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Abstract
Dataflow models, such as SDF, have been effectively used to pro-
gram streaming applications while ensuring their liveness and
boundedness. Yet, industrials are struggling to design the next gen-
eration of high definition video applications using these models.
Such applications demand new features such as parameters to ex-
press dynamic input/output rate and topology modifications. Their
implementation on modern many-core platforms is a major chal-
lenge.

We tackle these problems by proposing a generic and flexible
framework to schedule streaming applications designed in a para-
metric dataflow model of computation. We generate parallel as
soon as possible (ASAP) schedules targeted to the new STHORM
many-core platform of STMicroelectronics. Furthermore, these
schedules can be customized using user-defined ordering and re-
source constraints.

The parametric dataflow graph is associated with generic or
user-defined specific constraints aimed at minimizing timing,
buffer sizes, power consumption, or other criteria. The scheduling
algorithm executes with minimal overhead and can be adapted to
different scheduling policies just by adding some constraints. The
safety of both the dataflow graph and constraints can be checked
statically and all schedules are guaranteed to be bounded and dead-
lock free. We illustrate the scheduling capabilities of our approach
using a real world application: the VC-1 video decoder for high
definition video streaming.

Categories and Subject Descriptors D.3.2 [Language Classi-
fications]: Data-flow languages; D.4.1 [Process Management]:
Scheduling; D.2.4 [Software/Program Verification]: Formal meth-
ods

General Terms Algorithms, Languages, Verification

Keywords Dataflow, Manycore, Scheduling, Liveness, Bounded-
ness
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1. Introduction
Dataflow models of computation, such as SDF [13], provide anal-
yses to guarantee the boundedness and liveness of an application.
However, they generally lack the expressivity needed by modern
streaming applications such as next generation video codecs. Para-
metric dataflow models such as PSDF [6], VRDF [22], SADF [21],
SPDF [8] or BPDF [3] allow more dynamicity while preserving
liveness and boundedness guarantees.

The target for streaming applications is often modern embed-
ded platforms which typically use many-core architectures with
network-on-chip interconnection. Yet, the parallel implementation
of parametric dataflow applications on such platforms remains a
major challenge.

In this paper, we propose a framework for effectively producing
parallel schedules for the next generation of streaming applications.
We consider Boolean Parametric Data Flow (BPDF) [3] model of
computation and the STHORM (formerly, P2012) [4] many-core
platform by STMicroelectronics. BPDF is a very expressive para-
metric dataflow model that combines integer and boolean parame-
ters allowing dynamic data rates and graph topology changes while
providing static guarantees. STHORM is a leading-edge, cluster-
based, many-core architecture, designed to support the future high
definition video and augmented reality embedded applications.

We focus on the parallel scheduling of applications expressed as
BPDF graphs. A BPDF graph consists of actors linked by dataflow
edges (FIFOs), each actor producing a parametric number of to-
kens. Each edge may also have a boolean guard that enables or
disables the edge at runtime. We consider coarse-grain BPDF ap-
plications, where actors are large blocks of C code, typically video
codec filters. High-definition video codecs require very fast execu-
tion times, for this reason each actor is implemented as a hardware
processing element or executes as software on a dedicated core.

We rely on a slotted scheduling model compatible with
STHORM, such that, in each slot, several actors are scheduled to
execute. Since each actor is a separate processing element, their
execution can proceed concurrently. When all fired actors have ter-
minated, new actors can then be scheduled in the next slot. This
scheduling scheme is general enough and it can be used by other
many-core platforms. This slotted scheduling contrasts with other
existing multi-processor scheduling methods where the execution
time of each actor plays a central role to determine the shortest
schedule.

In applications such as video decoding, the complexity of filters
depends on data and precise timing information cannot be known
statically. In such a context, an ASAP execution of the available
tasks is the best strategy[20]. When precise timing information



is available, slotted scheduling should strive to minimize slack
between slots. Techniques such as retiming [15] can be used for
that purpose.

Our scheduling procedure starts by deriving from the graph a set
of graph constraints representing data dependencies. They express
the partial ordering of the firings of the actors.

Additional ordering constraints can be added to tune the
scheduling policy. For instance, constraints can be used to enforce
properties inherent to the execution platform or optimize various
criteria, such as buffer size or power consumption. Furthermore, it
can be checked that these constraints preserve liveness.

Along with ordering constraints, our framework also supports
resource constraints. These constraints filter the fireable actors at
each slot to accommodate physical mapping on the platform or
to take into account timing and power consumption. Resource
constraints are expressed as a set of rules that regulate the parallel
execution of actors.

In many cases, constraints can be statically simplified and
scheduling entails only a minimal dynamic overhead. The schedul-
ing algorithm finds, at each slot, the set of actors whose constraints
are satisfied and can thus be fired. This amounts to an ASAP quasi-
static slotted schedule. Static analyses guarantee that it exists and
that it is bounded. The scheduler is executed in parallel with the
previously issued actors so the overhead remains minimal.

Constraints make the approach flexible since the same schedul-
ing algorithm can take into account a new platform or new opti-
mization criteria just by modifying the set of constraints. Our ap-
proach focuses on flexibility, enabling easy manipulation and fine-
tuning of the schedule for various platforms and optimizing criteria.
In summary, our contributions consist in

• a flexible framework to schedule parametric dataflow applica-
tions on many-core platforms;
• several kinds of constraints (ordering and resource constraints)

to specify optimized and tailor-made scheduling policies;
• a correct-by-construction approach that guarantees bounded

and deadlock free schedules.

The paper is organized as follows. In Section 2, we introduce
the technical context, namely BPDF and STHORM. In Section 3,
we present the scheduling framework composed of different kinds
of constraints and a simple ASAP scheduler. In Section 4, we illus-
trate our approach using the well-known VC-1 video codec [14].
Section 5 compares our approach to related work. Finally, Sec-
tion 6 summarizes our contribution and hints at future research di-
rections.

2. Background and Context
Our scheduling technique considers the recent Boolean Parametric
Data Flow (BPDF) model [3] and a modern many-core platform
(STHORM) [4].

2.1 Boolean Parametric Data Flow Model
BPDF can be described as a parametric extension of the SDF
(Synchronous Data-Flow) model [13] that also allows dynamic
changes of the topology. In SDF, an application is defined as a
directed graph of actors. Each actor represents a functional unit
and has ports connected by edges implemented as FIFO channels.
Each time an actor executes (fires), it consumes data tokens from
its incoming edges (its inputs) and produces data tokens on its
outgoing edges (its outputs). The number of tokens produced and
consumed are specified by rates associated with each port. In SDF,
all rates are constant and known at compile time.
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Figure 1. A consistent SDF graph

The state of an SDF graph is the number of tokens stored at
each edge at a given instant. An edge can have zero or more tokens
at any instant. The initial tokens at each edge specify the initial state
of the graph.

A major advantage of SDF is that, if it exists, a bounded sched-
ule can be found statically. Such a schedule ensures that each actor
is eventually fired (ensuring liveness) and that the graph returns to
its initial state after a certain sequence of firings (ensuring bound-
edness of the FIFOs). Such sequence is called an iteration, obtained
by solving the so-called system of balance equations. This system
is made of one equation per edge (X1, X2) of the form

#X1 · r1 = #X2 · r2 (1)

where #X1 and #X2 indicate the number of firings of actors X1

and X2 for one iteration and r1 and r2 the rates of the equivalent
ports.

A graph is consistent if its system of balance equations has non-
trivial solutions. The repetition vector is the minimal solution of
the balance equations. That vector represent the number of firings
of each actor per iteration.

A simple SDF graph is shown in Fig. 1. The graph is consistent,
has the repetition vector [A2B3 C1] and the initial state [0 0 2] for
edges (A,B), (B,C) and (C,A) respectively. A sample schedule
for an iteration is: A B A B B C.

BPDF extends SDF by allowing rates to be parametric and
edges to be annotated with a boolean condition. BPDF port rates
are products of positive integers (k) or symbolic variables (p). They
are defined by the grammar:
R ::= k | p | R1 · R2 where k ∈ N∗ and p ∈ Pi

with the set of symbolic variables Pi denotes the integer parame-
ters.

Each BPDF edge is annotated by a boolean condition which
deactivate the edge when it evaluates to false . These boolean ex-
pressions are defined by the grammar:

B ::= true | false | b | ¬B | B1 ∧ B2 | B1 ∨ B2

where b belongs to the set of symbolic variables Pb denoting
boolean parameters.

Unlike the rates of SDF graphs that are fixed at compile time,
the parametric rates of a BPDF graph can change dynamically
between iterations. This change can be performed by a single actor
or a centralized scheduler. Moreover, each boolean parameter is
modified by a single actor called its modifier. A modifier may
change a boolean parameter within an iteration using the annotation
b@α where b is the boolean parameter to be set and α is the writing
period. The period of a boolean parameter b is the exact (possibly
symbolic) number of firings of its modifier between two changes.
Depending on the graph (rates, modifiers, users, ...) some writing
periods are invalid. BPDF checks that periods are safe i.e., that the
graph returns to its initial state after each iteration.

The actors that have a boolean parameter on any of their edges
are called users of that parameter. Users read new parameter values
periodically. This period is measured in number of firings of the
user and is called reading period. It is easily computed from the
writing period and the number of firings of the user and modifier.



The number of different values produced for a parameter is called
its frequency. BPDF guarantees that the users will use properly all
the produced boolean values within an iteration.

Intuitively, a BPDF actor reads and/or writes boolean parame-
ters at specific periods. When it fires, it first evaluates the condition
of its edges according to the current value of the boolean param-
eters. Then, it produces (resp. consumes) tokens on its outgoing
(resp. incoming) edges that are annotated by a true condition only.
It implies that a completely disconnected actor, i.e., whose edges
are all annotated by false , fires (at least conceptually) but does not
read nor write any channel except for reading or writing boolean
parameters.

Figure 2 shows a simple BPDF graph where actors have con-
stant or parametric rates (e.g., p for the output rate of A). Omitted
rates and conditions equal to 1 and true respectively. The symbolic
solution of the balance equations gives a repetition vector which
can be noted as [A2B2p CpD2pE2p]. The actor B is the modifier
of b with a writing period of 2. The actors (C,D,E) are users of b.
Intuitively, the writing period of b is safe because the global itera-
tion can be seen as A2Sp where S is the sub-iteration B2CD2E2.
The modifier (resp. the users) writes (respṙead) b at each such sub-
iteration i.e., after each 2 firings for B D E and after each firing
for C. Note that a period of p would have been safe whereas 1 or 3
would have been invalid

The edges (B,D), (B,C) and (C,E) are conditional. They are
present only when their condition (here b or ¬b) is true . A sample
iteration of the graph is the following. First, p is set and sent to
users; A fires and produces p tokens on edge (A,B). Then B fires
and starts by setting the value of the boolean parameter b.

• If b is true, B produces one token on (B,C) and does not
produce tokens on (B,D). As the edge is disabled, D fires
twice without consuming tokens and producing 2 on (D,E).
Actor B fires a second time without changing the value of
b enabling C to fire once and producing 2 token on (C,E).
Finally, E can fire twice to consume the tokens produced by C
and D.
• If b is false, C is disconnected and it will fire once without

producing or consuming tokens. B will fire twice producing 2
tokens on (B,D) that will be consumed by two firings of D.
The actor E will fire twice to consume the tokens produced by
D since the edge (C,E) is disabled.

This sub-iteration continues until each actor has fired a number of
times equal to its repetition count (as in SDF).
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Figure 2. A simple BPDF graph with integer parameter p and
boolean parameter b

BPDF combines parametric rates and frequent topology recon-
figurations as no other dataflow model. This makes its scheduling
on many-core platforms quite challenging. We show in the next
sections that our scheduling framework is expressive and flexible
enough to produce various parallel schedules for BPDF applica-
tions.

2.2 The STHORM Platform
The platform we target is STHORM by STMicroelectronics [4],
which is representative of a modern many-core platform. It is com-
posed of a set of clusters (currently up to 32) in a GALS design and
connected with an asynchronous Network-on-Chip.

Each cluster contains up to 16 software processing elements
(SWPE), as a general purpose RISC Processor, and a set of ded-
icated hardware processing elements (HWPE). In our implementa-
tion, each BPDF actor is implemented in a separate (hardware or
software) processing element and the execution of the application
(i.e., the scheduling of the BPDF graph) is controlled by a proces-
sor.

Moreover, STHORM includes a native programming model that
simplifies the parallel implementation of streaming applications.
This programming model uses filters to implement applications. A
filter can be:

• A primitive filter which applies a well defined function to a set
of input data in order to produce a set of output data. It is the
building block of STHORM’s native programming model. We
implement BPDF actors as primitive filters. A filter can execute
on a HWPE or a SWPE.
• A controller which schedules the firing of the filters and con-

trols configuration parameters for each filter.

We focus on the generation of the controller that controls the
execution of each BPDF actor.

The native programming model uses the notion of slots to
schedule the firing of the filters. At the beginning of a slot, the con-
troller selects several filters to be fired, and their execution takes
place concurrently. When all previous executions are completed,
the next slot starts. The controller can execute concurrently with
the filters and therefore the hardware pipeline is not slowed down
by the controller.

We produce slotted schedules which can be directly imple-
mented using this model. We believe that such a scheduling model
can also be used by other state-of-the-art many-core platforms.
For instance, modern Graphical Processing Units (GPUs) support a
similar execution model. In mainstream GPU programming models
such as CUDA [17] and OpenCL [16], the host processor, equiva-
lent to the controller of STHORM, creates a task group, loads it on
the GPU, and get the results when the latter has finished execution.
In parallel with the execution of the task group, the host processor
may determine tasks to be executed next.

Although, we rely on the STHORM platform, our scheduling
framework can easily adapt to produce non slotted schedules as
discussed in Sec. 3.4. Moreover, we assume that each actor is
mapped on a separate processing element but the framework can
handle any other kind of static assignment, where actors may share
resources as shown in Sec. 3.2.

3. Scheduling Framework
Our scheduling framework takes as input an application (speci-
fied as a BPDF graph) and a set of user-defined constraints, and
produces the ASAP slotted schedule meeting the constraints. An
overview of the scheduling framework is presented in Fig. 3.

The constraints belong to two distinct types: Ordering con-
straints that restrict individual actor firings, and resource con-
straints that control parallel execution (e.g., limiting the level of
parallelism). The two types of constraints are presented in detail in
Sec. 3.1 and 3.2.

Ordering constraints can derive either from the application ex-
pressing the data dependencies of the dataflow graph, or from the
user expressing platform specificities or optimizing some crite-
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Figure 3. Scheduling Framework.

ria. Application constraints can only be ordering constraints. User-
defined constraints can be both resource and ordering constraints.

Inconsiderate user-defined constraints may introduce dead-
locks. To guarantee liveness, such constraints are automatically
detected and rejected (see Sec. 3.3). The valid constraints can then
be simplified and taken into account by the scheduler as described
in Sec. 3.4.

3.1 Ordering Constraints
An ordering constraint is a relationship between the firings of two
actors of the form:

Ai > Bf(i)

where Ai denotes the ith firing of actor A and Bf(i) denotes the
f(i)th firing of actor B (where f is any total function from N∗
to Z). A null or negative f(i) means that instance Ai does not
depend on Bf(i). Some ordering constraints are derived from the
application and additional ones can be given by the user.

A B
rA

t

B rB

Figure 4. A generic BPDF edge.

3.1.1 Application constraints
Application constraints (or dataflow constraints) are automatically
derived from data dependencies between actors. For each edge
between actorsA andB with production/consumption rates rA and
rB respectively, initial tokens t, and boolean guard B (see Fig. 4),
the following data constraint is generated

Bi > Af(i) with f(i) =
⌈rB · i− t

rA

⌉
(2)

If actor A has fired
⌈
rB ·i−t

rA

⌉
times, it has produced

⌈
rB ·i−t

rA

⌉
· rA

tokens, which is greater than or equal to the number of tokens
required to fire actor B i times, that is rB · i − t. Therefore, after
f(i) firings ofA and i−1 firings ofB, there remains enough tokens
in the FIFO to fire B for the ith time.

Equation (2) does not depend on the boolean guard B. However,
the scheduler takes boolean guards into account by disregarding
data constraints of disabled edges.

Boolean parameters introduce constraints due to the communi-
cation of their values between modifiers and users. A user needs to

read a new value according to its reading period (πr). The modifier
produces a new value according to its writing period (πw). There-
fore, we get the following ordering constraint for each user (U ) -
modifier (M ) pair:

Ui > Mf(i) with f(i) = πw ·
⌊ i− 1

πr

⌋
+ 1 (3)

This states that the ith firing of U requires the boolean value that
is produced on the f(i)th firing of M . U will use this value for
its next πr firings. The constraint restricts the user to wait for the
production of a boolean value but does not restrict the modifier.
Indeed, the modifier may produce a new boolean value (or all the
boolean values) before the user has finished using the previous one.
The user will use the new values later, based on its reading period,
when they are needed.

3.1.2 User constraints
User constraints are typically used to optimize various criteria
(e.g., power consumption, buffer size) or express platform speci-
ficities (e.g., resource limitations). They are defined by the pro-
grammer for a specific application or platform. Consider again the
simple BPDF graph of Fig. 4.

The repetition vector is [ArB BrA ] and A will fire rB times
without constraints1. Since A fires rB times consecutively, if B
does not consume enough tokens, there will be an accumulation of
tokens on the edge buffer.

If the programmer wants to restrict the buffer to be of size, say k,
it can restrict the execution of A so that it fires only when there is
enough space left on the buffer thanks to the constraint:

Ai > Bg(i) with g(i) =
⌈rA · i+ t− k

rB

⌉
(4)

If only application constraints are used, the dataflow analyses guar-
antee liveness and the existence of a valid schedule. When addi-
tional constraints are considered, they may introduce a deadlock
if they are not compatible with the application constraints. For in-
stance, in the previous example, it should be checked that k is large
enough so that A can trigger all rA firings of B. This verifica-
tion step is done using a deadlock detection algorithm presented
in Sec. 3.3.

3.2 Resource Constraints
Resource constraints are used to regulate the parallel execution
of actors. Such constraints can be used to limit the degree of
parallelism or to enforce mutual exclusion between (groups of)
actors. They can be seen as filter functions applied to the set of
enabled (fireable) actors and returning a subset. Any such function
f satisfies the two following conditions:

∀S. f(S) = T ⇒
{
T ⊆ S (C1)
T 6= ∅ (C2)

Condition (C1) ensures that the function is safe (only enabled
actors can be selected), while (C2) ensures that it preserves liveness
(at least one actor is selected to be fired).

Many languages can be used to express such constraints. Since
they are functions over finite domains, one may even consider
expressing them exhaustively as tables. Here, we use rewrite rules
on sets inspired from the Gamma formalism [1]. The general form
of a resource constraint is:

replace SA by SB if condition (5)

where SA and SB are nonempty sets of enabled actors such that
SB ⊆ SA. It can be read as “replace SA by SB if condition is

1 This repetition vector assumes that rA and rB are coprimes.



true”. When the condition is always true it can be omitted. For
example, the rule

replace A, B by A (6)

can be read as “if the actors A and B are in the set (of enabled
actors), then replace them by A”. It prevents actors A and B to be
fired together and gives priority to A.

Rewrite rules can use pattern variables to match arbitrary actors.
For instance, the rule

replace x, y, z by x, y (7)

can be read as “select three arbitrary enabled actors and suppress
one of them”. It limits the level of parallelism to 2. Indeed, rewrit-
ing rules apply until no match can be found. Rule (7) above applies
as long as there are more than two enabled actors.

Rules can also depend on a condition. For instance, assuming
that the two predicates short and long denote whether an actor
takes a short or long time to execute, the rule

replace x, y by x if short(x) ∧ long(y) (8)

prevents short and long actors to be fired within the same slot
(priority is given to short ones). This rule may improve the overall
computation time. Indeed, if S is a “short” actor while L1 and L2

are two “long” actors such that S and L1 are enabled at the same
slot and firing S enables L2, then it is better to fire first S alone and
then L1 and L2 in parallel.

Several rules can also be combined in sequence or in parallel.
The semantics of parallel composition enforces that rules applied in
parallel act on disjoint sets of actors. Rules are applied repeatedly
and terminate when no match can be found. For example, the
sequential combination of rule (8) followed by rule (7) limits the
possible parallel firings to one actor, two short actors, or two long
actors. Additional examples of resource constraints are presented
for the VC-1 decoder application in Sec. 4.

When actors are mapped on the same processing elements,
resource constraints can be used to express their mutual exclusion.
For instance, rule 6 can be used when actors A and B share
the same processor. Although rule 6 gives priority to actor A, a
condition can be added to express a more complex usage of the
shared processor.

It is very easy to check that such rules preserve boundedness
and liveness. If the rhs of Rule (5) is a non empty subset of its lhs,
then the rule obeys conditions (C1) and (C2), and is, therefore,
safe. For each application, they are statically compiled according
to the set of actors into constant time selection operations.

3.3 Liveness analysis
User-defined ordering constraints may introduce deadlocks. For
this reason, they must be checked statically for liveness. A set of
ordering constraints may prevent liveness when they imply (by
transitivity) a constraint of the form:

(Ai > Aj) ∧ (i ≤ j) (9)

which requires that the ith firing of an actorAmust take place after
the jth firing where j is a future firing (j > i). All cyclic constraints
from an actor to itself must be checked. To ensure liveness, it must
be shown that the deadlock condition in (9) is false for each cycle
of the form:

Ai > Bf1(i) > · · · > Cfn(i) > Afn+1(i)

⇒ Ai > Af1(···(fn(fn+1(i))))

hence that

i > f1(· · · (fn(fn+1(i)))) (10)

We consider all ordering constraints to detect such cycles. Typ-
ically, the expression f1(· · · (fn(fn+1(i)))) contains parameters
and ceiling functions. In general, only an upper bound can be com-
puted. Parameters are replaced by their maximum or minimum val-
ues and ceilings

⌈
a
b

⌉
by a

b
+1 (or a

b
−1) depending on their sign and

position. The expression f1(· · · (fn(fn+1(i)))) can then be simpli-
fied to get an upper bound. If Equation (10) is true for all cycles,
then the liveness of the schedule is guaranteed.

A B
p q

Figure 5. A simple BPDF graph

Consider, for instance, the simple BPDF graph in Fig. 5 where
the user wants to limit the edge buffer to k tokens. In practice,
such a limit (k) as well as the maximum values of parameters
(pmax, qmax) are actual integers. Here, we illustrate the verification
process using symbolic values. The graph constraint is:

Bi > Af(i) with f(i) =
⌈q · i
p

⌉
and the user constraint that limits the buffer size to k is:

Ai > Bg(i) with g(i) =
⌈p · i− k

q

⌉
Together they form a cyclic constraint:

Ai > Af(g(i))

To ensure liveness we must verify that:

i > f(g(i)) ⇔ i >

⌈
q·
⌈

p·i−k
q

⌉
p

⌉
⇐ i >

q·( p·i−k
q

+1)

p
+ 1

⇐ i > i+ q−k
p

+ 1

⇐ k > p+ q
⇐ k > pmax + qmax

So, if the limit placed on the buffer size k is greater than pmax +
qmax, a live schedule is ensured. This is onyl a sufficient condition,
because of the approximation incurred by removing the ceiliing
functions.

In general, if there exists a cycle that does not satisfy Equa-
tion (10), then user constraints involved are rejected. Actually, this
cycle condition can be relaxed by taking boolean guards into ac-
count. Indeed, if the constraints occurring in the cycle depend on
contradictory boolean guards, then the cycle is live as it cannot be
formed.

3.4 Scheduler
When all the constraints are defined and checked for liveness, a
scheduler is used to produce the slotted ASAP schedule for one
iteration of the graph. The total number of firings of each actor
must be equal to the solution of the balance equations. Two kinds
of schedules can be distinguished:

Static schedules which are a finite sequence of actor instances,
each repeated a constant number of times (1, 2, ...). For instance,
A(B|C)2 is a static schedule which starts by firing A then B
andC in parallel twice (where ‘|’ denotes parallel firings within
one slot).

Quasi-static schedules which depend on the values of the inte-
ger or boolean parameters. For instance, (A(b?B :C))p is a
quasi-static schedule that depends on both an integer and a



boolean parameter. Actor A is fired followed by B (resp. C)
if b (resp. ¬b), and this sequence is iterated p times.

In general, the ASAP schedule of a BPDF graph can vary a
lot in complexity, even when boolean parameters are absent. For
example, the simple graph in Fig. 5 produces parametric constraints
whose ceilings cannot be removed statically. The repetition vector
is [Aq Bp] and the ASAP scheduling of this simple graph must
consider several cases:

Case p ≥ q: The slotted schedule isA(A|B)q−1Bp−q+1. Indeed,
onceA has fired the first time, there are enough tokens to fireB
at least once, because p ≥ q. For each subsequent slot, A will
fire in parallel withB until it has fired a total of #A = q times.
This totals to q−1 firings ofB so there remains to fireB another
p− (q − 1) times.

Case q > p: Then, two sub-cases must be considered:

Sub-case q = k.p: If q is a multiple of p, then the slotted
schedule is A(Ak−1(B|A))p−1Ak−1B, where each firing
of B occurs after k firings of A. The total number of firings
of A is 1 + (k − 1 + 1).(p− 1) + k − 1 = k.p = q, while
the total number of firings of B is p− 1 + 1 = p.

Sub-case q = k.p+ r with 0 < r < p: Otherwise, the slot-
ted schedule cannot be expressed by a regular formula as in
the other cases. Indeed, it starts with the sequence Ak+1B,
at which point there are p− r tokens remaining in the edge.
So, if p ≥ 2r, then only k firings of A are necessary before
B can be fired again, leaving p − 2r tokens; otherwise, A
must be fired k + 1 times before B can be fired, leaving
2p− 2r tokens, and so on.

In general, we use a scheduler that evaluates the scheduling
constraints at runtime. However, there are many cases where the
scheduler can be simplified and implemented in a static or quasi-
static way.

The scheduler takes as input the set of actors, the repetition
vector, the writing/reading periods as well as the ordering and
resource constraints. It processes the constraints and produces a
schedule in a per slot manner (see Fig. 6). The scheduler stops when
an iteration is finished and is reset to begin the next iteration.

Actors

Ordering
Constraints

Resource
Constraints

Boolean
Values

Repetition
Vector

Reading /
Writing
Periods

CONSTRAINT
FILTERING

EVALUATE
ORDERING

FILTERING
Fireable
Actors

FIRE

Figure 6. Scheduler overview

At the beginning of an iteration, the scheduler gets the values
of integer parameters and possibly new boolean values if there are
modifiers producing. Since all the reading periods are known, the
scheduler can deduce which boolean value corresponds to which
user firing (user firings may lag behind modifiers). Then, the sched-
uler filters out the set of ordering constraints based on the current
values of the boolean parameters: data dependencies from disabled
edges are not taken into account. Then, the set of remaining con-
straints is evaluated and a set of fireable actors is produced. Finally,

the resource constraints evaluate the fireable set and select a sub-
set of actors to fire. The scheduler reaches the end of the current
iteration when the set of fireable actors is empty.

The scheduler is composed of three main functions: One func-
tion that filters out data dependencies based on the current boolean
values (CONSTRAINT FILTERING), one function that evaluates
the ordering constraints and produces a set of fireables actors
(EVALUATE ORDERING), and finally one function that filters the
set of fireable actors to a subset based on the resource constraints
(FILTERING).

The filtering of the data dependencies (CONSTRAINT FILTER-
ING) takes as input the set of ordering constraints (C) and the val-
ues of the boolean parameters (B). Then, it evaluates the boolean
guards of each edge, and if the guard is false, the corresponding
data dependency is removed from the set of ordering constraints.
The procedure produces a reduced set of ordering constraints (C′).

The evaluation of ordering constraints (procedure EVALUATE
ORDERING in Fig. 7) takes as input a set of actors A, a set of
constraints C, the repetition vector R and a status vector depicting
the number of past firings per actor Vs. The output of the algorithm
is the fireable vector Vf that flags the fireable actors for the current
slot.

procedure EVALUATE ORDERING(R, C,A,Vs)
Vf ← ~0
for ∀X ∈ A do

if (EVAL(C(X), Vs)) ∧ (Vs[X] < R[X]) then
Vf [X]← 1

end if
end for
return(Vf )

end procedure

Figure 7. Evaluation of ordering constraints.

We denote R[X] the number of firings of actor X required by
the iteration and C(X) the set of constraints imposed onX (i.e., all
constraints of the form Xi > . . .).

The core of the algorithm is the evaluation of constraints rep-
resented by the function EVAL, which evaluates the constraints of
an actor (C(A)) according to the current status vector (Vs). More
precisely, for each constraint

Xi > Yf(i)

the EVAL function simply checks whether:

f(Vs[X] + 1) ≤ Vs[Y ]

which corresponds to the satisfaction of the data dependency. In-
deed, Vs[X] + 1 represents the index of the next firing of X and
f(Vs[X] + 1) represents the number of firings that actor Y should
have achieved before we can fire XVs(X)+1 due to the Xi > Yf(i)

constraint. If the current number of firings of Y (i.e., Vs[Y ]) is
greater than the index of the next firing of X (i.e., f(Vs[X] + 1))
then the constraint

Xi > Yf(i) with i = Vs[X] + 1

is satisfied. If all the constraints on X are satisfied, then EVAL
returns true andX is allowed to be fired in the next slot. Otherwise,
it returns false and X will not be fired.

Apart from the ordering constraints, the repetition vector is also
checked, (Vs[X] < R[X]), to determine whether the actor needs
to be fired again in the current iteration. If both conditions are
satisfied, Vf [X] is set to 1. After all actors have been considered,
the fireable vector is produced. The deadlock detection algorithm
ensures that the inner loop always terminates.



Since each actor is selected as soon as its constraints are
met, the procedure produces an ASAP schedule w.r.t. constraints.
We choose ASAP scheduling because it produces highly parallel
schedules. Actually, without timing information, it can be shown
to be the most parallel slotted schedule. Moreover, it ensures a
minimal schedule length in terms of number of slots.

When the fireable vector has been produced, it is used as input,
along with the resource constraint matrix G by the FILTERING
procedure. FILTERING is just a lookup procedure that finds Vf in
the constraint table and returns the entry of the table for that vector,
so we do not provide its pseudo code. The output of FILTERING is
a new firing vector V ′f ⊆ Vf containing all the actors to be fired in
the current slot that also updates the status vector Vs.

Our scheduler is summarized in Fig. 8. The inputs are the set of
actors A, the two sets of constraints ordering and resource (C,G)
and the repetition vector R.

procedure SCHEDULER(A, C,G, R)
while true do

READ INTEGER VALUES()

Vs ← ~0
F ← ~0
while Vs 6= R do
B ← READ BOOLEAN VALUES()
C′ ← CONSTRAINT FILTERING(C,B)
Vf ← EVALUATE ORDERING(R, C′,A, Vs)
V ′f ← FILTERING(Vf ,G)
Vs ← Vs + V ′f
fire(F )

end while
end while

end procedure

Figure 8. Scheduler algorithm.

The SCHEDULER procedure is structured as an outer infinite
loop and an inner loop that iterates over the iteration of the graph.
As both functions, EVALUATE ORDERING and FILTERING, guaran-
tee to fire at least one actor as long as the the repetition vector is not
reached, the inner loop terminates when the iteration is complete.
The outer loop resets the auxiliary vectors and repeats the iteration.

Actors are scheduled and fired one slot at a time. While actors
execute, the SCHEDULER procedure concurrently evaluates con-
straints to find the actors that must be fired at the next slot.

The slotted scheduling model may introduce a lot of slack in
the produced schedule because of the explicit synchronization after
every slot. This is inherent to the model but can be mitigated using
constraints to group actors with similar timings in slots (see Sec. 4).

The slotted model was prescribed by our target platform but we
should point out that our framework can also be used to produce
non slotted schedules. In our context, where each actor is a sep-
arate processing element, the ASAP non-slotted schedule is opti-
mal w.r.t. to time and constraints. The scheduler main-loop needs
to be adjusted so that the status vector is updated each time an ac-
tor ends its firing (instead of at the end of each slot). The scheduler
re-evaluates constraints each time an actor ends, finds new enabled
actors and fires them. An extra vector recording the active (i.e., cur-
rently executing) actors is also needed. It is used to prevent execut-
ing actors to be considered during constraint evaluation and also
to evaluate resource constraints which now apply on enabled and
already active actors.

3.5 Constraint simplification
Scheduling can be optimized in several cases. For an SDF graph
(e.g., without parameters), all constraints can be solved statically by

considering the constraints for each individual firing (thus getting
rid of the index i). Then, the scheduling algorithm boils down to a
sequence of firings.

A B

b@2

C2p 3 2

b
3p

Figure 9. BPDF graph with constraints that can be solved symbol-
ically

Even for parametric graphs, it is often possible to solve order-
ing constraints symbolically. Consider the graph in Fig. 9, whose
iteration is AB2pC3p and whose dataflow constraints are:

Bi > A⌈ i
2p

⌉, Ci > B⌈ 2i
3

⌉, Ci > A⌈ i
3p

⌉
plus the implicit Xi > Xi−1 for all actors. Moreover, actor C, as a
user of the boolean parameter b, is constrained by (from Eq. 3):

Ci > B
2
⌊

i−1
3

⌋
+1
⇒ Ci > B

2
⌈

i
3

⌉
−1

Knowing that there is only one firing of A in each iteration, and
that A is unconstrained, we schedule A in the first slot and we get
A1 = 1. For actor B, the constraint becomes:

Bi > A1 ⇒ Bi > 1

Since Bi should be fired as soon as the constraints are satisfied, its
constraints are rewritten into the equation:

Bi = max(Bi−1, 1) for i ∈ [1..2p]

which can be solved to Bi = i + 1 indicating that the ith firing of
B will fire in the i + 1th slot. Finally, for actor C we have three
constraints:

Ci >A⌈ i
3p

⌉ ⇒ Ci > 1

Ci >B⌈ 2i
3

⌉ (11)

Ci >B
2
⌈

i
3

⌉
−1

(12)

which form the equation:

Ci = max(A1, B⌈ 2i
3

⌉, B
2
⌈

i
3

⌉
−1
, Ci−1) for i ∈ [1..3p] (13)

The two constraints on actor B dominate the one on actor A
and the data dependency (11) dominates over the modifier - user
dependency (12) as d 2i

3
e ≥ 2d i

3
e − 1. So, Equation (13) yields:

Ci = max(B⌈ 2i
3

⌉, Ci−1) + 1 for i ∈ [1..3p]

However, when the boolean parameter b is set to false , the data
dependency is not taken into account and Equation (13) yields:

Ci = max(B
2
⌈

i
3

⌉
−1
, Ci−1) + 1 for i ∈ [1..3p]

In both cases, the solution for actor C is found to be Ci = i+2, so
the value of the boolean parameter does not influence the schedule.
The resulting schedule can be expressed as regular expressions:

A B (B|C)2p−1 Cp+1

Such schedules can be implemented as standard quasi-static sched-
ules. However, in general, resource constraints and boolean param-
eters entail some dynamic checks in the scheduler.



4. Case studies
4.1 The VC-1 decoder
The VC-1 decoder [14] is a good example of a demanding codec.
Its resemblance with the more recent and widely used H.264 [14]
and with future generation codecs like HEVC, makes it especially
relevant. The BPDF implementation of VC-1 is shown in Fig. 10.

VLD (A)SMB (B)

b@1

MBB (C)

a@q

MC (D) INTRA (E)

IQIT (F)LOOP (G)

pqqq

q

b

q

q

b

q

a

a

q
a

q

¬a

Figure 10. BPDF capture of VC-1 decoder

The decoder is composed of two main pipelines, the inter
and the intra. The inter pipeline is composed of actor MC (Mo-
tion Compensation), while the intra pipeline is composed of ac-
tors MBB (MacroBlock to Block), INTRA (Intra prediction), and
IQIT (Inverse Quantization and Inverse Transform). These two
paths are combined and produce the final decoded slice in the
LOOP (Loop filter). Actors SMB (Slice to MacroBlock) and MBB
are auxiliary actors that are used as modifiers of the boolean param-
eters. For easier reference, each actor is assigned a letter (shown
in “()”).

The inter pipeline reconstructs data based on motion between
different frames. For this, it fetches data from previous or future
frames and, based on motion vectors, compensates the motion for
the current macroblock. The intra pipeline reconstructs the data
that depends on macroblocks in the neighborhood of the decoding
macroblock. The intra prediction actor calculates coefficients based
on this information, the IQIT applies inverse transformations to
complete the decoding of the data. Finally, the residues of both
pipelines are combined and smoothed in the loop filter.

The decoder makes use of two integers and two boolean param-
eters. The integer parameters are p, which encodes the slice size in
macroblocks, and q, which encodes the macroblock size in blocks.
Each iteration of the graph processes a single slice. The boolean pa-
rameters capture whether a block is using intra (a) or inter (b) infor-
mation. With these two boolean parameters, three possible modes
of operation can be distinguished:

a ∧ ¬b : Intra only

¬a ∧ b : Inter only

a ∧ b : Intra and Inter

In the Intra only case, the value of the current block depends
only on the values of the surrounding blocks. The inter pipeline
is disabled. In the Inter only case, the value of the current block
depends on the value of another block from a previous frame,
as defined with a motion vector. Only the inter pipeline is used.
Finally, in the Intra and Inter case, both pipelines are used.

By solving the balance equations, we get the repetition vector

[ABpCpqDpEpqF pqGp]

The graph is first scheduled, with no additional constraints, as
explained in the previous section.

Actor Execution Time
(Cycles/Firing)

ASAP
Sequences

VLD (A) 7400 F
SMB (B) 10 EFp

MBB (C) 10 E2Fpq

MC (D) 1937 E2Fp

INTRA (E) 288 E3Fpq

IQIT (F) 365 E3RF (pq)

LOOP (G) 4074 E3RG(p)

Table 1. ASAP sequences of VC-1

The resulting schedule cannot be expressed as a single sequence
using the notation introduced in Section 3.4. It is possible though,
to express the schedule using individual execution sequences for
each actor as shown in Table 1 (third column). Each one represents
the sequence of slots of the iteration where either the actor is fired
(written F) or it remains idle (written E). The possible idle slots
after the last firing of actors are omitted.

In the case of actors IQIT and LOOP, the schedule is depending
on the boolean value of a and shows increased dynamicity. To
express the sequence of firings, we use two recursive functionsRF ,
for IQIT andRG for LOOP defined as follows:

RF (n) = a ? E Fn : Fq RF (n− q)

RG(n) = a ? Eq+1F RT (n− 1) : Eq−1F RG(n− 1)

RT (n) = a ? Eq−1F RT (n− 1) : Eq−3F RF (n− 1)

RF (n) = a ? Eq+1F RT (n− 1) : Eq−1F RF (n− 1)

The sequence associated to IQIT (F ) means that IQIT remains idle
in the first 3 slots, and then if a is true , it waits one more slot and
fires consecutively until he finishes its iteration. If a is false , IQIT
fires for q slots and then checks again the value of a.

The execution sequence of LOOP (G) is a more complex one,
as it depends not only on the boolean values but also on their
sequence. For this reason, the functions RT and RF are used for
when the boolean is true and false respectively. The complete
schedule is the parallel combination of all execution sequences. It
exhibits a high level of parallelism and a sample execution starts as

(A) (B) (B|C|D) (B|C|D|E) (B|C|D|E|F ) . . .

The total span of the produced schedule has a maximum of pq + 5
slots and a minimum of pq + 3 slots. By adding user-constraints,
we can modify the ASAP schedule to improve it or satisfy some
given criteria. In the following, examples of ordering and resource
constraints are given. To evaluate the decoder’s performance we
reused the VC-1 performance on STHORM based on the implemen-
tation presented in [2]. The execution time of each actor’s firing is
shown in Table 1 (second column).

4.2 Ordering constraint examples
The inter-prediction path processes one macroblock at a time
whereas the intra-prediction path processes one block at a time.
Consequently, actors in the intra-prediction are fired a total number



of pq times, whereasD fires only p times. This results intoD firing
in the early slots and producing a lot of tokens on the edge (D,G).
However, G cannot consume these tokens because it is blocked by
the intra-prediction pipeline.

Using additional constraints, we can limit the buffer size of the
edge (D,G) and prevent the accumulation of data in the inter-
prediction path. To produce the alternative schedule, we delay the
inter-prediction path by constraining the (D) actor to wait until (G)
has consumed q tokens. Using the constraint from (4) we get:

Di > G⌈ q·i−q
q

⌉ ⇒ Di > Gi−1 (14)

The constraint adds idle intervals of q − 1 slots between the fir-
ings of D. This redistribution of the firings of D has the additional
benefit of a more evenly distributed power consumption, and subse-
quently a smaller temperature. Although the schedule span of actor
D increases, we observed only a slight increase of 2% to the to-
tal schedule time, so the total schedule span effectively remains the
same.

This significant change on the graph schedule is achieved by
adding a single constraint. It demonstrates the flexibility of our
scheduling framework.

4.3 Resource constraint examples
When slotted scheduling is used, the goal is to minimize the intro-
duced slack because of the synchronization after each slot. For this
reason, we try to cluster together the more cycle-demanding actors.
In Table 1, we notice that, apart from A that fires only once, the
most costly actors are D and G. An obvious optimization is to fire
them in the same slots.

We can use a resource constraint to achieve this goal. By looking
at the actors’ schedule streams of Table 1, we see that all firings
of D, after the first one, are fired in parallel with E. The following
constraint can be used:

replaceD, E by E if ¬fireable(G) (15)

This constraint suppresses D when G is not present, effectively
clustering the two actors together. This extra constraint led to an
improvement of 15% in the total schedule time. A non-slotted
schedule (optimal w.r.t. timing in our context) would improve the
total execution time by an additional 30%.

Resource constraints can also be used to restrict concurrency
and power consumption of the VC-1 application. For instance, if
we want to limit its parallelism to at most 3 concurrent actors, we
can use the following resource constraint:

replace w, x, y, z by w, x, y (16)

We may additionally want to limit the power consumption of the
chip during a slot. Assuming two predicates that classify actors
into high (H) or low (L) power consumers, we can limit power
consumption by firing at most one H actor either alone or along
with at most one L actor. The following set of rules implements
such a limitation:

replace x, y by x if H(x) ∧H(y)
replace x, y, z by x, y if H(x) ∧ L(y) ∧ L(z)

With precise information about actors (that we do not currently
have), total power consumption could be better controlled,
e.g., bounded by a specified limit). Further experimentation is
needed to demonstrate the way VC-1’s schedule can be altered and
optimized using the above constraints, however the platform is not
readily available to us yet.

4.4 Scheduler overhead evaluation
Temporal Noise Reduction (TNR) is an algorithm applied after
the video decoding process to reduce the noise of each frame. We
implemented TNR on the STHORM platform using BPDF and used
the scheduling framework to schedule it. The BPDF graph of TNR
processes one frame per iteration. We measured the average cycles
used by the processor that schedules the graph for each frame.

We consider three different cases: the original manual imple-
mentation of the scheduler for TNR (Manual Sched.), our BPDF
scheduler without any simplification of constraints(BPDF no opt.)
and our BPDF quasi-static schedule produced after simplification
of constraints (BPDF opt.). Table 2 shows the number of cycles
taken by the scheduler at each frame (line 2) and the maximum
QoS (in terms of fps) the scheduler or actors could meet (line 3).
For comparison, column 2 shows the corresponding numbers for
the faster actor of TNR. We can see that the dynamic scheduler

Best Actor
Performance

BDPF
no opt.

BPDF
opt.

Manual
Sched.

Cycles /
frame 2.140.000 1.100.000 360.000 340.000

FPS 187 363 1111 1176

Table 2. Schedule overhead for different schedules of TNR

introduces a large overhead (almost three times more costly than
the manual schedule). Once the constraints are simplified and the
schedule is reduced to a quasi-static one, the overhead is compa-
rable with that of the manual schedule. For VC-1, the required
quality of service is 30 Frames/sec and in the best case an actor
is much more costly than the scheduler. So, in the best case, al-
though the unoptimized scheduler introduces large overhead, since
it runs in parallel with such coarse grain actors, the required QoS is
still achieved. In that context, a dynamic scheduler is realistic and
allows the use of additional constraints to optimize various criteria.

5. Related Work
Parallel scheduling of data flow graphs is an old problem that has
been dealt with for many years. In the case of SDF [13], it typi-
cally involves the transformation of the graph to a homogeneous
SDF (HSDF) format where all actors produce or consume a single
token [12]. It exposes parallelism and allows to use popular tech-
niques like list scheduling. The hierarchical scheduling framework
proposed in [18] uses a clustering technique to prevent the actor
explosion that occurs when SDF is transformed into HSDF. These
approaches apply only to SDF graphs however, and although there
is a suggestion of a scheduler to optimize the schedule, it has never
been explored.

SDF graphs are fully compatible with our framework. In the
case of a SDF graph, all constraints can be resolved statically.
Scheduling can be resolved at compile time and produce a static
ASAP parallel schedule for the SDF graph. Different scheduling
strategies can be expressed using specific user-defined constraints.
Such constraints can be checked and integrated in the static sched-
ule.

When the expressiveness of data flow models increases, so does
the complexity of their scheduling. To deal with switch actors and
conditional execution, Lee proposed quasi-static schedules [11]
expressed with iterations and conditionals which must be evaluated
at run-time. A similar approach has been explored further by Ha
& Lee [9], where quasi-static schedules for data-dependent data
flow graphs are produced. They consider schedules that have the
same frontier regardless the presence of switch actors (expressing



conditional execution) or actors with an iteration based on the
data. In our case though, we explore the production of self-timed
schedules using a different scheduling model based on slots.

Bhattacharya & Bhattacharyya [5] explore the use of quasi-
static scheduling to produce schedules for parameterized dataflow
applications captured in the PSDF model [6]. A clustering tech-
nique is used to produce parameterized looped schedules. In [19]
the approach is generalized to schedules expressed using general-
ized schedule trees. However, these schedules are sequential.

In [10], the use of generalized scheduling trees along with
an analysis that minimizes buffers is used to produce quasi-static
schedules for parameterized cyclo-static dataflow graphs [7]. The
expressiveness of the approach is reduced because of restrictions
of the clustering mechanism and limitations of the schedule rep-
resentation. Finally, there is no flexibility to alter the schedule nor
any liveness guarantees. Our framework is compatible with these
scheduling techniques as it can express such parameterized looped
schedules using the appropriate constraints.

6. Conclusions
We have presented a framework to specify and implement bounded,
live and highly parallel schedules for boolean parametric dataflow
graphs. Scheduling is made flexible by the use of user constraints
that allow the framework to adapt to new execution platforms,
express optimizations and regulate parallel firings. Static checks
can ensure that constraints preserve the existence of bounded and
live schedules.

The approach was used to schedule two streaming applications
(VC-1 and TNR) on the STHORM platform demonstrating the fea-
sibility and flexibility of the approach. The framework facilitates
the automatic production of complex schedules that can be as ef-
ficient as the manual ones, which are often hard to produce and
error-prone.

The main aim of our framework is not to produce the optimal
quasi-static schedule but to propose a flexible and correct by con-
struction approach that can easily express different schedules and
scheduling strategies. The framework can then be used to explore
the various scheduling possibilities and to optimize the schedule
w.r.t. various criteria.

Although we only considered BPDF, our framework can be
adapted to schedule other data flow models as long as their data
flow constraints can be expressed in our constraint language. We
believe that the framework can also accommodate other models of
computation such as Petri nets and process networks. Similarly, if
the framework was designed with slotted scheduling in mind, it can
easily be converted to non-slotted models without compromising its
flexibility.

As future work, we have the following mid-term objectives:

• Make use of constraints to optimize bi-criteria scheduling,
specifically power consumption vs. throughput;
• Design a high-level language to express scheduling policies that

can be automatically compiled into constraints, which can in
turn be taken into account by the scheduler.
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