presents a static analysis for the detection of incorrect accesses to mem-
ory (dereferences of invalid pointers). A pointer may be invalid because
it has not been initialised or because it refers to a memory location
which has been deallocated. The analyser is derived from an axiomati-
sation of alias and connectivity properties which is shown to be sound
with respect to the natural semantics of the language. It deals with dy-
namically allocated data structures and it is accurate enough to handle
circular structures.

1 Introduction

The motivation for the work described in this paper comes from two observations:

{ Most widely used programming languages allow explicit pointer manipula-
tions. The expressiveness provided by such features is appreciated by many
programmers because it makes it possible to master low level details about
memory allocation and reuse. However the explicit use of pointers can be
quite subtle and error prone. It is well known that one of the most common
source of bugs in C is the incorrect use of pointers.

{ It is more economical to detect bugs at compile time than by running test
cases. Testing is a very expensive activity: bugs have �rst to be discovered,
then they must be localised within the source program. As a consequence,
any kind of static code checking capable of detecting bugs at compile time is
welcome. Type checking is an example of a static analysis technique which
has proved greatly bene�cial in terms of program development.

The technique described in this paper is applied to the detection of incorrect
accesses to memory (dereferences of invalid pointers). A pointer may be invalid
because it has not been initialised or because it refers to a memory location
which has been deallocated. Other applications are suggested in the conclusion.
A large amount of literature is devoted to the analysis of pointers for compiler
optimisations but there has been comparatively fewer contributions aiming at
static bug detection. The main features of the analysis described in this paper
are the following:

{ It is able to detect incorrect use of pointers within recursive data structures.
{ It is formally based on a (natural) operational semantics of the language.
{ The analyser is derived from an axiomatisation of alias and connectivity

properties.

This contrasts for instance with lint which returns warnings concerning the use
of uninitialised variables but does not check dereferences of pointers in recursive
data structures. To our knowledge, no formal de�nition of the lint checker has
been published either.

Of course no static pointer analysis can be complete and we decide to err on
the conservative side: we show that the execution of a program that has passed
our checking process successfully cannot lead to an incorrect pointer derefer-
ence. The required approximation means that our checker can return warnings
concerning safe programs. The checker can be seen as a static debugging tool,
helping the programmer to focus on the pieces of code that cannot be trusted.

Even if it cannot be complete, such a tool must be as accurate as possible.
Otherwise the user would be swamped with spurious warnings and the tool would
be of little help. In particular, the tool must be able to return useful information
about recursive data structures in the heap. Two signi�cant features of our
checker with respect to data structures are the following:

{ It is able to treat recursive data structures in a non uniform way (indicating
for example that a pointer variable x refers to the tail of the list pointed to
by another variable y).

{ It is able to handle circular lists without introducing spurious aliases between
di�erent addresses in the list.

We focus in this paper on the formal de�nition of the inference algorithm and
its relationship to the axiomatics and the natural semantics. The algorithm pre-
sented here is only a �rst step towards the design of an e�ective tool. Current
work to get a more e�cient algorithm is sketched in the conclusion.

In section 2 we present an inference system for proving properties about
pointers such as (may and must) aliasing and reachability. We establish its cor-
rectness with respect to a natural semantics of the language. The inference sys-
tem can be seen as a Hoare logic specialised for explicit pointer manipulation.
This logic is not decidable in general and we de�ne in section 3 appropriate
restrictions to make the set of properties �nite, which allows us to design a
checking algorithm. Section 4 reviews related work and suggests optimisations
and other applications of the analysis.

2 A Hoare Logic for Pointers

The syntax and semantics of the subset of C considered in this paper are provided
in Fig. 9 and 10 in the appendix. They are variations of de�nitions appearing in
[3]. We use the exception value illegal to denote the result of a computation
involving the dereference of an invalid pointer. The set of valid pointers of the

store SD is D. The e�ect of alloc (resp. free) is to add an address in (resp. to
remove an address from) D.

This paper is concerned with the analysis of blocks of instructions excluding
procedure calls and gotos (see [13] for extensions). This allows us to focus on the
essential issues of pointer analysis and to keep the presentation simpler. We also
ignore arithmetic operations on pointers and we assume that only one �eld of a
record can be of type pointer. Due to this simpli�cation, we can omit the �eld
names in access chains without ambiguity (writing, for instance, �v for �v:cdr if
v is a variable of type �list with list = struct car:int cdr:*list).

The class of properties Prop considered in this paper is de�ned as follows:

P ::= P1 ^ P2 j P1 _ P2 j :P1 j v1 = v2 j v1 7! v2 j True j False
v ::= id j &id j �id j undef
P 2 Prop, v 2 Var

In the sequel, we use the word \variable" to denote undef or an access chain
(that is to say an identi�er id of the program possibly pre�xed by � or &). P
ranges over Prop, v ranges over the domain of variables Var and undef stands for
the unde�ned location. As usual, �v denotes the value contained at the address
a where a is the value of v; &v is the address of v. The su�xes of a variable �id
are the variables id and &id.

The meaning of properties is speci�ed through a correspondence relation CV
de�ned in Fig. 1. This semantics is parameterised with a set of variables V �Var
called the reference set in the sequel. This parameter can be used to tune the
logic to get more or less accurate analyses. We impose only one constraint: V
must contain the su�xes of all the variables assigned in the program (and the
arguments of free). The correspondence relation CV(P; E ; SD) relates states
(that is to say, pairs (E ;SD) with E an environment, and SD a store) to the
properties they satisfy. The intuition behind this correspondence is the following:

{ v1 = v2 holds if the value of v1 is equal to the value of v2. In particular
�v1 = undef means that the value of v1 is an invalid pointer (which is the
case if v1 has not been initialised or if v1 points to a cell which has been
deallocated by free.

{ v1 7! v2 holds if the (address) value of v2 is accessed from the (address)
value of v1 through at least one level of indirection and no (address) value
of a variable of the reference set V appears in the path from v1 to v2.

Due to the presence of the negation and disjunction connectors, and the meaning
of the = operator, our logic is able to deal with \must-alias" properties as well
as \may-alias" properties. This allows us to retain a better level of accuracy,
which is required to analyse the kind of correctness-related properties we are
interested in in this paper. We introduce a partial order on properties in Fig. 2.
Note that v1 7! w ^ w 7! v2) v1 7! v2 holds only if w does not belong to the
reference set (this follows the semantics of 7!, which is not transitive).
We de�ne the transformation \{" which transforms a boolean C expression E

CV(P; E; illegal) = false

CV (v1 = v2; E; SD) = Val(v1; E; SD) = Val(v2; E; SD)

CV(v1 7! v2; E; SD) = 9�1 : : : �k; �1 = Val(v1; E; SD); �k = Val(v2; E; SD);
8i (1 � i < k) SD(�i) = �i+1
8i (1 < i < k); 8v 2 V; �i 6= Val(v; E; SD)

CV (P1 ^ P2; E; SD) = CV (P1; E; SD) and CV(P2; E; SD)

CV (P1 _ P2; E; SD) = CV (P1; E; SD) or CV(P2; E; SD)

CV (:P; E; SD) = not (CV (P; E; SD))

CV (True; E; SD) = true

CV(False; E; SD) = false

Val(undef; E; SD) = ?

Val(&id; E; SD) = E(id)

Val(id; E; SD) = SD (E(id))

Val(�id; E; SD) = SD (Val(id; E; SD))

Fig.1. Correspondence relation

(v1 = v2) ^ P) P [v2=v1] &�v = v �&v = v v1 = v2) �v1 = �v2

v = v v1 = v2 ^ v2 = v3) v1 = v3 v1 = v2) v2 = v1

v 7! �v v1 7! v2) (v2 = �v1) _ (�v1 7! v2) x = undef) �x = undef

v1 7! w ^ w 7! v2) v1 7! v2 with w 62 V

P1) P P2) P

P1 _ P2) P
P) P

P1) P2 P2) P3
P1) P3

P1 ^ P2) P1 P1 ^ P2) P2 P1) P1 _ P2 P2) P1 _ P2

Fig.2. Partial order and equivalences on properties (w.r.t V)

into a property E in Prop. It is used to extract properties from tests in C pro-
grams. For example, the C operators && and || are transformed into the logical
\and" and \or" connectives. Of course, E is an approximation and it returns
\True" if no pointer information can be extracted.

De�nition1.

E1&&E2 = E1 ^E2 E1||E2 = E1 _E2 !(v1!=v2) = v1 = v2
!(E1&&E2) = !E1 _ !E2 !(E1||E2) = !E1 ^ !E2 !(v1==v2) = :(v1 = v2)

v1==v2 = v1 = v2 v1!=v2 = :(v1 = v2)
E = True otherwise

The inference system for statements and expressions is presented in Fig. 3. Let
us focus on the rules of Fig. 3 which depart from traditional Hoare logic.

fPg E fP 0g fP 0 ^ Eg S1 fQg fP 0 ^ !Eg S2 fQg

fPg if (E) S1 elseS2 fQg

fPg E fQg fQ ^ Eg S fPg

fPg while (E) S fQ ^ !Eg

fPg S1 fP
0g fP 0g S2 fQg

fPg S1 ;S2 fQg

fPg v1 fPg fPg v2 fPg P) Q[[v2=v1]]
V
P

fPg v1=v2 fQg

fPg free(v) fQg if P) Q[[undef= �v]]VP

fPg E fPg with E=id, &id

fPg � id fPg if P) :(�id = undef)

fPg z = alloc(T) fP ^
^

v2Var(P)�fz;�zg

:(z = v) ^ :(�z = v) ^ :(z = �z) ^ (�z 7! undef)g

fP1g S fP 01g fP2g S fP 02g

fP1 _ P2g S fP
0
1 _ P 02g

disjunction

P) P 0 fP 0g S fQ0g Q0) Q

fPg S fQg
weakening

Fig.3. Axiomatics of statements and expressions

{ The rule for the conditional makes use of the transformation E in order
to take the conditions on pointers into account when analysing the two
branches. This degree of accuracy is necessary in order to prevent the anal-
yser from generating too many spurious warnings.

{ As expected, the rule for dereference (*id) includes a check that the pointer
is valid.

{ We assume that a preliminary transformation of the source program has
replaced the assignments v=alloc(T) by the sequence fz=alloc(T);v=z;
free(z)gwhere z is a new variable. This can always be done without altering
the meaning of the program. The rule for alloc shows that the allocated
address z is di�erent from the values of all other variables and the pointer

contained at address z is invalid. The e�ect of free is to set the deallocated
cell to undef. So free is treated very much like the assignment.

{ The rule for assignment is more involved than the usual Hoare logic rule.
This is because aliasing (in both sides of the assignment) has to be taken
into account. The de�nition of Q[[v2=v1]]VP can be found in Fig. 4. Roughly
speaking, Q[[v2=v1]]VP holds if Q holds when all occurrences of v1 (and its
initial aliases which are recorded in P) are replaced by v2. In all cases except
v 7! v0, the substitution [[v2=v1]]VP is propagated through the property and
applied to the variables which are aliases of v1. The fact that x and y are
aliases is expressed by P) (&x = &y) in our setting (see the rule for
id[[v2=v1]]VP for instance). The case for 7! is more involved because three
properties are checked in order to show that v 7! v0 holds after an assignment
v1 = v2:

(1) There is a path from ~v to ~v0.

(2) The path is not a�ected by the assignment.

(3) The assignment does not introduce any element of V on the path.

Properties (~v 7! ~v0) and (~v 7! w 7! ~v0) ensure (1) and the disjunction [8x 2
V; :::] establishes (3). Property (2) follows from:(~v = &v1) and :(w = &v1).
Due to our restriction on V, all assigned variables v1 belong to V; thus v1
cannot be on paths ~v 7! ~v0 or w 7! ~v0 except if ~v = &v1 or w = &v1. Since
these two cases are excluded, the assignment cannot have any e�ect on these
paths.

(Q1 ^Q2)[[v2=v1]]
V
P = (Q1[[v2=v1]]

V
P) ^ (Q2 [[v2=v1]]

V
P)

(Q1 _Q2)[[v2=v1]]
V
P = (Q1[[v2=v1]]

V
P) _ (Q2 [[v2=v1]]

V
P)

(:Q)[[v2=v1]]
V
P = :(Q[[v2=v1]]

V
P)

(v = v0)[[v2=v1]]
V
P = v[[v2=v1]]

V
P = v0[[v2=v1]]

V
P

(v 7! v0)[[v2=v1]]
V
P = [((~v 7! ~v0) ^ :(~v = &v1)) _ ((~v 7! w 7! ~v0) ^ :(~v = &v1) ^ :(w = &v1))]

^[8x 2 V; (:(~v 7! ~x) _ (~x = ~v0) _ :(~x 7! ~v0))]
with ~x = x[[v2=v1]]

V
P ; ~v = v[[v2=v1]]

V
P and ~v0 = v0[[v2=v1]]

V
P

True[[v2=v1]]
V
P = True

False[[v2=v1]]
V
P = False

&id[[v2=v1]]
V
P = &id

id[[v2=v1]]
V
P = v2 if P) (&id = &v1)
= id if P) :(&id = &v1)

�id[[v2=v1]]
V
P = v2 if P) (id[[v2=v1]]

V
P = &v1)

= �(id[[v2=v1]]
V
P) if P) :(id[[v2=v1]]

V
P = &v1)

undef[[v2=v1]]
V
P = undef

Fig.4. De�nition of substitution with aliasing

The following theorems establish the soundness of the inference system:

Theorem2.

if fPg S fQg can be proven using the rules of Fig. 3 then

8E ; 8SD: CV (P; E ; SD) and E `stat <S;SD>; S 0D0) CV(Q; E ; S 0D0)

Corollary3.

if fPg S fQg can be proven using the rules of Fig. 3 then

8E ; 8SD: CV(P; E ; SD)) E `stat <S;SD> 6; illegal:

Corollary 3 is a direct consequence of Theorem 2. It shows that the logic can be
used to detect illegal pointer dereferences. The proof of Theorem 2 is made by
induction on the form of S. The most di�cult part of the proof is the assignment
case which relies on the following lemma:

Lemma4.

CV (Q; E ; SD)
=) Val(v[[v2=v1]]

V
Q; E ; SD) = Val(v; E ; SD[Val(v2; E ; SD)=Adr(v1; E ; SD)])

Lemma 4 can be proven by inspection of the di�erent cases in the de�nition of
v[[v2=v1]]VP . The correctness of the dereference case (�id) follows from the lemma:

Lemma5.

CV(:(�v = undef); E ; SD)) Val(v; E ; SD) 2 D

More details about the proofs of properties stated in this paper can be found in
[13].

3 A Checking Algorithm

As a �rst stage to get an e�ective algorithm from the previous logic, we restrict
the set of properties which may appear as pre/post-conditions. For a given pro-
gram \Prog", let us call VarProg the set of variables1 occurring in Prog and their
su�xes (plus undef). For the analysis of Prog, we take VarProg as the reference
set and consider only the properties involving variables in VarProg. Proceeding
this way, we get a �nite set of properties tailored to the program to be analysed.

In order to avoid the need for the last two rules of Fig. 3 (disjunction and
weakening), we consider properties in atomic disjunctive normal form:

1 We remind the reader that we use the word \variable" to denote an identi�er of the
program possibly pre�xed by an access chain.

De�nition6. A property P is said to be in atomic disjunctive normal form
(adnf) if it is of the form

W
Pi where Pi = A1 ^ : : :^An, Ak being basic proper-

ties (x = y); (x 7! y) or negations of those, and each Pi is such that:

8x; y 2 VarProg either Pi j) x = y or Pi j) :(x = y)
either Pi j) x 7! y or Pi j) :(x 7! y)

with j) de�ned as follows:

P j) P P1 ^ P2 j) P1 P1 ^P2 j) P2

The intuition is that a property in atomic disjunctive normal form records
explicitly all basic properties for all possible memory states. As a consequence,
implication boils down to the extraction of subproperties.

As usual when designing an algorithm from an inference system, we are facing
a choice concerning the direction of the analysis. It can be top-down and return
the post-condition from the pre-condition or bottom-up, and do the opposite.
Here, we present the �rst option. The algorithm takes the form of an inference
system whose rules are to be applied in order of appearance (see Fig. 5). It
can be seen as a set of rules showing how to compute a post-condition from
a pre-condition and a program. The main di�erences with respect to the logic
presented in the previous section concern the rules for if, while and assignment.
The rule for if avoids the need for the weakening rule. The post-condition is the
disjunction of the post-conditions of the alternatives.

The rule for while implements an iterative algorithm akin to traditional
data-ow algorithms [1]. The iteration must converge because the sequence Qi

is strictly increasing:
Qi�1 j) Qi Qi 6j) Qi�1

and the set of properties under consideration is �nite.
The rule for assignment statements is by far the most complex. The anal-

yser deals with properties of the form
W
Pi(adnf's). The rule for each Pi in the

axiomatics is

fPig v1 fPig fPig v2 fPig Pi) Qi[[v2=v1]]
V
Pi

fPig v1=v2 fQig

So, given Pi, the analyser has to compute a post-condition Qi such that Pi)
Qi[[v2=v1]]VPi ; this is the rôle of the function Assignv1v2 (cf. Fig. 6). Furthermore,
Pi is of the form A1 ^ : : :^ An (Ak being basic properties (x = y); (x 7! y) or
negations of those). The function Producev1v2 (Fig. 6) determines properties Bk

such that Ak) Bk[[v2=v1]]VPi . By de�nition of substitution, we have Pi) (B1 ^

: : :^Bn)[[v2=v1]]VPi and the needed post-condition Qi is therefore B1 ^ : : :^Bn.
The central task ofProducev1v2 is to �nd, for each variable x of VarProg, variables

x0 such that x0[[v2=v1]]
V
Pi

= x. Two (non exclusive) cases arise:

{ x is a VarProg variable which is una�ected by the assignment (not inA�ectedv1)
and x[[v2=v1]]

V
Pi

= x.

fPg E fP 0g fP 0 ^ Eg S1 fQ1g fP 0 ^ !Eg S2 fQ2g

fPg if (E) S1 elseS2 fQ1 _ Q2g

P0 = P
fP0g E fQ0g

fQ0 ^ Eg S fP1g

i 2 1; n fPi _ Pi�1g E fQig

fQi ^ Eg S fPi+1g
Qi 6j) Qi�1

fPn _ Pn�1g E fQng
Qn j) Qn�1

fPg while (E) S fQn ^ !Eg

fPg S1 fP
0g fP 0g S2 fQg

fPg S1 ;S2 fQg

fPg v1 fPg fPg v2 fPg

fPg v1=v2 f

n_

i=1

Assign
v1
v2
(Pi)g

with P =

n_

i=1

Pi

fPg free(v) f

n_

i=1

Assign
�v

undef (Pi)g with P =

n_

i=1

Pi

fPg E fPg with E=id, &id

fPg � id fPg if 8i = 1; : : : ; n Pi j) :(�id = undef) with P =

n_

i=1

Pi

fPg z = alloc(T) fAlloc(P; z)g

Fig.5. Rules of the analyzer

{ x = �iv2 (i = 0 or i = 1): x may be the result of the substitution of several
variables. Prior to Producev1v2 , the analyser computes the set Subst0 (resp.
Subst1) of VarProg variables x0 such that x0[[v2=v1]]

V
Pi

= v2 (resp. �v2). So,

when x = �iv2 we have x0[[v2=v1]]VPi = x for all x0 in Substi.

From there, basic properties can be rewritten in the form (x0 op y0)[[v2=v1]]VPi.

For example, let A = x op y with x not in A�ectedv1 and y = �iv2 then

x[[v2=v1]]
V
Pi

= x and 8v 2 Substi v[[v2=v1]]
V
Pi

= y

so, by de�nition of substitution, A)
V
v2Substi(x op v)[[v2=v1]]VPi. When op =

" 7! " or ": 7! " we also have to check that Pi j) :(x = &v1) to be able to
apply the de�nition of substitution (see Fig. 4). The three other cases in the
de�nition of Producev1v2(x op y) are similar. Note that basic properties involving
a variable a�ected by the assignment and di�erent from �iv2 are removed (i.e.
True is produced).

It can be shown that Producev1v2 yields a post-condition in adnf provided
the pre-condition is in adnf and �v2 is in VarProg. Otherwise, �v2 must �rst be

Assign
v1
v2
(P) = if �v2 62 VarProg

then Produce
v1
v2
(Complete�v2

(P))

else Produce
v1
v2
(P)

Produce
v1
v2
(P) = ProdP (P)

where

ProdP (P1 _ P2) = ProdP (P1) _ ProdP (P2)
ProdP (P1 ^ P2) = ProdP (P1) ^ ProdP (P2)
ProdP (x op y) = if op 2 f7!;: 7!g and P j) x = &v1 then True

else
^

v;v02(Substi;Substj)i;j2f0;1g

f (v op v0) if x = �iv2 ^ y = �jv2 otherwise True
(x op v) if y = �jv2 ^ x 2 VarProg � A�ectedv1 otherwise True

(v op y) if x = �iv2 ^ y 2 VarProg �A�ectedv1
otherwise True

(x op y) if x 2 VarProg �A�ectedv1
^ y 2 VarProg � A�ectedv1

otherwise True g
A�ectedv1 = fx 2 VarProg j 9y su�x of x; P j) y = &v1g
Substi = fx 2 A�ectedv1

j P j) x[[v2=v1]]
V
P = �iv2g i = 0 or i = 1

op 2 f=;: =; 7!;: 7!g

Complete�x(P) = if P j) (x = undef) then Closure(P ^ (�x = undef))
elseif P j) (x 7! y) ^ (&y = x) then Closure(P ^ (�x = y))
elseif P j) (x 7! y) then Closure(P ^ (�x = y)) _ Insert(P; �x; y)

else Add(P;�x)

Fig.6. Functions for the assignment rule

added to the pre-condition using the function Complete. The consequences of our
restriction to the �xed set of variables VarProg are to be found in this function.
Complete�v2 relies on connectivity relations (such as v2 7! x) but nevertheless
has to introduce disjunctions to deal with the lack of information on �v2. The
functions in Fig. 7 are used to normalise properties in adnf's with respect to the
extended set of variables.

Let us consider the following pre-condition:
P = (y 7! �y) ^ (x 7! z) ^:(x = y) ^:(x = �y) ^ :(z = y) ^ :(z = �y) ^ : : :
and the assignment y = x. The post-condition is computed by Assignyx(P). From
the de�nitions in Fig. 6, we get:

A�ectedy = fy; �yg (set of variables with a su�x alias of y)
Subst0 = fyg (set of variables equated to x by substitution)
Subst1 = f�yg (set of variables equated to �x by substitution)

Let us assume that the variable �x is not in VarProg; Produceyx cannot build any
property on �y from P (since �y[[x=y]]VP = �x). The variable �x must be added
to P using Complete�x(P). Since P j) (x 7! z), we have Complete�x(P)=
Closure(P ^ (�x = z)) _ Insert(P; �x; z). The disjunction is necessary because
the length of the path between x and z is unknown, so �x may either be equal to
z or stand on the path between x and z. Closure(P ^ (�x = z)) adds all missing
properties of �x (identical to properties of z) and yields an adnf. Insert(P; �x; z)
adds the property (�x 7! z). It is more involved because other variables pointing

Closure(P) is de�ned as the normal form of the � relation de�ned as follows:

P 0 ^ (a op b) ^ (a = a0) ^ (b = b0) � P ^ (a0 op b0)

Insert(P;�x; y) = NF�x1 (Closure(Replace(Mk-node(P;�x),x 7! y;�x 7! y)))

with:

Mk-node(P;�x)=P ^ (x 7! �x) ^ (�x = �x) ^
^

z2P

(:(�x = z))

Replace(P ^ p1; p1; p2)=P ^ p2 ^ :p1

NF�x1 normal form of the ��x1 relation de�ned as follows:

P = P 0 ^ (a 7! b) ^ :(b = c) ��x1 P ^ :(a 7! c)

P = P 0 ^ (�x 7! a) ^ (b 7! a) ^ :(b = �x) ^ :(b = x) ��x1 P _ Replace(P; b 7! a; b 7! �x)

P = P 0 ^ (�x 7! a) ^ :(b 7! a) ^ :(b = x) ��x1 P ^ :(b 7! �x)

Add(P;�x) = NF�x2 (End(Closure(Mk-node(P;�x)),�x))

with:

End(P;�x)=P ^

^

z2P

(:(�x 7! z))

NF�x2 normal form of the ��x2 relation de�ned as follows:

P ��x2 (P ^ :(b 7! �x)) _ (P ^ (b 7! �x)) if b 2 fv 2 Var(P) j6 9wP j) (v 7! w)g

P = P 0 ^ (a 7! b) ^ :(b = �x) ��x2 P ^ :(a 7! �x)

Fig.7. Normalisation functions for the assignment rule

Alloc(P; z) = Closure(P^ (z 7! �z) ^ (�z 7! undef) ^
^

v2P

(:(v 7! z))

^
^

v2P�fzg

(:(z = v) ^ :(v 7! �z))

^
^

v2P�f�zg

(:(�z = v) ^ :(z 7! v))

^

^

v 2 P

P j) :(v = undef)

(:(�z 7! v)))

Fig.8. Functions for the \alloc" rule

to z may interfere. If P implies (v 7! z), sharing may occur between paths from
v to z and x to z. In particular, if v and x point to cells having the same value
(i.e. �x = �v) then (v 7! z) must be split into (v 7! �x)^ (�x 7! z). This is done
by the second rule of NF�x1 in Fig. 7.
After this step, Produceyx evaluates the post-condition in a natural way, and we
get:
Assignyx(P) = [(x = y) ^ (�y = z) ^ (x 7! z) ^ (y 7! �y) ^ (y 7! z) ^ : : :]

_[(x = y) ^ (x 7! �y) ^ (�y 7! z) ^ (y 7! �y) ^:(y 7! z) : : :]

The following theorems establish the correctness of the analyser.

Theorem7.

If P is in adnf and fPg S fQg can be proven using
the inference system of Fig. 5 then Q is in adnf.

Theorem8.

If fPg S fQg can be proven using the inference system of Fig. 5 then
fPg S fQg can be proven using the inference system of Fig. 3.

Theorem 7 shows that the atomic disjunctive normal form representation is
invariant which is crucial to prove the soundness of the algorithm. The proof of
theorem 8 is made by induction on the structure of proof of the premise [13].
The di�cult part is the rule for assignment which follows from the lemma:

Lemma9. P) Assignv1v2(P)[[v2=v1]]
V
P

4 Conclusion

The work described in this paper stands at the crossroad of three main trends
of activities:

{ the design of semantic based debugging tools,
{ alias analysis,
{ the axiomatisation of languages with explicit pointer manipulation.

We sketch related work in each of these areas in turn.

{ There are relatively few papers about the design of program analysers to help
in the program development process. Most related contributions [5, 12, 15,
23] and tools [19] can provide information about uninitialised variables but
are unable to track illegal accesses in recursive data structures. Other tech-
niques like [14, 18] perform di�erent kinds of analyses (like aspects, program
slicing) which are complementary to the work described here.

{ There is an extensive body of literature on alias analysis but most of the con-
tributions are concerned with may-alias analysis and are targeted towards
compiler optimisations [10, 11]. The alias pairs (x; y) of [10] correspond to
&x = &y here and the x points-to y relationship of [11] is equivalent to
x = &y. One of the most precise published alias analysis is the framework
described in [10]. Our analysis is not directly comparable to this one in terms
of precision: on one hand, the symbolic access paths used in [10] provide a
much more accurate may-alias information (because numerical coe�cients
are used to record precise positions in a structure); on the other hand, our
properties include both may-alias and must-alias information which allows
us to gain accuracy in certain situations (the signi�cance of must-alias prop-
erties to get more accurate may-alias properties is stressed in [2]). This extra
level of precision is required to the analysis of correctness-related properties.

{ Axiomatisation of pointer and alias relations has been studied for Pascal
(see e.g. [6, 7, 21]). Most contributions in this area focus on generality and
completeness issues and do not consider automatisation. An exception is the
work by Luckham and Suzuki [20] which presents an axiom-based veri�er
for Pascal programs. The language of properties encompasses ours but is too
rich to make the analysis fully automatic. The veri�er (actually a theorem
prover) depends heavily on user-supplied properties such as loop invariants.

The work whose spirit is the closest to our approach is the analysis framework
presented in [22]. Environments are described as sets of assertions speci�ed as
Horn clauses. They de�ne optimal analyses which exploit all the information
available. Our = relation is close to their universal static predicate eq8 but they
do not have a counterpart for our 7! relation (because they do not attempt to
track pointer equality in recursively de�ned structures, which is the main issue
of this paper) and they do not consider disjunctive properties. Also they do not
study the link of the analysis with an operational semantics of the language (or,
to be more precise, the semantics of their language is expressed logically in terms
of predicate transformers).

The approach followed in this paper does not stand at the same level as usual
presentations of static analyses. Our starting point, the axiomatics of Fig. 3, is
a speci�cation of the property under consideration which is not biased towards
a speci�c analysis technique. Programs are associated with pre/post-conditions
relations but no transformation function is provided to compute one from the
other; in fact, even the direction in which proofs are to be carried out is left
unspeci�ed. The main goal of the transformation leading to the system of Fig. 5 is
precisely to introduce a direction for the analysis and to derive transfer functions
from the pre/post-conditions relations2. We have presented a forward analysis
here but we could as well have chosen the derivation of a backward analyser.
The analyser of Fig. 5 itself can be rephrased as an abstract interpretation of
the operational semantics. The abstract domain is the disjunctive completion of
a lattice of matrices (associating each pair (v1; v2) with truth values of the basic
relations = and 7!). This domain has some similarities with the path matrices
used in [17] for the analysis of a restricted form of regular acyclic structures. The
abstraction and concretisation functions follow directly from the correspondence
relation of Fig. 1. Instead of a correctness proof of the analyser with respect to
the axiomatics as suggested here, the soundness of the analysis would then be
shown as a consequence of the soundness of the abstract interpretation of the
basic rules with respect to the operational semantics (see [9] for an illustration
of this approach). Again, the most di�cult rule is the assignment. It is not
clear whether the overall e�ort would be less important but the formulation in
terms of abstract interpretation would make it easier to show the optimality
of the analyser (in terms of precision) [8]. Also, the approximation techniques
studied in this framework can be applied to get more e�cient analysers. So,
the two approaches are complementary: we have focussed in this paper on the

2 In fact, the transformation also performs an approximation, mapping the set of
variables into a �nite subset, but this issue could have been dealt with separately.

derivation of an analysis from the axiomatisation of a property, emphasizing
a clear separation between logical and algorithmic concerns. Hoare logic is an
ideal formalism at this level because it makes it possible to leave unspeci�ed
all the details which are not logically relevant. On the other hand, abstract
interpretation is a convenient framework for describing analyses themselves as
well as studying approximation and algorithmic issues.

The algorithm presented in section 3 is only a �rst step towards the design
of an e�ective analyser. Its worst case complexity is clearly exponential in terms
of the number of variables in the program. The main source of ine�ciency is
the use of disjunctions to represent the lack of information incurred when deref-
erencing a variable v when �v 62 VarProg. We are currently investigating several
complementary optimisations to improve the situation:

{ Approximating properties to reduce the size of the abstract domain and the
complexity of the primitive operations on properties. One solution leads to
a representation of properties as matrices of a three values domain (instead
of sets of matrices of a boolean domain as suggested in this paper).

{ Computing only the necessary part of each property using a form of lazy
type inference [16].

{ Using (standard) types to �lter properties which cannot be true. Exploiting
this extra information usually reduces dramatically the size of the properties
manipulated by the algorithm.

We are also studying the use of the pointer analysis described here to enhance
the information ow analysis proposed in [4]. Other applications of this anal-
ysis include the detection of unsafe programming styles (which rely on speci�c
implementation choices like the order of evaluation of subexpressions) or mem-
ory leaks. A di�erent perspective of this work could be its use as a specialised
interactive theorem prover for a restricted form of Hoare logic.

Due to space limitations, we considered only a kernel programming language
in this paper. The interested reader can �nd in [13] the treatment of a number of
extensions (procedures, goto, pointer variable declarations) and the presentation
of a reasonably complex program involving the construction and destruction of
a circular list.

References

1. A. Aho, R. Sethi and J. D. Ullman, Compilers: Principles, Techniques and Tools, Addison-
Wesley publishing company, 1988.

2. R. Altucher and W. Landi, An extended form of must-alias analysis for dynamic allocation,
in 22nd Annual ACM Symp. on Principles of Programming Languages POPL'95, Jan. 1995,
pp.74-85.

3. L. Andersen, Program analysis and specialisation for the C programming language, Ph.D
Thesis, DIKU, University of Copenhagen, May 1994.

4. J.-P. Banâtre, C. Bryce, D. Le M�etayer, Compile-time detection of information ow in se-

quential programs, proc. European Symposium on Research in Computer Security, Springer
Verlag, LNCS 875, pp. 55-74.

5. J.F. Bergeretti and B. Carr�e, Information-ow and data-ow analysis of while-programs, in
ACM Transactions on Programming Languages and Systems,Vol. 7, No. 1, Jan. 85, pp. 37-61.

6. A. Bijlsma, Calculating with pointers, in Science of Computer Programming 12 (1989) 191-
205, North-Holland.

7. R. Cartwright and D. Oppen, The logic of aliasing, in Acta Informatica 15, 365-384, 1981
ACM TOPLAS, Vol. 7, 1985, pp. 299-310.

8. P. Cousot and R. Cousot, Systematic design of program analysis frameworks, in 6th Annual
ACM Symp. on Principles of Programming Languages POPL'79, Jan. 79, pp. 269-282.

9. A. Deutsch, A storeless model of aliasing and its abstraction using �nite representations of

right-regular equivalence relations, in Proc. of the IEEE 1992 Conf. on Computer Languages,
Apr. 92, pp. 2-13.

10. A. Deutsch, Interprocedural may-alias analysis for pointers: Beyond k-limiting, in SIG-
PLAN'94 Conf. on Programming Language Design and Implementation PLDI'94, Jun. 1994,
pp. 230-241.

11. M. Emami, R. Ghiya and L. Hendren, Context-sensitive interprocedural points-to analysis in
the presence of function pointers, in SIGPLAN'94 Conf. on Programming Language Design
and Implementation PLDI'94, Jun. 1994, pp. 242-256.

12. D. Evans, Using speci�cations to check source code, in Technical Report, MIT Lab for com-
puter science, Jun. 1994.

13. P. Fradet, R. Gaugne and D. Le M�etayer, An inference algorithm for the static veri�cation

of pointer manipulation, IRISA Research Report 980, 1996.
14. J. Field, G. Ramalingam and F. Tip, Parametric program slicing, in 22th Annual ACM Symp.

on Principles of Programming Languages POPL'95, Jan. 95, pp. 379-392.
15. L. Fosdick and L. Osterweil, Data ow analysis in software reliability, ACM Computing

surveys, 8(3), Sept. 1976.
16. C. L. Hankin, D. Le M�etayer, Deriving algorithms from type inference systems: Application

to strictness analysis, proc. ACM Symposium on Principles of Programming Languages, 1994,
pp. 202-212, Jan. 1994.

17. L. Hendren and A. Nicolau, Parallelizing programs with recursive data structures, in IEEE
Transactions on Parallel and Distributed Systems, Jan. 90, Vol. 1(1), pp. 35-47.

18. D. Jackson, Aspect: an economical bug-detector, in Proceedings of 13th International Confer-
ence on Software Engineering, May 1994, pp. 13-22.

19. S. Johnson, Lint, a C program checker, Computer Science technical report, Bell Laboratories,
Murray Hill, NH, July 1978.

20. D. Luckham and N. Suzuki, Veri�cation of array, record, and pointer operations in Pascal,
in ACM Transactions on Programming Languages and Systems, Vol. 1, No.2, Oct. 1979, pp.
226-244.

21. J. Morris, A general axiom of assignment and Assignment and linked data structures, in
Theoretical Foundations of Programming Methodology, M. Broy and G. Schmidt (eds), pp.
25-41, 1982.

22. S. Sagiv, N. Francez, M. Rodeh and R. Wilhelm, A logic-based approach to data ow analy-

sis problems, in Programming Language Implementation and Logic Programming PLILP'90,
LNCS 456, pp. 277-292, 1990.

23. R. Strom and D. Yellin, Extending typestate checking using conditional liveness analysis, in
IEEE Transactions on Software Engineering, Vol. 19, No 5, May. 93, pp. 478-485.

Appendix

pgm ::= stmt
stmt ::= if (exp) stmt else stmt If-else

j while (exp) stmt While loop
j stmt ; stmt Sequence
j lexp = exp Assignment
j free (lexp) Runtime deallocation

exp ::= id Variable (id 2 Id)
j �id Pointer dereference
j &id Address operator
j alloc (type) Runtime allocation

lexp ::= id

j �id

Fig.9. Abstract syntax of a subset of C

[if-true]
E `exp <E;SD> ; <b;S0

D0
> E `stat <S1;S

0
D0
>; S00

D00
b 6= 0

E `stat <if (E) S1 elseS2;SD>; S00
D00

[if-false]
E `exp <E; SD> ; <b;S0

D0
> E `stat <S2;S

0
D0
>; S00

D00
b = 0

E `stat <if (E) S1 elseS2;SD>; S00
D00

[while-true]
E `exp <E;SD>; <b;S0

D0
> E `stat <S; while (E) S;S

0
D0
>; S00

D00
b 6= 0

E `stat <while (E) S;SD> ; S00
D00

[while-false]
E `exp <E;SD> ; <b;S0

D0
> b = 0

E `stat <while (E) S;SD>; S0
D0

[seq]
E `stat <S1;SD>; S0

D0
E `stat <S2;S

0
D0
> ; S00

D00

E `stat <S1 ;S2;SD>; S00
D00

[assign]
E `lexp <v1;SD>; <a1;S

0
D0
> E `exp <v2;S

0
D0
> ; <val2; S

00
D00

>

E `stat <v1 = v2;SD>; S00
D00

[val2=a1]

[free]
E `exp <v;SD>; <a;SD>

E `stat <free(v);SD> ; SD0
a 2 D; D0 = D � fag

[illegal] E `stat <S; SD> ; illegal otherwise (access to a 62 D)

De�nition of `exp

[var] E `exp <id;SD> ; <SD (E(id));SD> E(id) 2 D

[indr]
E `exp <id;SD> ; <a;S0

D0
>

E `exp < � id;SD>; <S0
D0

(a);S0
D0
>

a 2 D0

[address]
E `lexp <id; SD>; <a;S0

D0
>

E `exp <&id;SD>; <a;S0
D0
>

[alloc] E `exp <alloc(T);SD> ; <a; S0
D0
> a 62 D; D0 = D + fag; S0

D0
= SD + fa ! ?g

[illegal] E `exp <E;SD>; <?; illegal> otherwise (access to a 62 D)

De�nition of `lexp

[var] E `lexp <id;SD>; <E(id);SD>

[indr]
E `exp <id; SD> ; <a;S0

D0
>

E `lexp < � id;SD>; <a;S0
D0
>

SD : (D ! Val) + fillegalg, E : Id ! Adr,
D �Adr, Val = Base+Adr, Base = Bool+Int+: : :
id 2 Id, a 2 Adr, val 2 Val

Fig.10. Dynamic semantics for statements and expressions

