
IS
S

N
 0

24
9-

63
99

 IS
R

N
 IN

R
IA

/R
R

--
44

35
--

F
R

+
E

N
G

appor t
de r echerche

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Detection and resolution of aspect interactions

Rémi Douence, Pascal Fradet, Mario Südholt

N˚4435

Avril 2002

THÈME 2

Detection and resolution of aspect interactions

Rémi Douence�, Pascal Fradety, Mario Südholt�

Thème 2 � Génie logiciel
et calcul symbolique

Projet Lande

Rapport de recherche n�4435 � Avril 2002 � 15 pages

Abstract: Aspect-Oriented Programming (AOP) promises separation of concerns at the imple-
mentation level. However, aspects are not always orthogonal and aspect interaction is an important
problem. Currently there is almost no support for the detection and resolution of such interactions. The
programmer is responsible for identifying interactions between con�icting aspects and implementing
con�ict resolution code.

In this paper, we propose a solution to this problem based on a generic framework for AOP. The
contributions are threefold: we present a formal and expressive crosscut language, two static con�ict
analyses and some linguistic support for con�ict resolution.

Key-words: Aspect-oriented programming, aspect interaction, static analysis, AspectJ

(Résumé : tsvp)

� {douence, sudholt}@emn.fr, Équipe OCM (Objets, Composants, Modèles), École des Mines de Nantes, Nantes,
France. Work partially funded by the EU project �EasyComp� (www.easycomp.org), no. IST-1999-014191.

y fradet@irisa.fr

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex (France)

Téléphone : 02 99 84 71 00 - International : +33 2 99 84 71 00
Télécopie : 02 99 84 71 71 - International : +33 2 99 84 71 71

Détection et résolution des interactions entre aspects

Résumé : La programmation par aspects vise à une meilleure séparation des problèmes via une
nouvelle notion de modularité : les aspects. Cependant, les aspects ne sont pas toujours orthogonaux et
il n'existe pas d'outils d'aide à la détection et résolution de leurs possibles interactions. Le programmeur
se doit d'identi�er et de résoudre manuellement les con�its entre di�érents aspects.

Dans ce rapport, nous proposons un cadre générique de programmation par aspects répondant à ce
problème. Les contributions de ce travail sont triples: nous proposons un langage formel et expressif
d'aspects, deux analyses statiques détectant les interactions potentielles, et des extensions linguistiques
permettant de les résoudre.

Mots-clé : Programmation par aspects, interactions, analyse statique, AspectJ

Detection and resolution of aspect interactions 3

1 Introduction

Separation of concerns is a valuable structuring principle for the development of software systems.
Aspect-Oriented Programming (AOP) [7] promises a systematic treatment of concern separation at the
implementation level. Once concerns are expressed separately in terms of di�erent aspect de�nitions,
one of the most fundamental problems of AOP is that of interaction between aspects, i.e., con�icts
between aspects which are not orthogonal [3]. There is almost no support for the treatment of aspect
interactions: the programmer is responsible for identifying interactions between con�icting aspects and
for implementing con�ict resolution code.

We believe that the the treatment of aspect interactions should be separated from the de�nition of
the aspects themselves. We therefore propose a three-phase model for multi-aspect programming:

1. Programming. The aspects which are part of an application are written independently, possibly
by di�erent programmers.

2. Con�ict analysis. An automatic tool detects interactions among aspects and returns informative
results to the programmer.

3. Con�ict resolution. The programmer resolves the interactions using a dedicated composition
language. The result of this phase can be checked once again as in phase 2.

The main objective of this paper is to provide support for this three-phase process. Our solution is
based on a generic framework for AOP, which is characterized by a very expressive crosscut language,
static con�ict analyses and linguistic support for con�ict resolution.

In Section 2, we formally de�ne a general model for AOP which (conceptually) relies on a mon-
itor observing the execution trace. Aspects consist of crosscuts matching regular expressions (i.e.,
sequences) of execution points, which de�ne where the execution of the base program is modi�ed,
and inserts, which de�ne the aspect code to be executed. Aspect weaving is modeled as an execution
monitor recognizing crosscuts and applying inserts. The interactions treated in this paper occur when
two crosscuts match the same point in the execution trace. In Section 3, we propose two di�erent
analyses detecting aspect interactions, independently of the base program or only w.r.t. a speci�c base
program. Section 4 proposes some linguistic support for the resolution of con�icts caused by aspect
interactions. In particular, we introduce commands making explicit the composition of several inserts
at the same execution point. We also present commands to control the visibility of aspects w.r.t. other
aspects. These commands are taken into account by aspect transformation so that interaction analyses
can still be applied to check that con�icts have been e�ectively resolved. We conclude by a brief review
of related work and future research directions.

This paper provides a generic model for AOP that does not rely on any speci�c programming
language. In order to provide more intuition, we illustrate our di�erent concepts by instantiating the
framework to AspectJ [8]. We assume a basic familiarity with AOP [7] in general and AspectJ in
particular.

2 Framework

We model weaving as a dynamic monitor, observing the execution of the program and inserting in-
structions according to execution states. An aspect speci�es which instructions to insert at which
execution state. This study is made within a generic formal framework. In particular, we do not rely
upon a particular programming language and consider a very expressive crosscut language.

We �rst present our model of program execution. We then introduce our aspect language that
is based on crosscuts, inserts and composition operators. The operators support expressive aspect
de�nitions and enables modeling of aspect interactions. Finally, we describe the weaver, that is to say,
how executions are monitored, i.e., observed and woven.

RR n�4435

4 Rémi Douence, Pascal Fradet, Mario Südholt

2.1 Observable execution and join points

The relevant part of an execution for weaving is called the observable execution trace. We de�ne it
using a transition relation! between observable execution states. A!-step may represent a sequence
of actual execution steps. The relation ! can be de�ned on the basis of a small-step semantics [9] of
the base programming language. Observable states are con�gurations of the form (j; P; �), where j,
the current join point, is an abstraction of the (static) program P and the (dynamic) execution state
�. Join points are terms which can be matched against crosscuts, i.e., term patterns. Their nature
can be syntactic (e.g., instructions) but also semantic (e.g., dynamic values).

The entry and exit of a program are denoted by two special join points: # and ", respectively. The
observable execution trace of a program with an initial state �0 is then of the form:

(#; P; �0) ! : : :! (ji; P; �i) ! : : :

If the reduction terminates, there exists a �n such that (#; P; �0)
�
! ("; P; �n), where

�
! denotes the

transitive, re�exive closure of !.

AspectJ: In AspectJ, join points denote, among others, method calls, �eld accesses and exception
handler executions. They are represented at run time by a variable thisJoinPoint that contains static
information (e.g., method signatures, source locations) as well as dynamic information (e.g., values of the
receiver and arguments of a call). For example, when a point object (whose address is 4711) is moved to
the origin through a call occurring in a line object (at address 1213), the corresponding join point can be
modeled in our framework by a term:

call(void Point.move(int,int), within(Line),

this(Line,1213), target(Point,4711), args(0,0)) �

2.2 The aspect language

The basic constituents of aspects are rules of the form

C � I

where C is a crosscut and I an insert. The insert I is a program that is executed whenever the crosscut
C matches the current join point. Rules are combined into aspects using three operators (sequence,
repetition and choice).

Crosscuts

To achieve highest expressiveness, crosscuts would be de�ned as arbitrary functions matching join
points. However, this is too general for our purposes: we consider a more speci�c yet expressive
crosscut language in which checking interactions is feasible.

Let us de�ne terms as �nite trees of the form

T ::= f T1 : : : Tn j x

where f is an n-ary (n � 0) symbol and x is a variable. A term can be seen as a pattern to be matched
on join points. The symbol f can represent a syntactic element of the programming language or, more
generally, an information contained within join points. Note that our aspect language is generic and
can be used to de�ne more specialized term languages (e.g., one for AspectJ).

A crosscut is made of conjunctions, disjunctions and negations of terms:

C ::= T j C1 ^C2 j C1 _ C2 j :C

For example, using a more concrete syntax than the abstract trees denoting terms, the crosscut match-
ing calls to a function g where one of the arguments is a constant a can be written g(x; a) _ g(a; x).

INRIA

Detection and resolution of aspect interactions 5

The formulas used to express crosscuts belong to the so-called quanti�er free equational formulas
[2]. Whether such a formula has a solution is decidable. This is one of the key properties making the
analyses described in Section 3 feasible.

The application of a crosscut to a join point j is written C j. It amounts to solving the formula
obtained by replacing each term T in C by the equation j = T . If a crosscut does not match the
program point (i.e., the formula has no solution) then we write C j = fail. If the crosscut matches
the program point then we write C j = � where � is a substitution mapping the variables of the
crosscut to their unique solution (variables with several solutions do not appear in �)

We use false for the crosscut which does not match any join point and true for the crosscut that
matches all join points. Let z be a fresh variable then false can be de�ned by the crosscut z ^ :z and
true by z.

AspectJ: AspectJ provides a concrete syntax for crosscuts (�pointcuts�), using, among others, sig-
natures with variables and wildcards. For example, moving points could be tracked in AspectJ with the
crosscut de�nition:

pointcut moving(Point p, int x): target(p) && call(void move(x,*))

This crosscut can be translated in our framework into a pattern:
call(void Point:move(int; int); within(w1); this(w2); target(Point p); args(x;w3))

where fresh variables wi express wildcards or irrelevant information. AspectJ's pointcuts are very close to
the crosscut language we introduced. They are de�ned as terms containing variables ranging over values of
programs and they may be combined using the same logical operators (&&, ||, !). �

Inserts

An insert I is a term as introduced above. The intuition behind a rule C � I is that when the crosscut
matches the current join point, i.e., C j = �, then �I is executed. Hence, C j must yield a substitution
binding all the variables of I. Any speci�c aspect language must ensure that �I is a always a valid
piece of code (in particular, it does not contain unde�ned variables). In the remainder of this paper
we assume that all �I are valid.

At some places, we use the special insert skip that represents an instruction doing nothing. We
write always for the rule true � skip that matches any join point and does nothing and never for the
rule false� skip that does not match any join point.

AspectJ: Inserts, called �advice� in AspectJ, are de�ned as Java code to be executed when a crosscut
matches. As in our language, the code in the advice clause may refer to the values bound to the variables
occurring in the corresponding pointcut. �

Aspects

In order to de�ne aspects, we use a syntax similar to process calculi such as CSP. An aspect is de�ned
by the following grammar:

A ::= �a:A ; recursive de�nition

j C � I ; A ; sequence

j C � I ; a ; end of sequence

j A1 2 A2 ; choice

An aspect is either

� The recursive de�nition of an aspect �a:A which is equivalent to the aspect A where all the
occurrences of the variable a are replaced by �a:A.

� A sequence C � I ; X, where X is an aspect or a variable. These linear sequences always end
with a variable. This is needed to ensure that aspects are regular (�nite state). If the crosscut

RR n�4435

6 Rémi Douence, Pascal Fradet, Mario Südholt

C matches the current join point, then X becomes the aspect to be woven. We consider that
as soon as a rule has matched a join point, it terminates. An aspect trying to apply C � I

throughout the execution can be expressed as

�a:C � I ; a

This aspect does not evolve during the execution: such an aspect is called stateless. An aspect
applying C � I only once can be expressed as

C � I ; (�a:never ; a)

Indeed, as soon as C � I is applied, the weaver will keep trying to apply never. This is an
instance of an aspect evolving according to the join points encountered. Their implementation
must use some kind of state to represent this evolution. We use the term stateful to refer to this
general form of aspects.

� A choice construction A1 2 A2 which chooses the �rst aspect that matches a join point (the other
is thrown away). If both match the same join point, A1 is chosen. For example, the aspect trying
to apply C � I only on the current join point and doing nothing afterward can be expressed as

(C � I ; (�a:always ; a)) 2 (�a:always ; a)

If C matches the current join point, the weaver chooses the �rst aspect, executes the insert I
and the aspect becomes �a:always ; a that keeps doing nothing. Otherwise, the weaver chooses
the second recursive aspect which is �a:always ; a as well.

Recursive de�nitions, sequencing, and choices allow the speci�cation of �nite state aspects which
evolve according to the join points encountered. For example, a security aspect that logs �le accesses
(calls to read) during a session (from a call to login until a call to logout) can be expressed as

�a1:login� skip ; (�a2:(logout� skip ; a1) 2 (read(x)� addLog(x) ; a2))

where x denotes the name of the accessed �le.

Aspect composition

Aspects addressing di�erent issues (such as debugging and pro�ling) are composed using a parallel
operator k. Typically, the weaver takes a parallel composition of n aspects A1k : : : kAn and tries to
apply each of them at each join point. The parallel operator is non-deterministic. For example, the
composition

(�a:C1 � I1 ; a) k (�a:C2 � I2 ; a)

inserts I1 (resp. I2) if C1 (resp. C2) matches the current join point. When C1 and C2 match the same
join point, it is not speci�ed whether I1 is executed before I2 or vice versa. In this case, we say that
(�a:C1 � I1 ; a) and (�a:C2 � I2 ; a) interact.

AspectJ: AspectJ provides very limited linguistic support for aspect composition as we de�ned it.
Aspects are rules (in the sense above) and they are repeatedly applied throughout the program execution.
Each AspectJ aspect can be expressed in our framework as �a:C � I ; a. Several aspects are composed
in parallel (k). Therefore, they may match the same join point and interact. In AspectJ, con�icts are
resolved based on user annotations (�aspect domination�) and the hierarchy of aspects. However, when two
aspect are unrelated w.r.t. the domination or hierarchy relations, the ordering of inserts is unde�ned.

Composition of aspects by means of the sequence Rule ; Aspect and choice expressions A1 2 A2

have no equivalent in AspectJ. The user must manually instrument advices with a state and appropriate
conditions in order to simulate them. So, our crosscut language is more expressive than the crosscut language
of AspectJ. �

INRIA

Detection and resolution of aspect interactions 7

2.3 Weaving

In order to describe aspect weaving we need to introduce several auxiliary functions.
The sel function takes an aspect and extracts the rule to apply at the current join point j.

sel j (�a:A) = sel j A
sel j (C � I ; A) = ; if C j = fail

= fC � I g otherwise
sel j (A1 2 A2) = sel j A1 if sel j A1 6= ;

= sel j A2 otherwise

The following rule extends sel to the parallel composition of several aspects

sel j (A1k : : : kAn) = (sel j A1) [: : : [(sel j An)

The next function represents the evolution of an aspect after the current join point j. It takes a
composite aspect and yields the aspect to be applied to the next join point.

next j (�a:A) = next j A[�a:A=a]
next j (C � I ; A) = C � I ; A if C j = fail

= A otherwise
next j (A1 2 A2) = next j A1 if sel j A1 6= ;

= next j A2 if sel j A2 6= ;
= (A1 2 A2) otherwise

It is extended to the parallel composition of several aspects using the rule

next j (A1k : : : kAn) = (next j A1)k : : : k(next j An)

The woven execution is performed relative to a composite aspect A (see Figure 1). The transition
relation =) represents the woven execution. It is de�ned by the application of the monitor followed by
a standard execution step and yields the aspect (next j A) to be applied to the following join point.
At each join point, the applicable rules are selected (sel j A). The monitor (relation j=)) applies the
selected rules in no speci�c order: if the crosscut of the current rule matches the current join point,
the corresponding substitution is applied to the insert (�I) and the insert is executed.

Woven execution

[j; P; �]sel j A
�

j=) �a (j; P; �a) ! (j0; P; �0)

(A; j; P; �) =) (next j A; j0; P; �0)

Monitor

[j; P; �]; j=) � [end]

S = fC � Ig [S 0 C j = � (#; �I; �)
�
! ("; �I; �0)

[j; P; �]S j=) [j; P; �0]S
0

[match]

Figure 1: Dynamic weaving of silent inserts

RR n�4435

8 Rémi Douence, Pascal Fradet, Mario Südholt

Note that we use
�
! to reduce inserts. This implies that inserts are not subject to weaving. In

this case, we say that inserts are silent. Figure 2 formalizes another option which uses
�

=) to execute
inserts. This makes inserts visible to the weaver. Since the composition of aspects may evolve during
the execution of visible inserts, it must be passed and returned by the monitor.

Woven execution

[j; P; �]sel j A

next j A

�

j=) (�a; A
0) (j; P; �a) ! (j0; P; �0)

(A; j; P; �) =) (A0; j0; P; �0)

Monitor

[j; P; �];A j=) (�;A) [end]

S = fC � Ig [S 0 C j = � (A; #; �I; �)
�

=) (A0; "; �I; �a)

[j; P; �]SA j=) [j; P; �a]
S0

A0

[match]

Figure 2: Dynamic weaving of visible inserts

The programmer may want to choose whether the (insert of an) aspect A1 is visible for the weaving
of aspect A2. We come back to this issue in Section 4.

Note that since no speci�c order of application of aspects has been speci�ed, weaving may be non-
deterministic. This situation arises when aspects interact, that is to say when sel j A returns a set of
at least two rules. Detecting such cases is the objective of Section 3.

AspectJ: In AspectJ, aspects are silent w.r.t. one another and the base program is visible to all
aspects. So, the �rst version of the weaver should be used. However, when an advice calls a method of
the base program, the woven version of the method is executed in AspectJ. Indeed, static weaving (based
on program transformation rather than execution monitoring) makes this natural. This behavior does not
correspond exactly to either of the two weaver de�nitions given above.

In the beginning of this paper, we introduced method-call join points. On occurrence of such a join
point, our weaver de�nitions �rst execute the insert followed by the base execution after the join point.
This behavior corresponds to AspectJ's before-advices. In order to take into account AspectJ's advice
quali�er after, a new kind of join point must be introduced which represents when a method returns (the
insert is executed after the method call). In our framework, the weaver cannot skip portions of the base
program execution. So, we can only model (by means of before and after) around advices that call
proceed as part of the advice. �

3 Aspect interactions

One of or goal is to detect when the naive parallel composition of aspects does not guarantee a
deterministic weaving. We say that two aspects are independent if they do not interact (i.e., none of
their crosscuts may match the same join point). Independence of two aspects is a su�cient condition
to ensure that weaving is well-de�ned: they can be woven in any order. On the opposite, dependent
aspects require the programmer to resolve the interactions.

We distinguish between two notions of independence:

INRIA

Detection and resolution of aspect interactions 9

� Strong independence does not depend on the program to be woven. The aspects are independent
for all programs. The advantage of this property is that it does not have to be checked after each
program modi�cation.

� Independence w.r.t. a program takes into account the possible sequences of join points generated
by the program to be woven. The advantage of this property compared to strong independence
is that it is a weaker condition to enforce.

Note that independence (strong or w.r.t. a program) is a su�cient but not a necessary condition.
If two crosscuts C and C 0 match the same join point but their corresponding inserts I and I 0 commute
(i.e., executing I then I 0 is equivalent to executing I 0 then I) then the woven execution remains
deterministic.

3.1 Strong independence

We start by de�ning strong independence for crosscuts.

De�nition 1 Two crosscuts C and C 0 are said to be strongly independent if C ^C 0 has no solution.

This ensures that the two crosscuts can never match the same join point. When crosscuts are simple
patterns (i.e., terms) strong independence amounts to checking that they are not uni�able. When the
crosscuts involve negations, conjunctions and disjunctions they are equivalent to equational formulas
which are still solvable [2].

The algorithm to check strong independence is based on the laws shown in Figure 3. The algorithm,
which is similar to the algorithm for �nite-state product automata, terminates due to the �nite-state
nature of our aspects (the (un)fold law is used to fold already encountered aspects). We do not describe
it here in details.

[(un)fold] �a:A = A[�a:A=a]

[assoc] (A1 2 A2) 2 A3 = A1 2 (A2 2 A3)

[commut] (C1 � I1 ; A1) 2 (C2 � I2 ; A2) = (C2 � I2 ; A2) 2 (C1 � I1 ; A1)

if C1 ^ C2 has no solution

[elim1] C � I = false� I if C has no solution

[elim2] (false� I ; A1) 2 A2 = A2

[elim3] false� I ; C1 � I1 ; A = false� I ; A

[priority] (C1 � I1 ; A1) 2 (C2 � I2 ; A2) = (C1 � I1 ; A1) 2 (C2 ^ :C1 � I2 ; A2)

[propag] let A = (C1 � I1 ; A1) 2 : : : 2 (Cn � In ; An)
and A0 = (C 0

1 � I 01 ; A0
1) 2 : : : 2 (C 0

m � I 0n ; A0
m)

then A k A0 = 2
j=1::m
i=1::n Ci ^ C 0

i � (Ii1I
0
j) ; (Ai k A

0
j)

2i=1::nCi � Ii ; (Ai k A0)
2j=1::mC

0
j � I 0j ; (A k A0

j)

Figure 3: Laws for aspects

The main law is propag which propagates the parallel operator inside the aspect de�nition. It
produces a sequence of choices made of all the possible pairs of crosscuts from A and A0 and all
the single crosscuts of A and A0 independently. Con�icts are represented using the non-deterministic

RR n�4435

10 Rémi Douence, Pascal Fradet, Mario Südholt

function (I11I2) which returns either I1;I2 or I2;I1 (where � ;� denotes the sequencing operator of the
programming language). The law elim1 uses the algorithm of [2] to check if a crosscut has no solution
in which case the crosscut is replaced by false. The laws elim2 and elim3 remove unreachable parts
of an aspect. The priority accounts for the priority rules implicit in the choice operator. This makes
the analysis more precise (e.g., using this law and elim2, (true � I1 ; A1) 2 A2 can be rewritten into
(true � I1 ; A1)). The laws assoc, commut and (un)fold serve to rewrite the aspect so that the other
laws can be applied.

De�nition 2 An aspect is said to be deterministic if it can be expressed without k and 1.

De�nition 3 Two aspects A and A0 are said to be strongly independent if A k A0 can be shown

equivalent to a deterministic aspect.

For example, the parallel composition

A k A0 = (�a:C � I ; a) k (�a:C 0
� I 0 ; a)

can be rewritten using (un)fold twice, propag and fold again into

�a:(C ^ C 0
� (I1I 0) ; a) 2 (C � I ; a) 2 (C 0

� I 0 ; a)

If C and C 0 are independent then, using elim1 and elim2, it can be rewritten into

�a:(C � I ; a) 2 (C 0
� I 0 ; a)

a deterministic, sequential aspect.

AspectJ: As explained in the previous section, each rule in AspectJ is of the form: �a:Ci � Ii ; a. So,
the analysis of strong independence of two aspects boils down to check the independence of two crosscuts
C1 and C2. For example, the analysis detects that the two following crosscuts are not uni�able and therefore
not strongly independent:

call(void *.move(*, int)) and call(* Point.*(int, *)) �

3.2 Independence w.r.t. a program

Strong independence may be too strong a condition. It is su�cient to check independence w.r.t. the
set of possible observable execution traces of a program. These traces depend on whether inserts are
visible or not. We �rst consider the case of silent aspects, i.e., inserts are not subject to weaving.

The precise set of execution traces is not statically computable. We assume that we have a �nite
approximation taking the form of a �nite set of join points J (P) and a function

stepP : J (P) ! P(J (P))

giving for each join point a superset of the possible successors. When the join points are purely
syntactic (and when new syntax cannot be dynamically created as it is possible, e.g., using Lisp's
backquote-construction), then a possible approximation is to take all the join points of the program
for J (P) and for every join point stepP j = J (P). This crude approximation (all join points can
follow each join point) is su�cient for stateless aspects. For stateful aspects, we may rely on techniques
based on control �ow to get more precise approximations. To be safe, such an analysis must take into
account the impact which inserts may have on the control �ow of the base program.

Instead of symbolically rewriting a parallel composition of aspects, we can specialize the composition
w.r.t. the possible sequences of join points. The function Iw formalizes such a specialization. In the
following de�nition, we assume that A is a parallel composition of two aspects (i.e., at most two
crosscuts can match a join point).

INRIA

Detection and resolution of aspect interactions 11

Iw(A; j) = if sel j A = ; then 2j02(step
P

j) Iw(A; j0)

else if sel j A = fC � Ig then C � I ; 2j02(step
P

j)Iw(next j A; j0)

else if sel j A = fC � I; C 0
� I 0g

then C ^ C 0
� (I1I 0) ; 2j02(step

P
j)Iw(next j A; j0)

The process starts with an aspect and the entry of the program #. The crosscuts matching the
current join point are extracted (sel). The process is iterated with the new aspects (computed by
next) and all possible successors (given by step). The resulting aspects are combined with the choice
operator. Due to the �nite-state nature of aspects and join points, there are only a �nite number of
reachable pairs (A; j) and Iw terminates. The laws (un)fold, elim1 and elim2 are then used to simplify
the expression.

De�nition 4 Two aspects A and A0 are independent w.r.t. a program P if Iw(A k A0; #) is a deter-

ministic aspect.

Up to now we considered only silent inserts. If inserts are visible, join points generated by inserts
must be taken into account. There are several solutions depending on the speci�c aspects and on the
level of precision required. We just mention here two options.

� It would be possible to take into account inserts in the control �ow analysis. This requires to
compute an approximation of the set of join points and the possible insertions.

� If weaving can be performed statically (as in the case of AspectJ) then it is always possible to
detect con�icts by performing the actual weaving and inspect the woven code.

Note that since (visible) inserts produce new syntax dynamically, it is even possible that the weaving
process loops and introduces an unbounded number of new join points. For instance, the following
pro�ling aspect repeatedly crosscuts any method call in order to increment a counter:

�a:(call(x:y(z))� Profiler:incrCall()) ; a

This aspect crosscuts its own insert and weaving loops: the �rst method call of the base program
is crosscut, so Profiler.incrCall() is called, which is itself crosscut, etc.

AspectJ: The two crosscuts call(void *.move(*, int)) and call(* Point.*(int, *)) are in-
dependent w.r.t. to programs which do not contain call sites corresponding to the uni�cation of the two
patterns (i.e., call(void Point.move(int, int))). �

3.3 Semantic Crosscuts

Most of the crosscuts we have considered so far match syntactic information such as method calls,
etc. As already suggested, crosscuts can also match semantic information, such as dynamic values.
For instance, the rule that matches only join points where the �rst argument of move is zero can be
expressed as x1:move(0;x3)� I. In general, the dynamic information must be encoded as terms in join
points. For example, let us consider the crosscut that matches method calls to move if the value of
the �rst argument of the call is even. A simple solution would be to instrument the insert with a test,
such as

x1:move(x2; x3)� if (even x2) then I

The drawback of this approach is that the con�ict analysis is not able to take the parity condition
into account. A more precise solution is to encode the parity information in the join point model. For
example, we may enhance the join point model of AspectJ with a constructor Even to denote the
parity of the arguments of a call. The join point

RR n�4435

12 Rémi Douence, Pascal Fradet, Mario Südholt

call(void Point.move(int,int),...,args(2,3),Even(true,false))

makes explicit that the �rst and second argument of the call to move are respectively even and odd.
However, it may be di�cult to express the relationship between di�erent semantic properties as terms.
For example, with the above representation of values and parity, the analysis will not be able to deduce
that the crosscut that matches calls whose �rst argument is both 0 and odd is equivalent to false.

So, both independence analyses can take dynamic information into account. The interaction anal-
ysis w.r.t. a program can perform a static analysis of the semantic properties to improve its precision.

AspectJ: AspectJ provides a construction cflow(C1) && C2. It can be expressed in our framework
as: �a1:C1 � skip ; �a2:(RetC1 � skip ; a1) 2 (C2 � I ; a2) where C1 de�nes a method call join point
and RetC1 de�nes the corresponding method-return join point. This de�nition can be read as: �between
C1 and RetC1, occurrences of C2 trigger execution of I�. However, this de�nition is only valid when the
method denoted by C1 is not recursive. In general, such a crosscut is semantic. In AspectJ, cflow's
implementation requires a stack in order to count (i.e., store) pending calls to C1.

In our framework, inserts of C1 and RetC1 could be instrumented to maintain (push and pop) such
a call stack, and I could check the presence of C1 in the stack. However, this translation does not help
con�ict analysis.

Similarly to the parity property above, another solution is to encode in the join point the presence/absence
of (at least) one pending call in the execution stack for every method in the program (e.g., using a bit vector).
The con�ict analysis w.r.t. a program could approximate this information using static analysis. For example,
when cflow(C) is involved, we can safely assume that there is at least one call to C in the stack for every
join point in the set of reachable methods from C.

Analysis of strong independence cannot make assumption about the call graph of the application. So,
we must assume that every method has pending calls in the stack, and when cflow(C1) && C2 is involved,
the analysis can only consider C2. However, there are special cases of crosscuts involving cflow such as
cflow(C1) && C2 and !cflow(C1) && C3 which can be shown strongly independent. �

4 Support for con�ict resolution

When no con�icts have been detected, the parallel composition of aspects can be woven without mod-
i�cations. Otherwise, the programmer must get rid of the nondeterminism by making the composition
more precise. We present here some linguistic support aimed at resolving interactions. A �rst kind of
commands serve to specify how inserts compose. A second kind allows the user to control visibility
of inserts by restricting the scope of aspects. We describe a collection of useful commands but it is
certainly not meant to be complete.

4.1 Composition of inserts

The con�ict analyses of Sections 3.1 and 3.2 both return aspects as results. The occurrences of rules
of the form C � (I11I2) indicate potential interactions.

These interactions can be resolved one by one. For each C � (I11I2), the programmer may replace
each rule C � (I11I2) by C � I3 where I3 is a new insert which combines I1 and I2 in some way.

This option is �exible but can be tedious. Instead of writing a new insert for each con�ict, the
programmer may indicate how to compose inserts at the aspect level. We propose parallel operators of
the form kf to indicate that whenever a con�ict occurs in the composition A kf A0, the corresponding
inserts must be composed using f . Of course, these operators can be combined to compose several
aspects (e.g., A kf (A0 kg A00))

For example, when an insert I1 of A1 con�icts with an insert I2 of A2,

� A1 kseq A2 inserts I1;I2, (where � ;� denotes the sequencing operator of the programming lan-
guage).

INRIA

Detection and resolution of aspect interactions 13

� A1 kfst A2 inserts I1 only.

Let us consider two aspects whose composition produces con�icts: Aencryption crosscuts some
method calls and encodes their arguments and Alogging logs some method calls.

� Alogging kseq Aencryption generates logs for super users by logging method calls with original
arguments,

� Aencryption kseq Alogging generates logs for users by logging method calls with possibly encrypted
arguments,

� Aencryption kfst Alogging generates logs for basic users where the encrypted methods do not appear.

Another class of commands concerns spurious con�icts. Indeed, when inserts commute in a con�ict
(e.g., one of the insert is skip), the inserts can be executed in any order. The programmer may use

I1 commute I2

to allow the analyzer to produce an arbitrary sequence of I1 and I2.
All these assertions can be taken into account by the analyzer. If there are still con�icts, the

analyzer warns the programmer that the composition is not yet completely speci�ed. The process can
be iterated until the composition of aspects can be rewritten into a single deterministic aspect.

AspectJ: In AspectJ, con�icting advices can be ordered with dominate which is equivalent to kseq.
The programmer may manually implement other compositions. �

4.2 Scope of aspects

In the weaver de�ned in Figure 2, the inserts are subject to weaving. This option is con�ict-prone. In
order to control visibility, we propose a notion of scope for aspects. The command

scope id Idset A

declares an aspect A with name id which can match only join points coming from an aspect whose
name belongs to Idset. The join points of inserts are supposed to be tagged by the name of the aspects
the inserts belong to. The join points of the base program are supposed to be tagged by base.

Scope declarations allows us to de�ne aspects of aspects. For instance, it becomes possible to
compose a pro�ling aspect with a security aspect in order to evaluate the cost of security tests in an
application:

(scope sec fbaseg Asecurity) k (scope prof fsecg Aprofiling)

In order to pro�le both the security aspect and the base application, we should use the following
declaration

(scope sec fbaseg Asecurity) k (scope prof fbase; secg Aprofiling)

We pointed out in Section 3.2 that visible inserts may lead to an in�nite loop in the weaver.
Preventing cycles in the scope declarations (e.g., two aspect cannot see each other) is su�cient to
ensure that such non-terminating weaving never occurs.

AspectJ: As mentioned at the end of Section 2, aspects are silent w.r.t. one another in AspectJ and
the base program is visible to all aspects. AspectJ does not provide the notion of scope and cannot de�ne
aspects of aspects. �

RR n�4435

14 Rémi Douence, Pascal Fradet, Mario Südholt

Our static analyses can take scopes into account by transforming the declarations into regular
aspects. If a tagged join point is represented by a term (tag j id) then,

scope id fid1; id2; id3g A

is transformed into A where all terms T occurring in the crosscuts of A are replaced by

(tag T id2) _ (tag T id2) _ (tag T id3)

Analysis of strong independence as described in the previous section can be applied to such transformed
aspect de�nitions. Independence analysis w.r.t. a program requires the base program and join points
of inserts to be annotated similarly. Note that this encoding is for static analysis purposes only. In an
actual implementation, the join points do not need to be tagged because the identity of the current
insert being executed could be recorded in the execution stack of the monitor.

Finally, let us mention that �ner-grained scope annotations can be de�ned easily by allowing
crosscuts and inserts to be named individually.

5 Related work and conclusion

Despite its importance, few work has previously been done on aspect interaction and con�ict resolution.

� Recent releases of AspectJ [8] provide limited support for aspect interaction analysis using IDE
integration: the base program is annotated with crosscutting aspects. This graphical informa-
tion can be used to detect con�icting aspects. However, the simple crosscut model of AspectJ
would entail an analysis detecting numerous spurious con�icts. The reason is that the relation-
ship between several crosscuts must be maintained by book-keeping code in advices (e.g., by
incrementing a counter and check for the counter value later) [5]. In our case, this kind of rela-
tionship can (sometimes) be expressed by stateful aspects and taken into account by the analysis.
In case of real con�icts, AspectJ programmers can resolve con�icts by reordering aspects using
the keyword dominate.

� DeVolder et al. [10] propose a meta-programming framework based on Prolog. They specify
crosscuts by predicates on abstract syntax trees and de�ne ad-hoc composition rules for speci�c
aspects. However, this approach does not provide a general solution to aspect interaction analysis
and resolution. DeVolder's work is extended by Gybels [6] to crosscut de�nitions depending on
dynamic values (e.g. the value of a method call argument) and optimization opportunities are
discussed. However, in this case the weaving process cannot be static anymore (i.e., the weaving
cannot be performed by means of inlining).

� Andrews [1] models AOP by means of algebraic processes. He focuses on equivalence of processes
and correctness of a weaving algorithm. Non-termination problems of weaving and a formal
de�nition of before and around are discussed but aspect interaction is not treated.

� Finally, Douence et al. [4, 5] propose another model for AOP based on execution monitoring. In
this model, the crosscut language is even more expressive, in fact turing-complete, and indepen-
dence must be proven manually.

We have proposed a general method for the static analysis of aspect interactions. The paper has
presented three contributions. First, we have de�ned a generic formal framework for AOP featuring
expressive crosscuts. Second, we have given two general independence properties and have presented
how to analyze them statically. Finally, we have provided general support for con�ict resolution, which
is based on and compatible with the presented static analyses.

INRIA

Detection and resolution of aspect interactions 15

As to the application of our framework, we have instantiated our framework to parts of AspectJ.
This task should be completed. It would also be interesting to compare the framework precisely with
the denotational semantics of Wand et al. [11] for AspectJ.

More generally, our AOP framework o�ers many opportunities for future work. Other properties
and analyses could also been studied in the same framework. For example, in some cases, the pro-
grammer may want to check that an aspect has terminated (i.e., keeps doing nothing) before another
one starts. Several linguistic extensions of the aspect language are worth further study. For exam-
ple, allowing crosscuts of the same aspect to share variables would make the aspect language more
expressive. Also, the possibility of associating an aspect with a class or an instance would facilitate
the instantiation of the framework to object-oriented languages.

References

[1] J. H. Andrews. Process-algebraic foundations of aspect-oriented programming. In Re�ection,
pages 187�209, 2001.

[2] H. Comon. Disuni�cation: A survey. In J.-L. Lassez and G. Plotkin, editors, Computational Logic:

Essays in Honor of Alan Robinson. MIT Press, Cambridge, MA, 1991.

[3] C. A. Constantinides, A. Bader, and T. Elrad. Separation of concerns in concurrent software
systems. In International Workshop on Aspects and Dimensional Computing at ECOOP, 2000.

[4] R. Douence, O. Motelet, and M. Südholt. A formal de�nition of crosscuts. In Proceedings of the

3rd International Conference on Re�ection and Crosscutting Concerns, volume 2192 of LNCS.
Springer Verlag, September 2001.

[5] R. Douence, O. Motelet, and M. Südholt. Sophisticated crosscuts for e-commerce. ECOOP 2001
Workshop on Advanced Separation of Concerns, June 2001.

[6] K. Gybels. Aspect-oriented programming using a logic meta programming language to express
cross-cutting through a dynamic joinpoint structure.

[7] G. Kiczales et al. Aspect-oriented programming. In M. Aksit and S. Matsuoka, editors, 11th
Europeen Conference on Object-Oriented Programming, volume 1241 of LNCS, pages 220�242.
Springer Verlag, 1997.

[8] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An overview of
aspectj. In ECOOP, pages 327�353, 2001.

[9] F. Nielson and H. R. Nielson. Semantics with Applications - A Formal Introduction. John Wiley
and Sons, New York, NY, 1992.

[10] K. De Volder. Aspect-oriented logic meta programming. In Pierre Cointe, editor, Meta-Level Ar-

chitectures and Re�ection, Second International Conference, Re�ection'99, volume 1616 of Lecture
Notes in Computer Science, pages 250�272. Springer Verlag, 1999.

[11] M. Wand, G. Kiczales, and C. Dutchyn. A semantics for advice and dynamic join points in
aspect-oriented programming, January 2002. to appear in FOOL 9.

RR n�4435

Unité de recherche INRIA Lorraine, Technopôle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LÈS NANCY

Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhône-Alpes, 655, avenue de l’Europe, 38330 MONTBONNOT ST MARTIN

Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Éditeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)

http://www.inria.fr

ISSN 0249-6399

