
Collecting More Garbage

Pascal Fradet

Inria/Irisa

Campus de Beaulieu, 35042 Rennes Cedex, France

fradet@irisa.fr

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the ACM copyright notice
and the title of the publication and its date appear, and notice
is given that copying is by permission of the Association of
Computing Machinery. To copy otherwise, or to republish, re-
quires a fee and/or specific permission.

Lisp 94 - 6/94 Orlando, Florida USA

© 1994 ACM 0-89791-643-3/94/006..$3.50

Abstract

 We present a method, adapted to polymorphically typed func-
tional languages, to detect and collect more garbage than exist-
ing GCs. It can be applied to strict or lazy higher order
languages and to several garbage collection schemes. Our GC
exploits the information on utility of arguments provided by
polymorphic types of functions. It is able to detect garbage that
is still referenced from the stack and may collect useless parts
of otherwise useful data structures. We show how to partially
collect shared data structures and to extend the type system to
infer more precise information. We also present how this tech-
nique can plug several common forms of space leaks.

1 Introduction

Functional programs tend to be inefficient in their use of store.
They usually allocate impressive amount of memory space and
spend a significant part of their time garbage collecting. Much
work has been done on reducing the overhead of garbage col-
lection. In particular, various sophisticated garbage collectors
(GCs) and algorithms have been proposed to this aim [8][29].
However, very little work has been done on extending the col-
lecting power of GCs. In general, they retain the complete
reachable structure.

We present a method to detect and collect more garbage
than existing GCs. This method is designed for strongly typed
languages and it can be seen as an extension of standard GCs
for these languages. Our GC is able to detect garbage that is
still referenced from the stack and may collect useless parts of
otherwise useful data structures. This technique places no
overhead on normal execution. It can be applied to strict or
lazy higher order languages and can be used to improve differ-
ent kinds of GCs (stop©, mark&sweep,…). The key
property exploited here is parametricity [24][28], a theorem

satisfied by Hindley/Milner polymorphic type system [21].
Parametricity can be applied to deduce information on the util-
ity of arguments from the polymorphic type of a function. For
example, the functionlength : Listα→Int can be reduced re-
gardless of the actual elements of the list. This property is just
an instance of Wadler’s “free theorems” [28]. It holds for all
functions of this type and allows a garbage collector to collect
the elements of their list argument.

Although our goals are different, our technique shares
many common points with tagless garbage collection which
we quickly review in section 2. In particular, type information
is attached to return addresses and closures, the stack is ex-
plored in a bottom-up fashion and the process involves unifica-
tion. However, if a tagless GC aims at completely reconstruct-
ing types, we try on the contrary to minimally instantiate poly-
morphic types. This point is crucial since only structures asso-
ciated with a type variable will be collected. We illustrate this
difference on an example in section 3.1. We then formalize the
collection process and prove its correctness using parametrici-
ty theorem (section 3.2). Functionmember seems to invalidate
our approach: it has typeα→List α→Bool but does need the
elements of the list. This comes from polymorphic comparison
operators which are treated in section 3.3.

We suggested thatlength can have the elements of its list
argument collected but what if this list were shared by a func-
tion needing the complete structure? This problem of partial
collection of shared structures is addressed in section 4.

Obviously, Hindley/Milner type checking has not been
designed as a utility analysis and it loses information useful for
our purposes in many cases. Section 5 introduces two simple
extensions of the standard typing allowing to infer more suit-
able (i.e. less instantiated) types. The inference algorithm re-
mains simple and close enough to the standard one.

Many functional programs suffer from space leaks and
traditional garbage collection is usually not a big help. Such
programs often run out of memory and fail to terminate. This
is one of the most interesting applications of our technique and
we present in section 6 how it can plug several common forms
of leaks. After discussing some implementation issues in sec-
tion 7, we conclude by a short review of related work.

To simplify the presentation, we often suppose an under-
lying copy garbage collection scheme. We also assume a stack
based implementation in which the GC is invoked only at the
beginning of a function and all the roots of the accessible
structure are in the stack. The same ideas would adopt to other
implementation choices.

2 Tagless Garbage Collection

Statically-typed languages do not need run time tags for nor-
mal execution. However their implementations do use tags to
support garbage collection and this inflicts a time and space
overhead on program execution. The basic idea of tagless gar-
bage collection is to keep the static type information associat-
ed with each variable and procedure parameter available at run
time. Usually this information is placed in the code (just before
the return address) as templates (interpretive method) or as GC
routines (compiled method). The GC uses the return address of
each activation record on the stack to access the associated in-
formation in the code and to determine the type of all the vari-
ables of that activation record. It is extended to higher-order
languages by associating type information with the function
part of closures. The advantage of removing tags is that it
saves space and that overhead is placed on garbage collection
rather than on normal execution. This method is easy to imple-
ment for Pascal-like languages where every variable has a
fixed type [6]. Tag-free garbage collection gets more compli-
cated with polymorphically typed languages [2][11]. A poly-
morphic function is usually implemented by a single code and
the template associated with its activation record contains
polymorphic types. Relying only on this information the GC
would be unable to trace the structures associated with type
variables. However, types in an activation record depend on
the types of the arguments the function was applied to ; that is,
they depend on the types associated with the previous activa-
tion record. The solution is to unify the type of the function
called with the types of its arguments found in the previous ac-
tivation record. By traversing the stack from the oldest activa-
tion record (corresponding to the top level expression which is
not polymorphic) to the most recent, all type variables will be
bound using unification.

Example 1 Let us consider the following program and its
evaluation using call-by-value.

let recappend l1 l2 = case l1 in

nil : l2

cons x xs: cons x (append xs l2)

in length (append [[1];[2]] [[3];[4]])

append : Listα→List α→List α length : List α→Int

If the garbage collector is invoked at the beginning of the first
call tocons the stack looks like

Figure 1

The information associated with a return address includes the
types of local variables and the actual types of the arguments
of the callee (corresponding to the next activation record).
Here the first activation record does not have local variables
and the two parameters of the callee (append) are of typeList
(List Int). The GC analyzes the first return address ; no local
variables have to be traced and the next return address is ana-
lyzed with the information thatappend has been called with
two arguments of typeList (List Int). The second activation
record corresponds to a polymorphic function with two param-
eters of typeList α ; it has a local variable of typeα and the
two parameters of the callee are of typeList α. Type variableα
is unified withList Int, the local variable is found to be of type
List Int and the two parameters of the callee of typeList (List
Int). The GC traces and copies the local variable according to
its type (List Int) and continues the exploration of the stack.❏

This method is described in [12]. There are cases involv-
ing higher-order polymorphic functions where types cannot be
completely reconstructed during garbage collection. A solu-
tion is to generate explicit tagging when necessary [1]. These
tags are taken as extra arguments by functions and will be
propagated at run time.

3 Collecting More Garbage

3.1 The basic method

Our collecting method is based on the same technique as tag-
less garbage collection. Type information is associated with re-
turn addresses and the GC explores the stack, from the oldest
activation record to the most recent one, performing unifica-
tion. However, our goal is to detect parts of the reachable ob-
jects which are unnecessary for a correct execution. Hindley/
Milner type checking yields some kind of utility information: a
function of typeList α→Int does not need the elements of the
list for its execution*. Contrary to tagless garbage collection,
we do not attempt to completely reconstruct the types of acces-

* We assume for now a language with no polymorphic comparison
operators ; they are considered in section 3.3.

[1]

[2]

[[3];[4]]

return address corresponding

return address corresponding
to the first recursive call to

to the call

append

(append [[1];[2]] [[3];[4]])

sible objects ; we rather try to minimally instantiate polymor-
phic types.

A return address can be seen as a continuation of the
form λx1. …λxn.λr. E. Thexi’s represent the local variables of
the activation record andr the result of the function call corre-
sponding to this return address. Thus an activation record can
be seen as a closure(λx1. …λxn.λr. E) X1…Xn and the type of
the function is used by the GC to trace the record.

Our basic method can be described as follows

• The information associated with each call (i.e. return ad-
dress) is just the type of the continuation. For example, in
length (append [[1];[2]] [[3];[4]]) the continuation of the
call toappend is λr.length r which has typeList α→Int.

• The GC explores the stack as a tagless GC but does not
unify the type of the callee with the types of the actual ar-
guments of the call. It unifies the type expected by the con-
tinuation with the result type of the next activation record.
When the GC has explored an activation record

(λx1…λxn.λr. E)σ1→ …→ σn →σr→σ) X1…Xn

it analyzes the next activation record

(λy1…λym.λr. E)τ1→ …→ τm → τr→τ) Y1…Ym

by unifying the typeτ of this record with the typeσr ex-
pected by the previous record (i.e its continuation).

Example 2 Let us return to our previous example where the
GC was invoked during the first call tocons. At this point the
stack can be represented as follows

Figure 2

The oldest activation record has typeList α→Int and no local
variables, the GC analyzes the next return address which has
typeα →List α→List α (the unification with the type expected
by λr.length r leaves it unchanged). The argument ([1]) in this
activation record has typeα and is collected. The GC analyzes
the last return address ; its typeα →List α →List α allows the
GC to reclaim the first argument ([2]) and the elements of the
second. All the sublists ([1], [2],[3],[4]) have been collected
and the new heap contains only two cons cells and a nil.❏

λr.length r

λx.λr.cons x r

[1]

[2]

[[3];[4]]

List α → Int

α → List α → List α

3.2 Formalization

We represent a stack of activation records as applications of
closed functional expressions:

(λx1. …λxm.λr. E) X1…Xm ((λy1. …λyn.λr.F) Y1…Yn (…

… ((λz1. …λzp.G) Z1…Zp)…))

The functions(λx1. …), (λy1. …) represent return ad-
dresses and the last function(λz1. …) is the function which has
invoked the GC. The argumentsXi,Yj,Zk contains the roots of
the accessible structure and belong (as the stack itself) to the
following set of expressions:

Objects S ::= V | S1.S2 | nil | f S1…Sn

whereV represents basic values (integers, booleans,…), E1.E2
and nil lists andf S1…Sn closures (f being a function (i.e.
code)). We consider only closures and lists but the approach
can be readily extended to deal with user-defined types. The
associated types are defined by

Types T ::= V | B | T→T | List T P ::= B | List P

where V represents type variables andB basic types (Int,
Bool,…). P represents printable values and we assume that
types of programs (i.e. stacks) belong toP. We use the follow-
ing conventions:

α,β,χ,δ,ε ∈ V b ∈B τ,σ ∈ T π ∈ P

The stack in Example 2 can be represented by the expression
of typeInt

f1(f2 [1] (f 2 [2] [[3];[4]]))

with f1 ≡ λr.length r and f2 ≡ λx.λr.cons x r

The intuition that polymorphic functions do not need the
complete structure of their arguments for proper execution is
formalized by Reynolds’ abstraction or parametricity theorem
[24]. Wadler has shown in [28] how to use parametricity to de-
rive theorems from types. Actually those theorems are just
what we need to justify our approach. For example, the fact
that a functionf of typeList α→Int can be reduced regardless
of the elements of the list is formalized by its associated “free”
theorem: ∀a: A→A’ f = f o (map a). In the theorems from
types, functions (herea) are associated with type variables and
the theorems hold (in the pure polymorphicλ-calculus) what-
ever these functions are. However, for practical languages,
where a fixed point operator is added as primitive, the theo-
rems hold only for strict functions.

Here, we formalize the collection process by associating
with each type variable the strict functionλx.⊥. For example,
the theorem deduced from typeList α→ Int implies that

f = f o (map (λx.⊥))

sof can have the list elements of its argument reclaimed by the
GC.

The collecting process of a stack of monomorphic typeπ
can be described asgcπ stack with

(gc1) gcα(E) = ⊥

(gc2) gcτ(f X1…Xn) = f (gcτ1 X1) … (gcτn Xn)

with |− f:τ1→…→ τn→ τ

(gc3) gcb(V) = V

(gc4) gcList τ(E.F) = gcτ E . gcList τ F

(gc5) gcList τ(nil) = nil

An important point to note is that in order to carry on
garbage collection (gcτ) inside a closure the current type infor-
mation τ must be the type of the closure (rule (gc2)). In prac-
tice, as with activation records, this property is ensured by
unification. When a closure is encountered,gcτ takes the type
information associated with the function of the closure, say
τ1→…→ τn→ τn+1→…→ τp ; from the numbers of compo-
nents, sayn, of the closure it deduces the result type,
τn+1→…→ τp which is unified withτ. So, activation records,
higher-order functions and unevaluated arguments, which are
all represented by closures, involve preliminary unifications.

Example 3 Let us return to our previous example

stack ≡ f1(f2 [1] (f2 [2] [[3];[4]]))

with f1 ≡ (λr.length r):Listα→Int and f2 ≡ λx.λr.cons x r

gcInt stack = f1 (gcList α (f2 [1] (f 2 [2] [[3];[4]]))) (gc2)

|− f1:List α→Int

= f1 (f2 (gcα[1]) (gcList α(f2 [2] [[3];[4]]))) (gc2)

|− f2:α→List α→List α

= f1 (f2 ⊥ (f2 (gcα[2]) (gcList α[[3];[4]]))) (gc1),(gc2)

= f1 (f2 ⊥ (f2 ⊥ ((gcα[3]).(gcList α[[4]]))))) (gc1),(gc4)

= f1 (f2 ⊥ (f2 ⊥ [⊥;⊥])) (gc1),(gc4),(gc5)

If the stack was f1(f3 f4 [(1,2);(3,4)])

with f3 ≡ λf.λl.map f l: (β→δ)→List β→List δ

and f4 ≡ λx.(fst x)+1: (Int,ε)→Int

thenα andδ would be unified withInt andβ would be unified
with (Int,ε). Only the second component of pairs would be re-
claimed (i.egcInt stack = f1 (f3 f4 [(1,⊥);(3,⊥)])). ❐

Activation records are basically treated the same way as
closures. However, with a strict semantics, there may be func-
tions which do not use the result of the next activation record,
that is functions of typeτ1→…→α→τ. As specified, the func-
tion gcτ would collect all the activation records above. We do
not allow this and consider only garbage collection of heap ob-
jects. The following proposition states the correctness of the
collection.

Property 4 For all closed stack of typeπ stack = gcπ stack

Proof. [sketch] For brevity sake, we do not redescribe the
parametricity property, how to read types as relations and to
derive theorems ; the reader is referred to [28]. In our case we
fix the functions (relations) corresponding to types variables to
be λx.⊥. We first prove, by structural induction, that for any
closed stack objectSand any typeτ for whichgcτ S is defined
then(S,gcτ S)∈ T, T being the relation corresponding toτ. Fur-
thermore, it is easy to show that the relation corresponding to a
type π in P is the identity relation hence(S,gcπ S)∈I that is
S=gcπ S ❏

3.3 Polymorphic comparison operators

In Example 3, if we replace the functionλr.length r by

λr.if member (hd r) (tl r) then 1 else 0

of the same typeList α→Int our collecting functiongcτ be-
comes incorrect. The polymorphism comes here from the
polymorphic equality operator inmember which has type∀α.
α→α→Bool but does need the value of its arguments. Poly-
morphic comparison operators cannot be defined in the pure
polymorphicλ-calculus and parametricity does not hold with
such operators. In [28] Wadler gives polymorphic equality a
special type,∀=α. α→α→Bool, and enforces that functiona
associated with the type variableα respects equality (i.e.x=y
iff a x = a y). Our collecting function certainly does not respect
equality and theorems derived for expressions involving poly-
morphic equality are useless for our purposes. We have to as-
sume that polymorphic comparison operators need completely
their arguments and we give them typeT→T→Bool. Special
typeT belongs toP and means that the complete structure has
to be saved. In order to propagate this information, the unifica-
tion of any (non functional) type withT yieldsT. The type in-
ferred forλr.if member (hd r) (tl r) then 1 else 0is nowT→Int
and its list argument will be preserved by the GC.

4 Partial Collection of Shared Structures

We assume that all reachable objects can be traced by the GC.
For now, we also assume that programs cannot create circular
structures. We consider this point in section 4.3.

4.1 The problem

The collection is done according to the type information (after
the necessary unifications) associated with each pointer in the
stack or in closures. For example, a pointer with type informa-
tion α does not have to be traced and the elements of a struc-
ture with type informationList α can be reclaimed. A problem
arises when such structures are shared. For example, in Figure
3 when the first listL1 with typeList α is traced only its spine
is copied. The typeList (List β) enforces the GC to copy the
spine of the sublists ofL2. When the shared cell is found, the
GC cannot rely on the standard assumption that all its descen-
dants have been copied and must traverse it again.

Figure 3

A simple solution would be to keep within each cell the
type information it was encountered with. The standard as-
sumption would become: if a copied cell has an associated
type more instantiated than the current one, the garbage collec-
tor does not have to trace its fields. Still, the same structure
may be traced many times. For example, a list of tuples
(i1,...,in) shared byn pointers with associated typesList
(Int,α2,...,αn),…,List(α1,...,αn-1,Int) would still have to be tra-
versedn times.

4.2 The basic technique

This problem can be overcome using twocomplete scans of
the reachable structure. That is, useless substructures are not
copied but they are traversed anyway. Each structure will not
be copied more (nor less) than required by the type informa-
tion. For example, if the lists represented in Figure 3 are not
further shared, the first two sublists ofL1 will be considered as
garbage and reclaimed, the remaining structure will be copied
according to typeList (List β). We just sketch the technique
here ; section 7 contains further details on both scans.

The first scan computes for each vertex its reference
counter. Each shared vertex is placed in a defer-list (i.e. a
shared cell will point to the defer-list) along with an initial type
(say α) and its reference counter. The second scan performs
the partial collection according to types. Each pointer in the
stack is followed: if a vertex is not shared then its fields are
traced ; otherwise (i.e the vertex points to the defer-list) its ref-
erence counter is decremented, the type in the defer-list is uni-
fied with the current one and the exploration continues with
another root. The type associated with each pointer represents
the utility of the structure for a particular activation record.
The unification of types for a shared cell eventually yields the
type representing the utility of this structure for the whole pro-
gram. When all the roots have been followed as much as possi-
ble we still have to trace the pointers in the defer-list.
Assuming no cycles, the defer-list must contain a vertex with a
reference counter equal to zero. We call it aresolved vertex :
all the pointers referencing it have been found and the maxi-
mally instantiated type has been computed. Its fields can then
be traced according to this type ; another resolved vertex is

List α

List (Listβ)

…

L1

L2

taken from the defer-list and so on until the defer-list is empty.
So, a cell is copied only when all the structures pointing to it
have been traced (as a side effect, forwarding pointers is not
necessary).

Property 5 When the active (i.e. not pointed from the defer
list) reachable structure has been traced, the defer list is either
empty (the collection is complete) or contains a resolved ver-
tex.

Let the defer-list containn vertices, which are the roots of the
remaining unexplored structure. A vertexN1 is not resolved iff
there is a pointer in the remaining structure pointing to it i.e.
there must a path from a vertex in the defer list toN1. Since
there is no cycle it cannot beN1, let us call itN2. Applying the
same reasoning onN2 it must be either resolved (and we are
done) or there must be a vertex leading toN2 and it must be
different fromN1 andN2. And so on until the last vertexNn: as-
suming no cycle,N1,...,Nn-1 cannot lead toNn, andNn cannot
lead to itself soNn must be resolved. ❏

Let us take an example to illustrate why we cannot avoid
traversing substructures associated with type variables. In Fig-
ure 3, such a partial traversal, starting from the first root,
would only mark the spine ofL1 and, starting from the second
root, would stop at the shared cell. The following sublists will
not be explored and shared vertices may stay unannotated.
Imagine that another list sayL3 shares the fourth sublist ofL1

with type annotationList Int: it will not be detected as shared.
During the second phaseList α andList (List β) will be unified
in the defer-list, the fourth sublist ofL1 will be copied with
type informationList β whereas its integers elements are need-
ed byL3. For the same reason the second scan must be com-
plete. The first scan may have marked structures shared by
pointers of typeα. In order to resolve such vertices, useless
substructures annotated with type variables are not copied but
are traversed anyway.

4.3 Extensions

Optimizations. We tried to keep the partial collection process
simple and did not mention several possible optimizations.

• Structures associated with a monotype can be copied as
soon as encountered and pointers forwarded as usual. No
reference count has to be computed ; if such a structure is
shared we can rely on the standard assumption (all its fields
have been traced and copied).

• The roots in the stack annotated by a type variable do not
have to be traced. They cannot be shared and can just be ig-
nored during the two scans.

• Functional compilers sometimes integrate a sharing analy-
sis to perform safe destructive updates or to avoid updating
unshared closures. The collection process can benefit from
such an analysis. An unshared object can be copied accord-
ing to its type right away.

Cycles. Many implementations of pure functional languages
do not create circular structures and for those our method di-
rectly applies. Implementations based on graph reduction
sometimes implement recursion (combinatorY) using cycles.
This would require an extension of the partial collection pro-
cess. We have not investigated this issue thoroughly, however
two trivial solutions come to mind. The strong components of
a graph can be computed in linear time [26]. We can then use
our technique on the reduced graph (whose vertices are the
strong components). We also have a conservative option: we
apply our technique as usual ; if there are cycles we end up
with a defer-list with only unresolved vertices which are com-
pletely copied.

5 Detecting More Garbage

In many cases the standard polymorphic typing loses utility in-
formation. Here, we propose two extensions of the standard
typing allowing to infer more information on the utility of ar-
guments and so to collect even more garbage. We suppose that
programs are well-typed and we use type inference as a utility
analysis. The inference algorithm remains simple and close
enough to the standard one.

5.1 First extension

A first loss of information comes from the standard types of
constructors. For example, from the type ofcons (α→List
α→List α), the GC deduces thatcons needs the structure of its
second argument for a proper reduction. However the argu-
ments of acons does not have to be traced by the GC if the re-
sult is useless. Also, bothλxs.cons 1 xs andλx.cons x [1;2]
have a monomorphic type (List Int→List Int andInt→List Int)
whereas their argument could be (partially) collected if the en-
closing function needed only the spine of the result.

We avoid this loss of information by givingcons type
α→β→δ along with the constraint set {List α»δ, β»δ} where
the relation “»” reads “is more instantiated than”. In doing so,
we have to distinguish constructors used as patterns which
keep their standard types.

Let us consider the closure (λx.λxs.cons x xs) L1 L2. The
type information associated with its function is[α→β→δ
;{ List α»δ, β»δ}]. During garbage collection typeδ is unified
with a type representing how much the value of the closure is
needed (see section 3) ; the utility of the arguments will be de-
termined by satisfying the constraints.

• If the result of the closure is not needed by the context (i.e.
δ has been unified with another type variable), the con-
straints are satisfied and the two arguments can be collect-
ed.

• If the context needs the spine of the result, sayδ=List γ, the
constraint set enforceβ to be more instantiated thanList γ
(β»List γ). In order to satisfy the constraints,β and List χ

(with χ»γ) will be unified. The function has then type
α→List χ→List χ and the first argument and the elements
of the second are collected.

• If the context needs the complete structure of the result,
sayδ=List Int, in order to satisfy the constraint,α is unified
with Int andβ with List Int. The closure function has then
type α→List Int→List Int and both arguments are com-
pletely saved by the GC.

Example 6 Let us consider the function

rec app l1 l2 = case l1 in

nil : l2

cons x xs: if x=0 then app xs l2

else cons x (app xs l2)

The type of this function isList Int→β→δ with {β»δ}. If, dur-
ing garbage collection, the stack is

(λr.length r) ((λl1.λl2.app l1 l2) [0;1] [2;3])

thenδ andList α are unified,β is unified withList γ and the el-
ements of second list can be reclaimed. The standard typing of
app (List Int→List Int→List Int) would have enforced the GC
to retain completely both lists. ❐

Our constraints can be seen as a way to delay unification
until necessary. A type and a constraint set are inferred indi-
vidually for each function representing a return address. If the
function has typeσ using the classic type inference, the typeτ
inferred now is such thatσ»τ. Satisfying such inequalities is
closely related to the semiunification problem (i.e. finding a
substitution, called a semiunifier,S such thatSσ»Sτ for all ine-
qualities) [13]. Since we consider programs already typed by
the Hindley/Milner system, this problem, undecidable in gen-
eral, becomes tractable. The relation “»” is defined only on
unifiable types, so our systems of inequations are unifiable and
therefore semiunifiable. Constraint sets are satisfied using the
following rules.

S ∪ {π»τ} → S S ∪ {α»α} → S

S ∪{ List σ»List τ} → S∪ {σ»τ}

S ∪ { σ→σ’»τ→τ’ } → S∪ { σ»τ ; σ’»τ’}

Furthermore, variables on the lhs of constraints of the
form α»π, α»τ→τ’ and α»List τ are unified with respectively
π, α1→α2 andList α3 (α1,α2 andα3 being fresh variables).

This is actually a simplified version of the algorithm de-
scribed in [13]. It has been proved that for semiunifiable ine-
quations this algorithm terminates and finds a most general
semiunifier. A simpler alternative is to unify the lhs and rhs of
constraints of the formα»τ→τ’ and α»List τ instead of intro-
ducing fresh variables. The resulting types would possibly be
more instantiated than needed but the complexity of unifica-
tion would remain linear. We considered onlycons but similar
constraint sets can also be associated with each user-defined
constructor.

5.2 Second extension

Another imprecision comes from the data types themselves
which identify many different structures (e.g. singletons or
empty lists are not distinguished from general lists). For exam-
ple, the function returning the head of a list is defined as

hd l = case l in
cons x xs: x (*)
otherwise: fail

The inferred type forhd is List α→α and we have lost
the information that only the first element of its argument list
has to be saved by the GC. Instead of using predefined types,
we infer more precise recursive types. Trying to infer very pre-
cise types quickly leads to undecidable problems. Here, we are
only interested in inferring types as less instantiated as possi-
ble and we stay close from the standard algorithm. Recursive
data types are noted explicitly using the operatorµ. For exam-
ple,List α becomes(µt. nil + consα t). To unify recursive data
types we have to replace standard unification by unification of
rational trees [14] (both have the same complexity).

Let e an expression with the Hindley/Milner typet de-
fined bytype t = C1 σ11…σp1 +…+ Cn σ1n …σpn, then the new
typing of e will be of the formµt.τ1 +…+ τn, τi being a type
variable or a constructorCi υ11 …υp1. We suppose that recur-
sive data structures can only be scrutinized by pattern match-
ing in case expressions and that patterns are simple one-level
patterns.The typing rule for a saturated case expression be-
comes

for all i, 1≤i≤n,

Γ |− e:µt. C1 τ11…τp1 +…+ Cn τ1n…τpn Γ ∪{x j :τj} j=1i

pi

|− ei:τ

Γ |− (case e in C1 x11…xp1 : e1 … Cn x1n…xpn : en) : τ

If one alternative corresponding to the user-defined type
is missing (e.g.hd l = case l in cons x xs : x) or an alternative
is a default variable not occurring in the rhs (asotherwise in
the definition above (*)) then it will be associated with a type
variable. The type inferred forhd is (µt. δ + consα β) → α.
When the GC encounters a closure (λl.hd l) L, the tail of the
list will be reclaimed (assuming it is not shared).

Example 7 rec f l = case l in
nil : 0
cons x xs: case xsin

nil : 0
cons y ys: y + f ys

The type inferred forf is

(µt. nil + consα (nil + cons Int t))→Int

and elements occurring at odd places in the list may be re-
claimed. ❐

This extension is related to [22] which aims at inferring
types without explicit type declarations. Their type inference
produces accurate types and we could make use of them. How-
ever it is also more general than we need: their type system ac-
cepts constructors to be overloaded and the sum of two
arbitrary types to be a type. This complicates their type infer-
ence which is defined only for first-order languages.

As with the first extension, if the function has typeσ us-
ing the classic type inference, the typeτ inferred is such that
σ»τ. It seems that these two extensions can easily be com-
bined. Relation “»” can be extended on recursive data types
with the rules

S ∪ {µt. σ1 +…+ σn»µt. τ1 +…+ τn} → S ∪{σ1»τ1 ; … ; σn»τn}

S ∪ {C σ1 … σn»C τ1 … τn} → S ∪{σ1»τ1 ; … ; σn»τn}

Still, it would be necessary to formalize the correspond-
ing type system and to prove the analogue of Property 4 (para-
metricity does not apply directly for such types systems). We
could have envisaged more sophisticated (e.g. semantics
based) analyses to detect the uselessness of data structures. We
claim that the two extensions proposed above are a good com-
promise between cost and precision.

6 Space leaks

Some functional programs use much more space than the pro-
grammer would expect. This phenomenon, called a space leak,
usually appears when pointers are kept on structures which
have become (partially) useless. A traditional GC preserves
those objects and seemingly innocent programs may run out of
heap space and fail to terminate [15][23]. We present here
three common forms of space leaks easily fixed using our gar-
bage collection technique.

Recursive functions. In many implementations, a recursive
call involves pushing a new context on the stack, the old con-
text being kept for the continuation of the call. If the continua-
tion does not use all the arguments in the context this may
cause a space leak. For example, the code generated for

f x l = … else x + f (x-1) (tl l)

should not keep the argumentl in the stack during the recur-
sive call. Reorganizing the stack before function calls is costly.
Usually the solution is to overwrite with a special constant (a
hole) arguments when they become useless. Still, this “black-
holing” induces an overhead at run time.

In our framework, types of continuations give us enough
information about the utility of the different arguments and no
blackholing is necessary. In the preceding example, the contin-
uationλx.λl.λr.x+r has typeInt→α→Int→Int and the useless
part of l would be reclaimed if the GC was triggered during a
recursive call tof.

Updatable Closures. A similar problem occurs in implemen-
tations of lazy languages. During the evaluation of a closure, a
pointer on the closure is kept in order to update it later by its
value. The same technique of blackholing is needed to avoid
space leaks [18]. Here, we make the update explicit using an
operatorupdt with typeU→β→β; U being a special type asso-
ciated with the pointer needed for the update andβ the type of
the result. Structures with typesU are not traced but the GC re-
places them by a “blackhole” closure. This closure serves to
retain enough space for the update and to detect certain forms
of non-termination if it is accessed before the update [18]. In
order to deal with shared closures the unification of any type
with U yieldsU.

Tuples. Another class of space leaks has been described by
Hughes [15]. In lazy functions returning tuples, the result, say
r, is often retained in expressions such as (fst r) or (snd r).
Hughes showed that some of these functions are inherently
leaky, no matter how they are expressed. One solution, pro-
posed by Wadler [27], is to modify the GC to perform the sim-
plification rules fst(x,y)=x and snd(x,y)=y. In our approach,
space leaks treated by Wadler’s technique are naturally avoid-
ed. The type offst (resp.snd) being(α,β)→α (resp.(α,β)→β),
our GC will reclaim its second (resp. first) argument.

Tables. When using structures like hash tables or memo tables
it is important to be able to delete accessible but useless entries
[10][16]. This is usually done by introducing a notion of weak
pointers which are treated distinctively by the GC. Each table
entry is a weak pointer to a structure which will be copied iff it
is also referenced by a strong pointer. In our framework this
might be done simply by fixing the type of such tables to beta-
ble[W]. Type W acts like a type variable except that it is not
pointers associated withW but the structure they point to
which are replaced by⊥. If such a structure is shared by a
(strong) pointer, the unification in the defer-list will enforce
the GC to retain it.

Note that we have fixed the different forms of space
leaks presented here without resorting to extensions of section
5. This method does not entail any overhead at run time and
other kinds of leaks (e.g. related to lists) can also be plugged.

7 Implementation issues

We are currently integrating this extension into our transfor-
mation based compiler [9]. This compiler transforms expres-
sions into functional terms which can be seen as a stack-based
machine code. It can compile strict or lazy languages ; its stan-
dard GC is a simple stop© and pointers are distinguished
from values using a tag bit (as in the SML New Jersey compil-
er [3]). We saw in section 6 that some low level information
(like updates or stack layout during a recursive call) must be
taken into account in the type information. We choose to per-
form a new type inference on the functional machine code pro-
duced by our compiler. It could also be done at the same time

as the type checking of source expressions but this information
should be carried along all compilation steps. Type informa-
tion is placed in the code just before the address it is attached
to.

When the extended GC is triggered it first computes the
reference counts of shared nodes. This first scan is a depth first
traversal of the live data graph (using the to-space as an explic-
it stack). Shared cells point to the defer-list which contain their
reference count and an initial type. It is well known that typi-
cally few cells are shared so we may hope that the defer-list re-
mains reasonably small. Anyhow, we may fix its size and treat
overflows conservatively by copying completely the remain-
ing shared structures. This is one advantage of our approach:
when it becomes too costly or complicated we can still rely on
standard techniques (standard types or standard garbage col-
lection).

The second scan examines the stack in a bottom-up fash-
ion in order to perform unification and the copy in the to-
space. With first-order programs local variables can be traced
as soon as the type information associated with the activation
record is read and unified. The space needed by the unification
remains small since a type becomes useless when it has been
unified with the type of the next activation record. However
higher-order programs may involve many unifications before
tracing. For example, in the activation record

(λa.λl.λr. (last l) a) X [length;length;…;sum] …

the local variableX can only be traced after unifying the type
of all the functions of the list. All the necessary unification
could be done during the first scan but (potentially large) mem-
ory space would be needed to store the substitution. We take a
pragmatic approach and limit the number of unifications by ac-
tivation record. This is sufficient to cope with most common
uses of higher-order functions but, for example, functions in
lists of functions will be assumed to need completely their ar-
guments. The tracing of structures according to type informa-
tion is a depth-first traversal using Shorr-Waite algorithm
which uses a link reversal technique to avoid the need for a
stack [25]. Pointers on useless structures are replaced by a spe-
cial constant (the⊥ of section 3).

The GC process is not directly concerned by the bad
worst case complexity of ML-like type inference [20]. It only
uses unification which has a linear time complexity. However,
types can be of exponential length and, for those pathological
cases, the type annotations generated by the compiler should
be approximated (e.g usingT as in section 3.3).

This approach can be used with several garbage collec-
tion schemes [8]: a mark&sweep GC does not mark structures
associated with type variables whereas a stop© GC does
not copy them. The method mixing reference counts with clas-
sical garbage collection (usually performed as a last resort) can
also benefit from it. In this case, the first scan can be avoided.

It is clear that our technique is more costly than tradition-
al garbage collection. In particular, it involves unification and
the complete structure is scanned twice. On the other hand, it
can make leaky or greedy programs terminate. Also, reclaim-
ing more space might prevent or simplify further collections.
The policy we advocate is to use a regular GC most of the
time ; our extension would be used, from time to time, when
heap occupancy exceeds a certain ratio or, at least, as a last re-
sort when the program runs out of memory. For example, in a
generational GC, a standard copy algorithm would take care of
the youngest generations and the extension would be used for
the occasional major collections.

Since our GC can fix different sorts of space leaks, it is
not difficult to exhibit programs for which this technique saves
arbitrarily large amounts of heap space. Still, it would be inter-
esting to estimate the savings on a wide range of programs. At
the moment, our implementation is still in progress and we
cannot provide a full set of benchmarks. However we have
completed a first incomplete prototype: it deals only with first
order strict functional programs and does not implements the
extension of section 5.1. Figure 4 gathers the results obtained
on a few programs (not written for this purpose):mirror is a
simple program on trees,queen is the usual 10 queens prob-
lem, fft is a fast Fourier transform applied to multiplication of
polynomials andcompress is a text compression program.

Figure 4 A few results

These preliminary results are encouraging ; of course we
have also encountered programs (e.g.qsort) where almost
nothing was gained. It is too early to have a precise idea of the
cost of this technique. One important optimization, that we
still have to implement, is to store the type information in com-
piled form (i.e. a routine performing the unification and the
tracing instead of a template representing the type). In most
cases our (unoptimized) prototype is “only” 3 to 4 times slow-
er than the standard stop© although in a very restricted
context (first-order & call-by-value). In any case, several sim-
plified versions (e.g. with no typing extensions or dealing only
with certain forms of space leaks) should be provided as well ;
they could be used depending on the price the user is willing to
pay.

mirror queen fft compress

Regular GC 468 Kb 564 Kb 57 Kb 1,280 Kb

Extended GC 352 Kb 404 Kb 42 Kb 792 Kb

Gain 25 % 28 % 26 % 38 %

8 Conclusion

We have proposed a method to collect more garbage for poly-
morphically typed languages. It is based on parametricity of
polymorphic functions and can be applied to strict or lazy
higher order functional languages. As tagless garbage collec-
tion, the technique needs to attach type information to closures
and return addresses. The overheads are placed on garbage
collection and on code space (to store type information) but
not on normal evaluation. The GC is able to detect garbage
that is still referenced from the stack and may collect useless
parts of otherwise useful data structures. The partial collection
of shared structures is not straightforward and we have de-
scribed a solution which retains the linear time complexity of
garbage collection. We have proposed two extensions of the
type system in order to detect more garbage and presented how
our GC could plug several forms of space leaks. More sophis-
ticated utility analysis could be designed ; as long as the infor-
mation produced can be coded into types our technique would
still apply. A peculiarity of this approach is to mix a static
analysis (typing) and a run time analysis. We benefit from run
time information by exploring the stack which describes a
more specific program and the heap which provides exact
sharing information.

We are not aware of any other general approach to col-
lect useless reachable structures. In [11], Goldberg mentions
that a tagless GC could use a live variable analysis to collect
dead variables of activation records. In our framework, this is
done by reclaiming roots associated with type variables. In
[27], Wadler suggests an extension specific to tuples and we
saw in section 6 how this is done in our approach. There also
exist garbage collectors, adapted to non-deterministic languag-
es, which detect and collect the useless binding values of use-
ful logic variables [5].

Compile-time garbage collection is a static analysis
which detects points in the program where part of the store can
be collected [17][19]. This information can then be used to re-
allocate old store. It reduces store use and therefore reduces
garbage collection overhead. In the best cases those analyses
detect what a traditional GC would detect at run time. We see
this approach and ours as complementary.

The most common optimization allowed by Hindley/
Milner type system is to avoid run time checks. In [4], Baker
shows how to use ML-like type inference for sharing analysis.
We have shown in this paper that polymorphic types can also
be used to improve garbage collection. Searching for other ap-
plications of ML-like type inference is certainly worthwhile
since, contrary to many program analyses, this algorithm is
practical as everyday experience shows.

Acknowledgments. Thanks to Daniel Le Métayer for com-
menting an earlier version of this paper and to Olivier Ridoux
for enlightening discussions and useful suggestions.

Minimum Heap Space Requirement (call-by-value)

References

[1] S. Aditya and A. Caro. Compiler-directed type
reconstruction for polymorphic languages. In
Proc. of the ACM Conf. on Func. Prog. and
Comp. Arch., pp. 74-82, 1993.

[2] A.W. Appel. Runtimes tags aren’t necessary.
Lisp and Symb. Comp., 2, pp. 153-162, 1989.

[3] A.W. Appel. A runtime system.Lisp and Sym-
bolic Computation, 3, pp. 343-380, 1990.

[4] H.G. Baker. Unify and conquer (garbage, updat-
ing, aliasing, …) in functional languages. In
Proc. of the ACM Conf. on Lisp and Functional
Programming, pp. 218-226, 1990.

[5] Y. Bekkers, O. Ridoux and L. Ungaro. Dynamic
memory management for sequential logic pro-
gramming languages. InProc. of Work. on Mem-
ory Management, LNCS 637, pp. 82-102, 1992.

[6] D.E. Britton.Heap Storage Management for the
Programming Language Pascal. Master’s The-
sis, University of Arizona, 1975.

[7] C.J. Cheney. A nonrecursive list compacting al-
gorithm. Communications of the ACM, 13(11),
pp. 677-678, 1970.

[8] J. Cohen, Garbage collection of linked data
structures.Computing Surveys, Vol. 13, 3, 1981.

[9] P. Fradet and D. Le Métayer. Compilation of
functional languages by program transforma-
tion. ACM Trans. on Prog. Lang. and Sys.,
13(1), pp. 21-51, 1991.

[10] D.P. Friedman and D.S. Wise. Garbage collect-
ing a heap which includes a scatter table.Inf.
Proc. Letters, 5(6), pp. 161-164, 1976.

[11] B. Goldberg. Tag-free garbage collection for
strongly typed programming languages. InProc.
of the ACM SIGPLAN’91 Symp. on Prog. Lang.
Design and Implementation,pp.165-176, 1991.

[12] B. Goldberg and M. Gloger. Polymorphic type
reconstruction for garbage collection without
tags. InProc. of the ACM Conf. on Lisp and
Func. Prog., pp. 53-65, 1992.

[13] F. Henglein. Type inference with polymorphic
recursion. ACM Trans. on Prog. Lang. and Sys.,
15(2), pp. 253-289, 1993.

[14] G. Huet.Résolution d’équations dans les lan-
gages d’ordre 1, 2,…ω. Thèse de doctorat d’état,
Université de Paris VII, 1976.

[15] J. Hughes.The design and implementation of
programming languages. D. Phil. Thesis, Ox-
ford University, 1983.

[16] J. Hughes. Lazy memo-functions. InProc. of the
ACM Conf. on Func. Prog. and Comp. Arch.,
pp.129-146, LNCS 201, 1985.

[17] K. Inoue, H. Seki and H. Yagi. Analysis of func-
tional programs to detect run-time garbage cells.
ACM Trans. on Prog. Lang. and Sys., 10(4), pp.
555-578,1988.

[18] R. Jones. Tail recursion without space leaks.
Journal of Func. Progr., 2 (1), pp. 73-79, Jan.
1992.

[19] S.B. Jones and D. Le Métayer. Compile-time
garbage collection by sharing analysis. InProc.
of the ACM Conf. on Func. Prog. and Comp.
Arch., pp.54-74, ACM Press, 1989.

[20] H.G. Mairson. Deciding ML typability is com-
plete for deterministic exponential time. In Proc.
of the 17th ACM Conf. on Princ. of Prog. Lan-
guages, pp. 382-401, 1990.

[21] R. Milner. A theory of type polymorphism in
programming.J. Comput. Syst. Sci. 17, pp. 348-
375, 1978.

[22] P. Mishra and U.S. Reddy. Declaration-free type
checking. InProc. of the ACM Conf. on Princ.
of Prog. Languages, pp. 7-21, 1985.

[23] S.L. Peyton Jones.The Implementation of Func-
tional Programming Languages. Prentice Hall,
New York, 1987.

[24] J.C. Reynolds. Types, abstraction, and paramet-
ric polymorphism. InProc. of Information Pro-
cessing 83, pp. 513-523, 1983.

[25] H. Shorr and W.M. Waite. An efficient machine-
independent procedure for garbage collection in
various list structures.Communications of the
ACM, 10, pp. 501-506, 1967.

[26] R. Tarjan. Depth-first search and linear graph al-
gorithms.Siam J. Comp., 1, pp. 146-160, 1972.

[27] P. Wadler. Fixing some space leaks with a gar-
bage collector.Software Practice and Experi-
ence, 17(9), pp. 595-608, 1987.

[28] P. Wadler. Theorems for free! InProc. of the
ACM Conf. on Func. Progr. and Comp. Arch.,
pp. 347-359, 1989.

[29] P.R. Wilson. Uniprocessor garbage collection
techniques. InProc. of Work. on Memory Man-
agement, LNCS 637, pp. 1-42, 1992.

