
Lossy channels in a dataflow model of computation

Pascal Fradet, Alain Girault, Leila Jamshidian,
Xavier Nicollin, Arash Shafiei

Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP∗, LIG,
38000 Grenoble, France

October 30, 2017

Abstract

In this paper, we take into account lossy channels and retransmis-
sion protocols in dataflow models of computation (MoCs). Traditional
dataflow MoCs cannot easily cope with lossy channels, due to the strict
notion of iteration that does not allow the re-emission of lost or dam-
aged tokens. A general dataflow graph with several lossy channels will
indeed require several phases, each of them corresponding to a portion
of the initial graph’s schedule. Correctly identifying and sequencing
these phases is a challenge. We present a translation of a dataflow
graph, written in the well-known Synchronous DataFlow (SDF) MoC
of Lee and Messerschmitt, but where some channels may be lossy, into
the Boolean Parametric DataFlow (BPDF) MoC.

1 Introduction

The Internet of Things (IoT) has led to the deployment of billions of small
devices that are interconnected mainly by wireless communication protocols.
A lot of IoT applications use a form of dataflow communication between the
nodes, so it seems a good idea to use a dataflow Model of Computation
(MoC) to program such applications. One great advantage is the possibility
to perform formal reasoning at compile time, ensuring bounded memory,
absence of deadlock, schedulability, and performance properties. The prob-
lem is that IoT applications are subject to communication losses, which
can arise for various reasons: e.g., electromagnetic interferences, low band-
width, power shortage (frequent in tiny devices which are typical of the
IoT). There are many communication protocols, such as Automatic Repeat
Request (ARQ) protocols, to deal with lossy channels and to achieve reliable
transmission. These techniques are all based on retransmissions.

∗Institute of Engineering Univ. Grenoble Alpes

1

Traditional dataflow MoCs cannot easily cope with lossy channels, due
to the strict notion of iteration that does not allow the retransmission of
lost or damaged tokens. Consider a simple dataflow graph of the form

X→Y Z→T

where denotes a lossy channel. Executing such a graph consists in exe-
cuting X, Y , Z, and T consecutively. But if Z reads corrupted data it has
to produce immediately data which most probably depends on its input.
Furthermore, if Z then asks for a retransmission, then executing Y again
would entail reading new data from X. The partial re-executions asked by
ARQ protocols do not fit within the standard dataflow model.

In this paper, we propose to use the Boolean Parametric DataFlow
(BPDF) MoC [2] to deal with lossy channels and the necessary retrans-
missions when tokens are damaged or lost. BPDF extends the classical Syn-
chronous DataFlow (SDF) MoC of Lee and Messerschmitt [5] with Boolean
parameters on the dataflow edges, which permits to disable and enable edges.
By carefully controlling the Boolean conditions, we can model the execution
phases of dataflow graphs with lossy channels.

Section 2 presents the necessary background, namely the SDF and BPDF
MoCs. SDF with lossy channels and its translation into BPDF are described
in Section 3. Section 4 suggests several future work directions. Finally,
Section 5 summarizes our contributions and concludes.

2 Background

Since our goal is to extend SDF with a notion of lossy channel and to show
how to translate this model into BPDF, we present these two MoCs in turn.

2.1 Synchronous DataFlow (SDF)

Formally, an SDF graph G = 〈V, E , ι, ρ〉 consists of:

• a finite set of actors (computation nodes) V;

• a finite set of edges E ⊆ V ×V; edges can be seen as unbounded FIFO
channels; if e = (X,Y), also written XY , is an edge, then e is an
outgoing edge of X, and an incoming edge of Y .

• a function ι : E →N that returns, for each edge, its number of initial
tokens (possibly zero);

• a function ρ : E → N>0 × N>0 that returns, for each edge a tuple
containing the production rate of its source actor and the consumption
rate of its sink actor.

2

The execution of an actor (called firing) first consumes data tokens from
all its incoming edges (its inputs), then computes, and finishes by producing
data tokens to all its outgoing edges (its outputs). The number of tokens
consumed (resp. produced) at a given incoming (resp. outgoing) edge at each
firing is called its consumption (resp. production) rate and is specified by
function ρ. An actor can fire only when all its incoming edges have enough
tokens, i.e., at least the number specified by the corresponding rate (edges
may have a non-null number of initial tokens, defined by function ι). For
instance, Fig. 1 shows a simple SDF graph G with three actors A,B,C.

A B C
3

1

2 1 3

2

actor
edge

port rate

initial tokens

Figure 1: A simple SDF graph with 3 actors and 3 edges.

Each edge carries zero or more tokens at any moment. The state of a
dataflow graph is the vector of the number of tokens present at each edge.
The initial state of a graph is defined as the vector of the number of initial
tokens on its edges. For instance, the initial state of the graph of Fig. 1 is
the vector [0; 0; 2].

Because all rates in SDF are fixed values, a static schedule can be
produced and a number of analyses can be performed at compile time
(e.g., boundedness, liveness, throughput, latency, . . .).

An iteration of an SDF graph is a non empty sequence of firings that
returns the graph to its initial state1. For the SDF graph in Fig.1, firing
actor A twice (consuming 2 tokens and producing 6 tokens), actor B thrice
(consuming 6 tokens and producing 3 tokens), and finally actor C once
(consuming 3 tokens and producing 2 tokens) forms an iteration. We write
#X the number of firings of actor X in the iteration.

The basic repetition vector ~Z = [#A=2,#B=3,#C=1] indicates the
number of firings of actors per (minimal) iteration, and the iteration is
noted (A2, B3, C). The repetition vector is obtained by solving the system

of balance equations: each edge X
p q−−→ Y is associated with the balance

equation #X.p = #Y.q, which states that all produced tokens during an
iteration must be consumed within the same iteration. If non-null solutions
exist, the graph is said to be consistent [5], and the smallest solution de-
fines the basic repetition vector. Consistency ensures that the graph can be
executed infinitely in bounded memory.

1We only consider here the minimal iteration. Any multiple of the minimal iteration
is also a valid iteration.

3

The goal of the deadlock analysis is to check that the graph G admits
a schedule that is always live, called an admissible schedule. A simple al-
gorithm to find such a schedule performs a symbolic execution of the SDF
graph [5]. Among the admissible schedules, we distinguish flat single ap-
pearance schedules [4] (FSAS) where, once factorized (i.e., any sequence
A; . . . ;A of n firings of A is replaced by An), each actor appears exactly
once. The SDF graph G of Fig. 1 admits only one FSAS: {A2;B3;C}. An
acyclic SDF graph always admits a FSAS, while a cyclic SDF graph admits
a FSAS if and only if each cycle includes at least one saturated edge, that
is, an edge XY that contains enough initial tokens to fire Y at least #Y
times.

2.2 Boolean Parametric DataFlow (BPDF)

The Boolean Parametric DataFlow (BPDF) MoC [2] extends SDF with two
features: integer parameters for rates, similar to [3], and Boolean parameters
annotating edges. Only the second feature is of interest for the present paper,
so we focus on it.

The general idea is that any edge of a BPDF graph can be labeled with
a Boolean expression built from the following grammar:

B ::= tt | ff | b | ¬B | B1 ∧ B2 | B1 ∨ B2 (1)

where tt is true, ff is false and b denotes Boolean parameters. Each Boolean
parameter b is modified by a single actor called its modifier. Each modifer
has annotations of the form “b@πw” where b is the Boolean parameter to be
set and πw is the period of the Boolean parameter, that is, the exact number
of firings of its modifier between two successive assignments2.

Formally, a BPDF graph is a tuple G = 〈V, E , ι, ρ, Pb, β,M, πw〉 (for the
sake of simplicity, integer parameters are omitted here) where:

• V (actors), E (edges), ι (initial tokens), and ρ (rates) are defined as in
SDF graphs (see Section 2.1);

• Pb is the set of Boolean parameters;

• β : E→B returns, for each edge, its Boolean expression;

• M : Pb→V returns, for each Boolean parameter, its modifier;

• πw : Pb→N>0 returns, for each Boolean parameter, its writing period.

In general, a Boolean parameter can take several values during an iter-
ation of a BPDF graph. However, in the context of this paper, Boolean pa-
rameters take only one value per iteration. In other words, ∀b ∈ Pb, πw(b) =
#M(b). Figure 2 shows a BPDF graph with three actors and two Boolean
parameters.

2Obviously, an assignment does not necessarily change the value.

4

A B C
b b ∧ b′

[b@2] [b′@3]

3 2 1 3

boolean expressionsmodifier of b period of b

Figure 2: A simple BPDF graph.

An edge labeled by a Boolean expression is disabled whenever its expres-
sion evaluates to false, and enabled otherwise. An edge not labeled by a
Boolean expression can be seen as labeled by tt , and thus behaves exactly
as in SDF. When an edge X→Y is disabled, X fires but does not emit any
token to Y (but emits tokens on its enabled outgoing edges) and Y fires but
does not read any token from X (but must read tokens from all its enabled
incoming edges). When an actor X is such that all its edges are disabled,
it still fires; such firings are referred as dummy. However, a modifier of one
or more Boolean parameters may still update their value during a dummy
firing.

A user of a Boolean parameter b is an actor with one of its edge labeled
by a Boolean expression that depends on b. Formally, the set of users of b
is defined as:

Users(b) = {X ∈ V | ∃Y ∈ V : b ∈ β(XY) ∨ b ∈ β(Y X)}

Once a new value for b is produced, it is propagated to all users of b.
Whenever it fires, a BPDF actor X performs the following steps:

1. Read the value of each Boolean parameter b for which X ∈ Users(b)
(only at its first firing in the iteration);

2. Consume tokens on the enabled incoming edges, which must have
enough tokens (otherwise the actor is blocked);

3. Compute its new internal state and outputs;

4. Produce tokens on the enabled outgoing edges;

5. If X is the modifier of a Boolean parameter b and the current firing
corresponds to its period (πw(b)), then the value of b is propagated to
all its users (Users(b)). In this paper, πw(b) is restricted to be equal
to #M(b) so such propagations take place only during the last firing
of each modifier in the iteration.

In constrast, an SDF actor only performs steps 2, 3, and 4, and of course
all its edges are always enabled.

Consistency analysis in BPDF requires to check, as in SDF, rate consis-
tency. We ignore the Boolean expressions and solve the system of balance

5

equations to check that there exists a non-null solution. In general, a second
condition called period safety, should be checked (see [2]). However, in this
paper, since Booleans parameters are changed at most once by iteration the
second condition is trivially true. Liveness has also to be checked using a
refinement of the algorithm used in SDF (see [2]). It is easy to check that the
BPDF graph of Fig. 2 is consistent, live, and that its iteration is (A2, B3, C).

In general, integer parameters prevent the generation of static schedules
for BPDF graphs [1]. In the context of this paper, we do not consider integer
parameters and we are able to generate static schedules. For instance, the
only FSAS of the BPDF graph of Fig. 2 is {A2;B3;C}. Note that A and B
are the modifiers of b and b′ respectively, whereas A is a user of b, and B
and C are users of b and b′. Therefore, the first firing of A reads the value
of b produced in the previous iteration, whereas the second (and last) firing
produces the value of b that will be used in the next iteration. Similarly,
the first firing of B reads the values of b and b′ produced in the previous
iteration, while the third (and last) firing of B produces the value of b′ that
will be read in the next iteration. Finally, the first (and only) firing of C
reads the values of b and b′ produced in the previous iteration.

3 From lossy SDF to BPDF

We call lossy SDF the SDF model enriched with the information on whether
edges are lossy or not. Informally a lossy SDF graph should behave exactly
as if all its channels were non lossy. Its high-level semantics is therefore given
by the SDF semantics. One assumption needs to be formulated though: on
each lossy channel, tokens are eventually transmitted correctly. If this can-
not be guaranteed, a maximum number of retransmissions can be specified
for each lossy channel, with a default token value (and, in that case, the
semantics departs from SDF’s).

We show in this section how a lossy SDF graph can be translated auto-
matically into a BPDF graph with an equivalent semantics.

The intuitive semantics of lossy SDF can be implemented based on se-
lective retransmissions. Consider the same simple dataflow graph as in the
introduction

X→Y Z→T

where denotes a lossy channel. We saw that the standard dataflow exe-
cution does not suit potential re-executions. Our solution is to divide the
execution of this graph in three phases: first the X-Y part where X fires
and Y only reads (called the upstream phase), then the Y -Z part where
Y only writes and Z only reads (called the lossy phase), and finally the
Z-T part where Z only writes and T fires (called the downstream phase).
This division allows re-executions of Y -Z until the token sent by Y is cor-
rectly received by Z. Of course when there are multiple lossy channels or

6

cycles in the graph, many phases should be considered and combined. We
present how to implement such phases in BPDF using Boolean conditions
to enable/disable individual edges.

3.1 Translation of a simple SDF graph with one lossy channel

Consider the SDF graph of Fig. 3, where the edge BC is lossy, indicated
by a curly arrow. Its iteration is (A2, B3, C3, D3) and its only FSAS is
{A2;B3;C3;D3}.

A B C D
3 2 1 1 1 1

Figure 3: A simple SDF graph with one lossy channel BC.

To account for the lossy channel BC, this graph is executed into three
consecutive phases:

1. Upstream phase: First {A2;B3} where B reads the tokens produced
by A but does not send any token to C;

2. Lossy phase: Then {B3;C3} which may be repeated until all tokens
sent by B are correctly received by C; in this phase, B does not read
any token on channel AB;

3. Downstream phase: Finally {C3;D3} where C does not read tokens
from the edge BC and sends the tokens to D.

The BPDF graph implementing these three phases is shown in Fig 4.
Its FSAS is {A2;B3;C3;D3}. The first phase is when b = tt ∧ b′ = tt . The
Boolean expressions of both edges BC and CD evaluate to ff . The actor
B fires three times and reads its incoming tokens from A but does not send
any. Since both C and D are disconnected their three firings are dummy.
The second phase corresponds to b = ff ∧ b′ = tt . Now the firings of A and
D are dummy, B does not read any tokens from A, and C does not write
any token to D. The only exchange of tokens takes place between B and C.
This phase can be repeated as long as b = ff ∧ b′ = tt . The third phase
is when b = ff ∧ b′ = ff , yielding the iteration {A2;B3;C3;D3} where the
firings of A and B are dummy firings, and the only exchange of tokens takes
place between C and D. This three phase cycle can now be repeated by
returning to b = tt ∧ b′ = tt .

A B C D
3 2 1 1 1 1

[b@3] [b′@3]
b ∧ b′ b ∧ b′ b ∧ b′

Figure 4: The translation into BPDF of the graph of Fig. 3.

7

The Boolean parameter b could be set by any actor in the graph. Here we
have chosen B to set b, thereby controlling the end of the first phase which
always occurs after one iteration. In contrast, the Boolean parameter b′ must
mandatorily be set by actor C, because C is the only actor capable of assert-
ing when the tokens produced by B have been received correctly. We assume
that the communication system layer provides information about token cor-
ruption and/or loss. This can be performed by using error-detecting codes
and/or time out mechanisms. For instance, one of the Automatic Repeat-
Request (ARQ) protocols, e.g., Stop-and-Wait ARQ, Go-Back-N ARQ, or
Selective Repeat ARQ, can be used [9]. In general, the SDF graph will in-
clude several lossy channels, yielding more than three phases and requiring
more Boolean parameters, as we see in the next section.

3.2 General translation algorithm

In this section, we propose a general translation from a lossy SDF graph into
an equivalent BPDF graph. By “equivalent”, we mean that the semantics of
the resulting BPDF graph must coincide with the semantics of the original
lossy SDF graph.

Let G = 〈V, E , ι, ρ〉 be the initial SDF graph and let L ⊆ E be the subset
of lossy channels. We assume that G admits a sequential FSAS denoted
by SG. The translation from G into a semantically equivalent BPDF graph
proceeds as follows:

1. We number the actors from 1 to n (n = |V |) according to their order of
appearance in SG. They are now uniquely identified as V1, V2, . . .Vn.

2. SG also induces a total order on the edges of E . An edge AB occurs
before another XY , if A occurs before X in the FSAS SG and AB
occurs before AC if B occurs before C in SG. Formally,

∀(ViVj), (VkV`) ∈ E , (ViVj) < (VkV`)⇔ (i < k) ∨ (i = k ∧ j < `)

We number all edges from 1 to p (p = |E|) which are now uniquely
identified as E1, E2, . . . , Ep.

3. The total order on V can be projected onto L, yielding a total order
on L, so we can number lossy channels from 1 to |L| = q. All lossy
channels in L are now uniquely identified as L1, L2, . . .Lq. Moreover,
for each j ∈ [1, q], there exists a unique i ∈ [1, p] such that Lj = Ei.
We denote this index i = ϕ(j).

4. Then, G is translated into the BPDF graphG′ = 〈V, E , ι, ρ, Pb, β,M, πw〉
such that:

• Actors V, edges E , production/consumption rates ρ, and number
of initial tokens ι remain the same as in G.

8

• For each lossy channel Li, we introduce two Boolean parameters
bi and b′i. The resulting set of Boolean parameters is defined as:
Pb = {bi, b′i|1 ≤ i ≤ q}.
• For all 1 ≤ i ≤ p, we set β(Ei) = bc1 ∧ bc2 ∧ bc3 with:

– bc1 accounts for all lossy channels that are after Ei in SG:
bc1 =

∧q
j=u(bj ∧ b′j) with u = min{j ∈ [1, q] |ϕ(j) > i}.

– bc2 accounts for the fact that Ei may be itself a lossy channel:
if ∃j ∈ [1, q] such that Ei = Lj , then bc2 = bj∧b′j else bc2 = tt .

– bc3 accounts for all lossy channels that are before Ei in SG:
bc3 =

∧`
j=1(bj ∧ b′j) with ` = max{j ∈ [1, q] |ϕ(j) < i}.

• For all 1 ≤ i ≤ q and Li = SiRi, we set M(bi) = Si and M(b′i) =
Ri with πw(bi) = #M(bi) and πw(b′i) = #M(b′i).

The BPDF actors connected by a lossy channel S R must also be
instrumented. The receiver R needs to detect when the received tokens are
correct so that it can change the phase by propagating a new Boolean value.
As already mentioned, we assume that the communication system marks
tokens as correct or incorrect. The sender S needs to keep a copy of its
transferred tokens in order to resend them when necessary. It knows not to
resend tokens when the phase changes.

3.3 Sequencing the phases

The BPDF graph of Fig. 4 runs according to three phases. These three
phases are summarized in the following table on the left (dummy firings are
omitted):

Phase Partial schedule b1 b′1
1 (upstream) {A2;B3} tt tt

2 (lossy) {B3;C3}∗ ff tt

3 (downstream) {C3;D3} ff ff

tt ∧ tt

ff ∧ tt

ff ∧ ff

b1 = ff;

b′1 = ff;

b1 = tt;

b′1 = tt;

On the right we have shown the labeled transition system (LTS) of the
three phases. We adopt the convention that all the Boolean parameters are
initially equal to tt , so its initial state is phase 1, corresponding to tt∧tt . To
implement these three phases, the modifiers of the two Boolean parameters
must implement the following pseudo-code:

Actor B Actor C

if (phase==1) then b1=ff; if (phase==2) then b′1=ff;
if (phase==3) then b1=tt; if (phase==3) then b′1=tt;

Note that an actor can easily determine the current phase by looking at
the current values of the Boolean parameters.

9

We now address the general case. A BPDF graph with q lossy channels
exhibits at most 2q+1 phases, due to the fact that we totally order the edges
according to the FSAS. We have chosen to implement these 2q + 1 phases
with 2q Boolean parameters (the bis and b′is), although one may think that
dlog2(2q + 1)e Booleans would be enough. Yet, there is a restriction that,
for each lossy channel Li = SiRi, only Ri can control the end of the lossy
phase of Li, because only Ri can tell whether or not the tokens sent by Si
have been received correctly. It follows that at least q Boolean parameters
are required for this, one for each lossy channel (the b′is). Yet, the remaining
q Booleans could be optimized (the bis). This could be the topic of future
work.

The sequencing of the phases for a general graph can be represented by
a similar LTS as the one shown above for the graph of Fig. 4. To implement
such an LTS, we must provide the pseudo-code for each actor that modifies
one (or more) Boolean parameter(s). For each lossy channel Li = SiRi,
recall that we have two Boolean parameters, bi and b′i, respectively modified
by Si and Ri, such that Si controls the switching from phase 2i − 1 to 2i
while Ri controls the switching from phase 2i to 2i+1. After the last phase,
each modifier must also reset its Boolean parameters to tt to return to the
initial phase. As a consequence, Si and Ri must implement the following
pseudo-code:

Si Ri

if (phase==2*i-1) then bi=ff; if (phase==2*i) then b′i=ff;
if (phase==last) then bi=tt; if (phase==last) then b′i=tt;

As we have said, the maximum number of phases with q lossy channels
is 2q + 1. Yet, there are several cases when this number can be reduced.
For instance when there are two lossy channels in sequence, say XY and
Y Z, then Y will update both the Boolean b′i corresponding to XY and the
Boolean bi+1 corresponding to Y Z. As a consequence, there is one phase less
because two Booleans are set to ff at the same firing of Y . Another typical
case is when there is a fork of two lossy channels, say XY and XZ. As in
the previous case, X sets two Booleans to ff during its firing, so there is one
less phase. It follows that the precise number of phases must be computed
prior to obtain the value of last used in the above table.

Finally, a particular case occurs when the first lossy channel L1 is also
the first edge E1. In this case, there is no real first phase, because when
all the Boolean parameters are equal to tt and all the edges of the BPDF
graph are disabled, so each actor performs a dummy firing. A similar case
occurs when the last lossy channel Lq is also the last edge Ep. In this case
there is no real last phase since all the actors perform only a dummy firing.
Of course, these special situations could be optimized out.

10

3.4 Cyclic graphs

Cyclic lossy SDF graphs pose a problem because the backward edges appear
both in the upstream phases so that the destination actor can consume the
initial tokens, and in the downstream phase so that the source actors can
produce the initial tokens for the next iteration of the graph.

Recall that we have assumed that each cycle contains at least one satu-
rated edge (see Section 2.1).

A B C D E
1 1 1 1 1 1 1 1

11

Figure 5: An SDF graph with a cycle and a lossy channel.

Consider the example of Fig. 5. For the sake of simplicity, all the
production and consumption rates are equal to 1. Assuming the FSAS
{A;B;C;D;E}, its translation into BPDF is shown in Fig. 6.

A B C D E
1 1 1 1 1 1 1 1

11

[b@1] [b′@1]
b ∧ b′ b ∧ b′ b ∧ b′ b ∧ b′

b ∧ b′

Figure 6: The BPDF graph obtained by translating the SDF graph of Fig. 5.

As we can see, the backward edge DB (which is saturated thanks to the
initial token) belongs only to the downstream phase, hence it is not executed
during the upstream phase. It follows that, whenB fires during the upstream
phase, it cannot read any initial token from the backward edge DB because
this edge is disabled. To solve this issue, we consider that all initial tokens
are in fact stored directly in the internal memory of the destination actor
of the edge to which they belong. In the case of Fig. 6, this means that the
initial token of the backward edge DB is stored in the internal memory of
actor B. As a consequence, during the upstream phase, B reads the token
sent by A and the initial token stored in its internal memory, and sends a
token to C. During the lossy phase D reads the token sent by C until this
token is correctly received. Finally, during the downstream phase D sends
a token to E and a token to B on the backward edge, this last token being
in fact directly written in the internal memory of B.

11

4 Future work

This work is still in progress and we present in this section a number of
issues that remain open.

Influence of the chosen FSAS

The translation algorithm is based on an arbitrary FSAS of the considered
graph G. An interesting question is what is the influence of this choice
whenever G admits several FSASs.

Let us first remark that the choice of the FSAS can change the number
of phases. Consider for instance the SDF graph G of Fig. 7(a) with one
lossy channel, with its translation into BPDF G′ shown in Fig. 7(b).

A B C

D

1 1 1 1

1

1

(a)

A B C

D

1 1 1 1

1

1

[b@1] [b′@1]
b ∧ b′ b ∧ b′

?

(b)

Figure 7: (a) A graph G that admits two FSASs. (b) Its translation G′.

The Boolean expression attached to BD is marked with a ‘?’ because it
depends on the FSAS of G. Indeed, G admits two FSASs: {A;B;C;D} and
{A;B;D;C}. With the first FSAS, BD belongs to the downstream phase,
thereby getting the Boolean expression b ∧ b′. With the second FSAS, BD
belongs to the upstream phase, thereby getting b ∧ b′. The second FSAS
results in two phases against three phases for the first FSAS. A follow up
question is the impact of the reduction of the number of phases. More
generally, we should strive to choose a FSAS that optimizes performance
criteria.

Parallel schedules

Another topic of future work is how to consider parallel schedules. So far, we
start from a sequential FSAS to sequence the phases. This is adequate when
the SDF graph is sequential, but not when it is parallel. An idea to preserve
the parallelism in phases would be to identify, for each lossy channel Lj ,
its upstream cone UC(Lj) and its downstream cone DC(Lj). Intuitively,
the upstream cone of XY is the set of all predecessor edges of X. This is
a classical graph traversal problem. Each edge Ei in the resulting BPDF
graph will therefore get the Boolean expression β(Ei) = bc1∧bc2∧bc3 where:

• bc1 accounts for all the lossy channels Lj such that Ei belongs to
UC(Lj);

12

• bc2 accounts for the fact that Ei may be itself a lossy channel;

• bc3 accounts for all the lossy channels Lj such that Ei belongs to
DC(Lj).

This would result in a BPDF graph with more parallelism than with the
algorithm proposed in Section 3.2, because the phases would not be totally
ordered as in Section 3.3. This would allow the generation of parallel code
(for which there is a huge literature, e.g., [6] to cite just one).

A related topic is to handle joins of lossy channels in parallel instead of
sequentially. Consider, for instance, a set of lossy channels {X1Y, . . .XnY }.
The phases of the lossy channelsXiY can actually be run in parallel: Y would
handle all the Boolean parameters b′i, setting them from tt to ff as soon as
the tokens from the corresponding actors Xi are received correctly, and
moving to the next phase only when the predicate

∧n
i=i b

′
i becomes tt .

Optimization and performance evaluation

When the initial graph contains q lossy channels, we use 2 ∗ q Boolean
parameters to make up the phases in the BPDF graph. As explained in
Section 3.3, this could be optimized.

The general topic of the performance evaluation of the BPDF graphs
raises many issues because the number of token retransmissions necessary
for each lossy channel cannot be known in advance. Therefore, the exact
worst case response time cannot be computed. Instead, we may compute
the expected worst case response time, based on the probability distribution
of the damaged/lost tokens on each lossy channel.

5 Conclusion

Modeling lossy channels in a dataflow MoC is relevant for the future IoT ap-
plications where mobile devices communicate through wireless channels that
are subject to packet loss or damage. In order to model dataflow applica-
tions with unreliable communications, we have presented a translation from
an SDF graph with lossy channels into the Boolean Parametric DataFlow
(BPDF) MoC. This translation isolates the necessary phases of execution of
the graph to cope with the retransmissions caused by lost or damaged tokens
transmitted over the lossy communication links, and to sequence correctly
those phases.

There are a few dataflow MoCs that could express such phases. For
instance, we could adopt the Scenario Aware DataFlow MoC (SADF) [8] or
its FSM extension [7]. However, this has the inconvenient that all phases
must be made explicit, resulting in a potential state space explosion if many
lossy channels must be modeled. For this reason, we have chosen BPDF,

13

which uses Boolean parameters to encode the phases and to keep them
implicit.

A final issue is the interaction between actors and the system in charge
of detecting the lost and/or damaged tokens sent over the lossy channels.
We have assumed a communication system layer that implements the error-
detecting code (in charge of detecting damaged tokens), a timeout mecha-
nism (in charge of detecting lost tokens) and some ARQ protocol in charge
of propagating the Boolean parameters from their modifier to all their users.
These hypotheses should be validated by an actual implementation.

Acknowledgments

The authors are grateful for the numerous discussions with Prof. Edward
Lee, the invitations to visit Berkeley, and all the good moments spent at
various conferences around the world. In more than one way, the work
presented in this paper originated in those discussions.

References

[1] V. Bebelis, P. Fradet, and A. Girault. A framework to schedule parametric
dataflow applications on many-core platforms. In International Conference on
Languages, Compilers and Tools for Embedded Systems, LCTES’14, Edinburgh,
UK, June 2014. ACM.

[2] V. Bebelis, P. Fradet, A. Girault, and B. Lavigueur. BPDF: A statically ana-
lyzable dataflow model with integer and boolean parameters. In International
Conference on Embedded Software, EMSOFT’13. ACM, September 2013.

[3] B. Bhattacharya and S. Bhattacharyya. Parameterized dataflow modeling for
DSP systems. IEEE Trans. Signal Processing, 49(10):2408–2421, October 2001.

[4] S.S. Bhattacharyya, P.K. Murthy, and E.A. Lee. Software Synthesis from
Dataflow Graphs. Kluwer Academic Pub., Hingham, MA, 1996.

[5] E.A. Lee and D.G. Messerschmitt. Synchronous data-flow. Proceedings of the
IEEE, 75:1235–1245, September 1987.

[6] G.C. Sih and E.A. Lee. A compile-time scheduling heuristic for interconnection
constraint heterogeneous processor architectures. IEEE Trans. Parallel and
Distributed Systems, 4(2):175–187, February 1993.

[7] M. Skelin, M. Geilen, F. Catthoor, and S. Hendseth. Parametrized dataflow
scenarios. In International Conference on Embedded Software, EMSOFT’15,
pages 95–104, Amsterdam, Netherlands, October 2015. IEEE.

[8] S. Stuijk, M.C.W. Geilen, B.D. Theelen, and T. Basten. Scenario-aware
dataflow: Modeling, analysis and implementation of dynamic applications. In
IC-SAMOS’11, pages 404–411. IEEE, 2011.

[9] A.S. Tanenbaum and D. Wetherall. Computer networks, 5th Edition. Pearson,
2011.

14

