Implementing Fault-Tolerance in Real-Time
Programs by Automatic Program Transformations

TOLGA AYAV

INRIA and lzmir Institute of Technology, Turkey
PASCAL FRADET

INRIA and University of Grenoble, France

and

ALAIN GIRAULT

INRIA and University of Grenoble, France

We present a formal approach to implement fault-tolerance in real-time embedded systems. The
initial fault-intolerant system consists of a set of independent periodic tasks scheduled onto a set of
fail-silent processors connected by a reliable communication network. We transform the tasks such
that, assuming the availability of an additional spare processor, the system tolerates one failure at
a time (transient or permanent). Failure detection is implemented using heartbeating, and failure
masking using checkpointing and rollback. These techniques are described and implemented
by automatic program transformations on the tasks’ programs. The proposed formal approach
to fault-tolerance by program transformations highlights the benefits of separation of concerns.
It allows us to establish correctness properties and to compute optimal values of parameters
to minimize fault-tolerance overhead. We also present an implementation of our method, to
demonstrate its feasibility and its efficiency.

Categories and Subject Descriptors: C.3 [Special Purpose and Application-Based Systems|:
Real-Time and Embedded Systems; C.4 [Performance of Systems|: Fault Tolerance; D.2.4
[Software/Program Verification]: Formal Methods; D.4.5 [Reliability]: Checkpoint/restart

General Terms: Algorithms, Design, Languages, Reliability, Theory.
Additional Key Words and Phrases: Fault-tolerance, heartbeating, checkpointing, program trans-
formations, correctness proofs.

Author’s address: T. Ayav, Izmir Institute of Technology, Dept. of Computer Engineering, 35430
Urla Izmir, Turkey, TolgaAyav@iyte.edu.tr.

P. Fradet, INRIA Rhone-Alpes & LIG (PoP ART team), Inovallée, 655 Avenue de ’Europe, 38334
Saint-Ismier cedex, France, Pascal.Fradet@inria.fr.

A. Girault, INRIA Rhéne-Alpes & LIG (PoP ART team), Inovallée, 655 Avenue de I’Europe, 38334
Saint-Ismier cedex, France, Alain.Girault@inria.fr.

This work has been funded in part by the ARTIST2 Network of Excellence (http://www.
artist-embedded.org).

A shorter version of this article has been published in the conference EMSOFT 2006 under the title
“Implementing Fault-Tolerance in Real-Time Systems by Automatic Program Transformations.”
Permission to make digital or hard copies of part or all of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or direct
commercial advantage and that copies show this notice on the first page or initial screen of a
display along with the full citation. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to
post on servers, to redistribute to lists, or to use any component of this work in other works requires
prior specific permission and/or a fee. Permissions may be requested from Publications Dept.,
ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or
permissions@acm.org.

© 2008 ACM 1539-9087,/2008,/0800-0001 $5.00

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008, Pages 1-077.

2 . T. Ayav, P. Fradet, and A. Girault

1. INTRODUCTION

In most distributed embedded systems, such as automotive and avionics, fault-
tolerance is a crucial issue [?; Nelson 1990; Jalote 1994]. Fault-tolerance is defined
as the ability of the system to comply with its specification despite the presence
of faults in any of its components [Avizienis et al. 2004]. To achieve this goal, we
rely on two means: failure detection and failure masking. Among the two classes
of faults, hardware and software, we only address the former. Tolerating hardware
faults requires redundant hardware, be it explicitly added by the system’s designer
for this purpose, or intrinsically provided by the existing parallelism of the system.
We assume that the system is equipped with one spare processor, which runs a
special monitor module, in charge of detecting the failures in the other processors
of the system, and then masking one failure.

We achieve failure detection thanks to timeouts; two popular approaches exist:
the so-called “pull” and “push” methods [Aggarwal and Gupta 2002]. In the pull
method, the monitor sends liveness requests (i.e., “are you alive?” messages) to the
monitored components, and considers a component as faulty if it does not receive
a reply from that component within a fixed time delay. In the push method,
each component of the system periodically sends heartbeat information (i.e., “I
am alive” messages) to the monitor, which considers a component as faulty if two
successive heartbeats are not received by the monitor within a predefined time
interval [Aguilera et al. 1997]. We employ the push method, which involves only
one-way messages.

We implement failure masking with checkpointing and rollback mechanisms, which
have been addressed in many works. It involves storing the global state of the
system in a stable memory, and restoring the last state upon the detection of a
failure to resume execution. There exist many implementation strategies of check-
pointing and rollback, such as user-directed, compiler-assisted, system-level, and
library-supported [Ziv and Bruck 1997; Kalaiselvi and Rajaraman 2000; Beck et al.
1994]. The pros and cons of these strategies are discussed in [Silva and Silva 1998].
Checkpointing can be synchronous or asynchronous. In our setting where we con-
sider only independent tasks, the simplest approach is asynchronous checkpointing:
tasks take local checkpoints periodically without any coordination with each other.
This approach allows maximum component autonomy for taking checkpoints and
does not incur any message overhead.

We propose a framework based on automatic program transformations to im-
plement fault-tolerance in distributed embedded systems. Our starting point is a
fault-intolerant system, consisting of a set of independent periodic hard real-time
tasks scheduled onto a set of fail-silent processors. The goal of the transformations
is to automatically obtain a system tolerant to one hardware failure. One spare
processor is initially free of tasks: it will run a special monitor task, in charge of
detecting and masking the system’s failures. Each transformation will implement a
portion of either the detection or the masking of failures. For instance, one trans-
formation will add the checkpointing code into the real-time tasks, while another

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008.

Implementing Fault-Tolerance by Automatic Program Transformations : 3

one will add the rollback code into the monitor task. The transformations will be
guided by the fault-tolerance properties required by the user. Our assumption that
all tasks are independent (i.e., they do not communicate with each other) simplifies
the problem of consistent global checkpointing, since all local checkpoints belong
to the set of global consistent checkpoints.

One important point of our framework is the ability to formally prove that the
transformed system satisfies the real-time constraints even in the presence of one
failure. The techniques that we present (checkpointing, rollback, heartbeating, etc)
are pretty standard in the OS context. Our contribution is to study them in the
context of hard real-time tasks, to express them formally as automatic program
transformations, and to prove formal properties of the resulting system after the
transformations. Another benefit is to allow the computation of optimal check-
pointing and heartbeating periods to minimize the recovery time when a failure
occurs.

Section 2 gives an overview of our approach. In Section 3, we give a formal def-
inition for the real-time tasks and we introduce a simple programming language.
Section 4 presents program transformations implementing checkpointing and heart-
beating. We present the monitor task in Section 5 and extend our approach to
transient and multiple failures in Section 6. In Section 7, we illustrate the imple-
mentation of our approach on the embedded control program of an autonomous
vehicle. Finally, we review related work in Section 8 and conclude in Section 9.

2. OVERVIEW OF THE PROPOSED SYSTEM

We consider a distributed embedded system consisting of p processors plus a spare
processor, a stable memory, and I/O devices. All are connected via a communica-
tion network (see Figure 1(a)). We make two assumptions regarding the commu-
nication and failure behavior of the processors.

Initialize

for each period T do
Read Inputs
Compute
Update Outputs

end for each

(b)

Spare (Monitor)
Processor

(a)

Fig. 1. (a) System architecture. (b) Program model of periodic real-time tasks.

Assumption 1 The communication network is reliable and the transmission time
is deterministic.

Moreover, for the sake of clarity, we assume that the message transmission time
between processors is zero, but our approach holds for nonzero transmission times
as well.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008.

4 . T. Ayav, P. Fradet, and A. Girault

Assumption 2 All processors are fail-silent [Jalote 1994]. This means that the
processors may transiently or permanently stop responding, but do not pollute the
healthy remaining ones.

The system also has n real-time tasks, each fitting the simple-task model of
TTP [Kopetz 1997]: all tasks are periodic and independent (i.e., without prece-
dence constraints). More precisely, the program of each task has the form described
in Figure 1(b). Even though we present our method by assuming this simple-task
model, it can perfectly be applied to dependent tasks (i.e., with precedence con-
straints). Indeed, in Section 7, we present such an application with static schedules
composed of dependent tasks and deterministic and nonzero communication times,
which we solve with our method.

We do not address the issue of distribution and scheduling of the tasks onto the
processors. Hence, for the sake of clarity, we assume that each processor runs one
single task (i.e., n = p). Executing more than one task on each processor (e.g.,
with a multi-rate cyclic execution approach) is still possible however.

Our approach deals with the programs of the tasks and defines program trans-
formations on them to achieve fault-tolerance. We consider programs in compiled
form at the assembly or binary code level, which allows us to evaluate exact exe-
cution times (EXET) of the basic instructions and, hence, the worst-case execution
times (WCET) and best-case execution times (BCET) of complex programs having
conditional statements. We represent these three-address programs using a small
imperative language. Since the system contains only one redundant processor, we
provide a masking of only one processor failure at a time. Masking of more than
one transient processor failure at a time could be achieved with additional spare
processors (see Section 6).

Assumption 3 There exists a stable memory to keep the global state for error
TeCovery purposes.

The stable memory is used to store the global state. The global state provides
masking of processor failures by rolling-back to this safe state as soon as a failure is
detected. The stable memory also stores one shared variable per processor, used for
failure detection: the program of each task, after transformation, will periodically
write a 1 into this shared variable, while the monitor will periodically (and with
the same period) check that its value is indeed 1 and will reset it to 0. When a
failure occurs, the shared variable corresponding to the faulty processor will remain
equal to 0, therefore allowing the monitor to detect the failure. The spare processor
provides the necessary hardware redundancy and executes the monitor program for
failure detection and masking purposes.

Assumption 4 The communications between the processors and the stable memory
are only validated when they have completed successfully (i.e., they are considered
as atomic transactions).

The above assumption guarantees that if a processor fails while writing some data
into the stable memory (e.g., when performing a checkpoint), then this transaction
is not validated.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008.

Implementing Fault-Tolerance by Automatic Program Transformations : 5

When the monitor detects a processor failure, it rolls back to the latest local state
of the faulty processor stored in the stable memory. It then resumes the execution of
the task that was running on the faulty processor, from this local state. Remember
that, since the tasks are independent, the other tasks do not need to roll back
to their own previous local state. This failure-masking process is implemented by
an asynchronous checkpointing, i.e., processors take local checkpoints periodically
without any coordination with each other.

The two program transformations used for adding periodic heartbeating/failure
detection and periodic checkpointing/rollback amount to inserting code at spe-
cific points. This process may seem easy, but the conditional statements of the
program to be transformed, i.e., if branchings, create many different execution
paths, making it actually quite difficult. We therefore propose a preliminary pro-
gram transformation, which equalizes the execution times between all the possible
execution paths. This is done by padding dummy code in if branchings. After
this transformation, the resulting programs have a constant execution time. Then,
checkpointing and heartbeating commands are inserted into the code at constant
time intervals. The periods between checkpoints and heartbeats are chosen in order
to minimize their cost while satisfying the real-time constraints. A special mon-
itoring program is also generated from the parameters of these transformations.
The monitor consists of a number of tasks that must be scheduled by an algorithm
providing deadline guarantees.

The algorithmic complexity of our program transformations is linear in the size
of the program. The overhead in the transformed program is the result of the
fault-tolerance techniques we use (heartbeating, checkpointing and rollback). This
overhead is unavoidable and compares favorably to the overhead induced by other
fault-tolerance techniques, e.g., hardware and software redundancy.

The memory overhead is also linear in the memory size of the program. Indeed,
this overhead results from the need to store the global state of each task when
performing the checkpointing. In addition, an array of integers of size n, where n
is the total number of tasks, is used for the heartbeating and fault detection.

3. TASKS

A real-time periodic task 7 = (S,T) is specified by a program S and a period T
The program S is repeatedly executed each T units of time. A program usually
reads its input (which is stored in a local variable), executes some statements, and
writes its output (see Figure 1(b)). Each task also has a deadline d < T that it must
satisfy when writing its output. To simplify the presentation, we take the deadline
equal to the period, but our approach does not depend on this assumption. Hence,
the real-time constraint associated to the task (5,7 is that its program S must
terminate before the end of its period T

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008.

6 . T. Ayav, P. Fradet, and A. Girault

Programs are written in the following imperative programming language:

S = m:=A assignment
| skip no operation
| read(i) input read
| write(o) output write
| 51;5: sequencing
| if B then Sj else S conditional
| fori=mnjtonydoS iteration

where A and B denote, respectively, integer expressions (arithmetic expressions on
integer variables) and boolean expressions (comparisons, and, not, etc), and n; and
ng denote integer constants. Here, we assume that the only variables used to store
the input and the output are ¢ and o, respectively. These instructions could be
generalized to multiple reads and writes or to I/O operations parameterized with a
port. This language is well-known, simple, and sufficiently expressive. The reader
may refer to [Nielson and Nielson 1992] for a complete description.

The following example program Fac reads an unsigned integer variable and places
it in 4. It bounds the variable ¢ by 10 and computes the factorial of 7, which it
finally writes as its output. Here, Fac should be seen as a generic computation
simple enough to concisely present our techniques. Of course, as long as they are
expressed in the previous syntax, much more complex and realistic computations
can be treated as well.

Fac = read(i) ;
if ¢ > 10 then i := 10; 0 :=1; else 0 := 1;
for =1 to10do
if [<=1 then 0:=o0x!; else skip;
write(o);

The simplest statement of the language is skip (the nop instruction), which
exists on all processors. We take the EXET of the skip command to be the unit of
time and we assume that the execution times of all other statements are multiple
of EXET (skip). A more fundamental assumption is that the execution times (be
it EXET, WCET, or BCET) of any statement or expression can be evaluated. A more
fundamental assumption is that the exact execution times (EXET) of any basic
instruction is known. This is required to precisely insert periodic heartbeats and
checkpoints. Other techniques (e.g., inserting heartbeats and checkpoints at least
every z time units) would only require knowing the WCET of each basic instruction.
Either way, it is possible to evaluate the WCET and BCET of all statements and
programs. Languages with more complex control structures could be considered
as well. Of course, this may lead to (potentially very) conservative WCET. In any
cases, the WCET of programs must be computable to formally prove that deadlines
are met.

The WCET analysis is the topic of much work (see [Puschner and Burns 2000;
Lisper 2006] for surveys); we shall not dwell upon this issue any further. This is
not a critical assumption, since WCET analysis has been applied with success to
real-life processors with branch prediction [Colin and Puaut 2000] or with caches
and pipelines [Theiling et al. 2000].

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008.

Implementing Fault-Tolerance by Automatic Program Transformations . 7

For the remainder of the article, we fix the execution times of statements to be
(in time units) those of Table 1.

EXET(skip) = BCET(skip) = WCET(skip) =1

EXET(read) = BCET(read) = WCET(read) =3

EXET(write) = BCET(write) = WCET(write) = 3

EXET(x := €) = BCET(x := €) = WCET(z :=€) = 3

EXET(S71;52) = EXET(S1) + EXET(S2)
BCET(S1;52) = BCET(S1) + BCET(S2)
WCET(S1;52) = WCET(S1) + WCET(S2)
WCET(if B then S; else S2) = 1+ max(WCET(S1), WCET(S2))
BCET(if B then S else S2) = 1+ min(BCET(S1), BCET(S2))
EXET(for ¢ = n1 to ng do S) = (n2 —n1 + 1) x (3 + EXET(S))
BCET(for ¢ = n1 to na do S) = (n2 —n1+1) x (34 BCET(SY))
WCET (for ¢ = n1 to n2 do S) = (n2 —n1+1) x (3 + wWceT(S))

Table 1. Exact, worst-case, and best-case execution times of our programming language’s state-
ments.

Of course, when the EXET of a statement is known, it is also equal to its WCET
and its BCET. The above figures are valid for any “simple” expressions e or b. Using
temporary variables, it is always possible to split complex arithmetic and boolean
expressions so that they remain simple enough (as in three-address code). The
WCET (resp. BCET) of the for statement is computed in the same way, by replacing
EXET by WCET in the right-hand part (resp. BCET); the same thing for the ;.

With these figures, we get WCET(Fac) = 84. In the rest of the article, we consider
the task (Fac,200), that is to say Fac with a deadline/period of 200 time units.

The real-time property for a system of n tasks {(S1,T41), ..., (Sn, Tn)} is that each
task must meet its deadline. Since each processor runs a single task, it amounts to:

Vie {1,2,..,n}, WwCceT(S;) <T; (1)

The semantics of a statement S is given by the function [S] : State — State. A
state s € State maps program variables V to their values. The semantic function
takes a statement S, an initial state so and yields the resulting state s; obtained
after the execution of the statement: [S]so = s¢. Several equivalent formal defini-
tions of [.] (operational, denotational, and axiomatic) can be found in [Nielson and
Nielson 1992].

The IO semantics of a task (S,T) is given by a pair of streams

(il,...,in,...),(ol,...,on,...)

where i, is the input provided by the environment during the kth period and oy, is
the last output written during the kth period. So, if several write(o) are performed
during a period, the semantics and the environment will consider only the last one.
We also assume that the environment proposes the same input during a period:
several read(i) during the same period will result in the same readings.

For example, if the environment proposes 2 as input then the program

read(i); o := i; write(o); read(i); o := o *i; write(o)

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008.

8 . T. Ayav, P. Fradet, and A. Girault

produces 4 as output during that same period, and not (2,4). Assuming the se-
quence of integers as inputs, the IO semantics of Fac is:

(0,1,2,3,4,5,6,7,8,9,10,11,12,...), (0, 11,21, 31, 41, 5!, 6!, 71, 81,91, 10!, 10!, 10!, . ..)
4. AUTOMATIC PROGRAM TRANSFORMATIONS

Failure detection and failure masking rely on inserting heartbeating and check-
pointing instructions in programs. These instructions must be inserted such that
they are executed periodically. We therefore transform a task program such that a
heartbeat and a checkpoint are executed every Ty p and Tep period of time respec-
tively. Conditional statements complicate this insertion. They lead to many paths
with different execution times. It is therefore impossible to insert instructions at
constant time intervals without duplicating the code. To avoid this problem, we
first transform the program in order to fix the execution time of all conditionals to
their worst-case execution time. Intuitively, it amounts to adding dummy code to
conditional statements. After this time-equalization, checkpoints and heartbeats
can be introduced simply using the same transformation.

A transformation may increase the WCET of programs. Thus, after each trans-
formation 7, the real-time constraint WCET(7 (S)) < T must be checked; thanks
to our assumptions on WCET, this can be done automatically.

4.1 Equalizing execution time

Equalizing the execution time of a program consists in padding dummy code in
least expensive branches. The dummy code added for padding is sequences of
skip statements. We write skip™ to represent a sequence of n skip statements:
EXET(skip™) = n. This technique is similar to the one used in “single path pro-
gramming” [Puschner 2002].

The global equalization process is defined recursively by the following transfor-
mation rules, noted F. The rules below must be understood like a case expression
in the programming language ML [Milner et al. 1990]: cases are evaluated from
top to bottom, and the transformation rule corresponding to the first pattern that
matches the input program is performed.

Transformation rules 1

1. F[if B then S; else Sy] = if B then F[S]; skip™* (0:92-01);
else F|So]; skipmax(0:01—02),
with §; = WCET(F[S;]) fori=1,2
2. Fl[for i =nj to ng do S| = for i =ny to ng do FI[S]
3. F[S1;52] F[S1]; F[S2]
4. Fl9] =S5 otherwise

Conditionals are the only statements subject to code modification (Rule 1). The
transformation adds as many skip as needed to match the execution time of the
other branch: hence, the max(0, J2 —d1) in the then branch. The “most expensive”
branch remains unchanged, while the “least expensive branch” ends up taking the
same time as the most expensive one. The transformation is applied inductively to
the statement of each branch prior to this equalization.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008.

Implementing Fault-Tolerance by Automatic Program Transformations : 9

We now prove that, for any program S, the best- and worst-case execution times
of F[S] are identical:

Property 1 VS, BCET(F[S]) = WCET(F[S]) = EXET(F[S]).
Proof: The proof is by induction on the structure of the program S.

—Let S = if B then S; else S3. The induction hypothesis is that BCET(F[S1]) =
WCET(F[S1]) = EXET(F[S1]) = 61 and EXET(F[S2]) = BCET(F[S2]) =
WOET(F[S2]) = EXET(F|[S2]) = d2. According to Rule 1 and Table I, we thus
have WCET(F[S]) = 1 + max (51 + max(0, 3 — 1), d2 + max(0, §; — 52)).

Without loss of generality, assume that §; > d2 (the symmetrical case yields
similar computations). Then §; + max(0,d2 — d1) = d; + 0 = 1, and do +
max(0, §; —d2) = d2+ 381 —dy = §;. Hence WCET(F[S]) = 14+ max(d1,d1) = 1+0;.

Conversely, we also have BCET(F[S]) = 1 4 min (61 + max(0,d2 — 61),82 +
max(0, 81— d2)). Then, still by assuming that d; > &z, we also find BCET(F[S]) =
1+ min(51,51) =1+ 51.

In conclusion, BCET(F[S]) = WCET(FIS]) and therefore it is also equal to
EXET(F[S]).

—Let S = for i = nj to ny do S7. The induction hypothesis is that BCET(F[S1]) =
WOET(F[S1]) = EXET(F[S1]) = 01. According to Rule 2 and Table I, we thus
have EXET(F[S]) = (nz — n1 + 1) x (3 + d1). Since ny and no are constant and
by induction hypothesis, this is also equal to BCET(F[S]) and WCET(F[S]).

—Let S = 51;52. The induction hypothesis is that BCET(F[S1]) = WCET(F[S1]) =
EXET(F[S1]) = 61 and BCET(F[S2]) = WCET(F[S2]) = EXET(F[S2]) = d2. Ac-
cording to Rule 3 and Table I, we thus have EXET(F[S]) = d1 + J2. By induction
hypothesis, this is also equal to BCET(F[S]) and WCET(F[S]).

Thus, we conclude that for any S, BCET(F[S]) = WCET(F[S]) = EXET(F[S]). O

We also prove that the transformation F does not change the WCET of programs:

Property 2 VS, wcCET(S) = WCET(F[S]).
Proof: The proof is by induction on the structure of the program S.

—Let S = if B then S; else S3. The induction hypothesis is that wCET(S7) =
WCET(F[S1]) = 61 and WCET(S3) = WCET(F[S2]) = d2. According to Rule 1
and Table I, we thus have:

WCET(FI[S]) = 1+ max (51 + max(0, d — 1), d2 + max(0, §; — 52))
= 1+ max (max (01,01 + 62 — 01), max(da, 02 + 61 — 52))
= 1+ max (max 01, 02), max(da, 51))

1 + max (51, 52)

According to Table I, we also have WCET(S) = 1 + max(WCET(S1), WCET(S2)).
By induction hypothesis, this is equal to 1 + max(dy, d2), that is, WCET(F[S]).

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008.

10 . T. Ayav, P. Fradet, and A. Girault

—Let S = for ¢ = n; to ny do S;. The induction hypothesis is that WCET(S) =
WCET(F[S1]). According to Rule 2 and Table I, we thus have WCET(F[S])
(ng —mn1+1) x (3+WCET(F[S1])). Moreover, according to Table I, we also have
WCET(S) = (ng —n1 + 1) x (3 + WCET(S1)). By induction hypothesis, this is
equal to WCET(FS]).

—Let S = S1;52. The induction hypothesis is that WCET(S1) = WCET(F[S1])
and WCET(S2) = WCET(F[S2]). According to Rule 3 and Table I, we thus have
WCET(F[S]) = WCET(F[S1]) + WCET(F[S2]). Moreover, according to Table I, we
also have WCET(S) = WCET(S1) + WCET(S2). By induction hypothesis, this is
equal to WCET(FS]).

Thus, we conclude that for any S, wCceT(S) = WCET(FIS]). O
The transformation F applied on example Fac produces the new program Facy:

Faci = F|Fac] =read(i);
if i > 10 then i := 10; 0 := 1; else o0 := 1; skip?;
for [=1to10do
if [<=1 then o:=o0x*I; else skip>;
write(o);

4.2 Checkpointing and heartbeating

Checkpointing and heartbeating both involve the insertion of special commands at
appropriate program points. The special commands we insert are:

—hbeat sends a heartbeat telling the monitor that the processor is alive. This
command is implemented by setting a special variable in the stable memory. The
vector HBT[1...n] gathers the heartbeat variables of the n tasks. The command
hbeat in task 4 is thus implemented as HBT[i] := 1. The failure detection will be
presented in detail in Section 5. Informally, the monitor periodically decrements
and checks each HBT([i] variables at the same period at which they are set to 1.
A failure is detected as soon as HBTYi] reaches —2 (and not 0, to account for the
eventual clock drifts).

—checkpt saves the current state in the stable memory. It is sufficient to save
only the live variables and only those that have been modified since the last
checkpoint. This information can be inferred by static analysis techniques. Here,
we simply assume that checkpt saves enough variables to revert to a valid state
when needed.

Heartbeating is usually done periodically, whereas the policies for checkpointing
differ. Here, we chose periodic heartbeats and checkpoints. In our context, the
key property is to meet the real-time constraints. We will see in Section 5 how
to compute the optimal periods for those two commands, optimality being defined
w.r.t. those real-time constraints.

In this section, we define a transformation Z'(S,t) that inserts the command ¢
every T units of time in the program S. It will be used both for checkpointing
and heartbeating. The parameter 7" denotes the period whereas the time counter ¢

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008.

Implementing Fault-Tolerance by Automatic Program Transformations . 11

counts the time residual before the next insertion. Because the WCET of the “most
expensive” atomic statement of our language is 3 and not 1 (e.g., WCET(read) = 3),
it is not, in general, possible to insert the command ¢ exactly every T time units.
However, we will establish a bound on the maximal delay between any two successive
commands c inserted in S.

The transformation Z relies on the property that all paths of the program have the
same execution time (see Property 1 in Section 4.1). In order to insert heartbeats
afterward, this property should remain valid after the insertion of checkpoints.
We may either assume that checkpt takes the same time when inserted in different
paths (e.g., the two branches of a conditional), or reapply the transformation F after
checkpointing. Again, the rules below must be understood like a case expression in
ML.

Transformation rules 2

1. Z7(S,t) =¢;I7 (S, T — exeT(c) +1) ift<0
2. 77 (a,) =a if a is atomic

3. IZ(SlaSQ;t) = ﬂ(517t) 71'21(527t1)
with t; = t—EXET(S}) if EXET(S1) <t
with t; = T—EXET(c)—r if EXET(S1) =t + q¢(T — EXET(c)) + r
withq >0 0<r <T—EXET(c))

4. IT(if b then S; else So,t) = if b then Z1(Sy,t — 1) else Z1'(So,t — 1)

5. I (for £ =ny to ny do S,t) = Fold(ZT (Unfold(for ¢ = ny to ny do S),t))

Rule 1 inserts the command ¢ when the time counter ¢ is negative or null. This
means that c is inserted either at the “right place” or “slightly after”, but never
“before the right place”. The transformation proceeds with the resulting program
and the time target for the next insertion is reset to T' — EXET(c) + ¢, that is, it is
computed w.r.t. the ideal previous insertion point to avoid any drift.

Rule 2 returns atomic commands unchanged. Indeed, an atomic command can-
not be split (hence rule 3 does not apply) and since ¢ > 0, no insertion must be
performed (if ¢ < 0, then rule 1 applies).

Rule 3 states that the insertion in a sequence Si;S5 is first done in S;. The
residual time ¢; used for the insertion in Sy is either (¢ — EXET(S7)) if no insertion
has been performed inside S; or (T'—EXET(c) —r) if 7 is the time residual remaining
after the ¢ + 1 insertions inside Sy (i.e., if EXET(S1) =t + ¢(T — EXET(c)) + 7).

Rule 4 states that, for conditional statements, the insertion is performed in both
branches. The time of the test and branching is taken into account by decrementing
the time residual (¢t — 1).

Rule 5 applies to loop statements. It unrolls the loop completely (thanks to the
Unfold operator), performs the insertion in the unrolled resulting program, and
then factorizes code by folding code in for loops as much as possible (thanks to

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008.

12 . T. Ayav, P. Fradet, and A. Girault

the Fold operator). The Unfold operator is defined by the following transformation
rule:

Transformation rules 3

1. Unfold(for £ =ny tony do S)={C:=ny1; S;0:=n1+1;...0:=ny; S

While the Fold operator is based on the following transformation rules:

Transformation rules 4
1. 4:=n;S;0:=n+1;,8 = for/{=nton+1do S
2. (forf=nytonydo S);l:=ngs+1; S = forl{=mn; tony+1do S
3. L:=n1;S; (for{=n1;+1tong do S) = for { =n; tong do S

In fact, it would be possible to express the transformation Z such that it minimally
unrolls loops and does not need folding. However, the transformation rules would
be much more complex, and we instead chose a simpler presentation involving the
Fold operator.

Transformation rules 2 assume that the period T is greater than the execution
time of the command ¢, i.e., T > EXET(c). Otherwise, the insertion may loop by
inserting ¢ within ¢ and so on.

We now give a bound on the time interval between any two successive commands
c in the transformed program Z71 (F(S),T):

Property 3 In a transformed program IX(F(S),T), the actual time interval A
between the beginning of two successive commands ¢ is such that:

T—-—e<A<T+e

with & being the EXET of the most expensive atomic instruction (assignment or test)
in the program. Please also note that for the first ¢ inserted in the program, A is
defined as just the beginning time of c.

We formalize and prove Property 3 in the appendix.
In order to check the real-time constraints, we must precisely compute the over-
head resulting from the transformation S’ = Z7 (S, 1):

WCET(S) —t

WOET(Z, (S,1)) = WORT(S) + {W

-‘ X WCET(c) (2)
Indeed, the first ¢ is inserted after ¢ units of time, hence the numerator WCET(S) —t.
Also, each time a c is inserted, the time counter is reset to T'— WCET(c); hence, the
denominator T'— WCET(c). Finally, if WOET(S) —t =n x (T’ — WCET(c)) + r with
0 <r <T — wCET(c), then the total number of inserted ¢ is n + 1, while if r = 0,
then the total number of inserted ¢ is n since Transformation rules 2 do not insert
a last ¢ when the time counter is 0 and at the same time S is terminated; hence the
[.] function. Equation (2) is valid only when the denominator is strictly positive,
that is, when T'— WCET(c¢) > 0. This is reasonable because, if T < WCET(c), it

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008.

Implementing Fault-Tolerance by Automatic Program Transformations : 13

means that the program S’ resulting from the transformation Z performs only ¢
commands and has absolutely no time to perform the computations of the initial
program S.

Condition 1 For the transformation S’ = IX(S,T) to be valid, the condition
T — WCET(¢) > 0 must hold.

Both checkpointing and heartbeating are performed using the transformation 7.
First, checkpoints are inserted, and then heartbeats. The period between two
checkpoints must take into account the overhead that will be added by heartbeats
afterward. By applying Equation (2) to the period T¢p for S, we obtain (where
we take h = WCET (hbeat) for conciseness):

T/ —
Tep=Thp + {i_w x h
cp Tug —h
We are not interested in the exact computation within one given period T/ p, but

rather in the average computation over all the periods T/, p. Therefore we suppress
the [.] function to obtain:

/ Té’P N ! E

HB — Tug — h
Tcp Tep X (Tug — h)
= Tlp = —— = (3)
14+ B Trp
Tug—h

According to Condition 1, we must have T/ p > ¢, that is:
Tep (THB—E)>THBE <~ TCPTHB_TCPE_THBE>0 (4)

Figure 2 illustrates Equation (4). The portion of the plane that satisfies this con-
dition is located strictly above the curve. The portion of the plane located above
the inner blue rectangle (the dashed area) satisfies the more restrictive, but eas-
ier to check, condition Top > 2¢ A Typ > 2 h. Intuitively, Tcp = 2 means that
the transformed program spends 50% of its time performing checkpoints, while
Ty = 2 h means that it spend 50% of its time performing heartbeats.

With these notations, the insertion of checkpoints and heartbeats is described by
the following ML code:

let (S',—) =74 (S, Thp) in

checkpt
let (S, =) =TntE(S',0) in
S”; hbeat(k)
The command hbeat(k) is a special heartbeat that sets the variable to k instead
of 1, i.e., HBTJ[i] := k. Following this last heartbeat, the monitor will therefore
decrease the shared variable and will resume failure detection when the variable

becomes 0 again. This mechanism accounts for the idle interval of time between
the termination of S” and the beginning of the next period. Hence, k£ has to be

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008.

14 . T. Ayav, P. Fradet, and A. Girault

¥=Tug
35

307
257

207

T T T T T T T T T T T x=Tep
0 10 20 30 40 50 60 70 80

Fig. 2. Curve Top Typ — Tcp h — Tgp ¢ =0 for h = 3 and ¢ = 10.

computed as:

b — {T - WCET(S”;hbeat)" (5)

Tup

Figure 3 illustrates the form of a general program (i.e., not Facs) after all the
transformations:

Ay Ay, An . A |

checkpt
hbeat (3)
idle

hbeat

AC AC

Fig. 3. Program with checkpointing and heartbeating.

By applying Equation (2) to the first transformation S’ = Iz;é;fc’kpt (S,T¢p) and

to the second transformation S” = T (S’,0), we get:

WCET(S) — T p
T} p — WCET(checkpt)

WCET(S") = wWCET(S) + [w X WCET(checkpt) (6)

WCET(S")
Ty p — WCET(hbeat)

wCET(S") = weET(S") + { -‘ X WCET(hbeat) (7)

After the insertion of heartbeats, the period between checkpoints will be equal to

h
Tup—h
ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008.

Tép (1 + ——), i.e., Tcp. More precisely, it follows from Property 3 that:

Implementing Fault-Tolerance by Automatic Program Transformations : 15

Property 4 The actual time intervals Acp and Agp between two successive check-
points and heartbeats are such that:

Tcp—€§A0p<TCP+E+E and T —e < Agp <Typ+e¢

Proof: The proof is based on Property 3. After transformation Ichliﬁkpt (S.TLp),
Property 3 gives:

Tep—e<Aop <Top+e (8)

Assuming the WCOET of the most expensive atomic command of checkpt is less
than or equal to e, after the second transformation, 5 (S',0), Property 3 satis-
fies the condition Typ —¢ < Agp < Tup+e¢e. The second transformation, however,
changes A/c p given in Equation (8) to Acp such that each portion with the time

interval T/C p in the final program will be augmented with TTOP 7 hbeat commands.
HB—

Therefore, by following Equation (3), T'CP + T:ZI:E .h leads to Tgp, i.e., the de-
sired value of checkpointing interval. Although we take into account heartbeating
in the first transformation, the heartbeating command hbeat is invisible to the
first transformation. The worst case occurs in the boundary condition of Equa-
tion (3) when a heartbeat is inserted just before a checkpoint command. In this
case, Tcp is shifted upward by h. In the best case, this shift is zero. Therefore,
by shifting up the lower and upper bounds of Agp with [O,E]7 we finally derive
Tep —e < Acp <Tep +€+h. O

As pointed out above, the transformation Z requires the period to be bigger than
the cost of the command. For checkpointing and heartbeating we must ensure that:
Ty p > WCET(hbeat) and Tt p > WCET(checkpt)

To illustrate these transformations on our previous example, we take:

EXET (hbeat) = 3 EXET(checkpt) = 10 Tep =80 Tup =10

3xTLp
10—-3

Thus, we get T, p = 80 — ie., T,p =56 and Z59

checkpt

(Fac,56) produces:

Facy =read(i);
if ¢ > 10 then ¢ :=10; 0:=1; else 0:=1; skip3;
for [=1to6do
if | <=1 then 0:=o0x*l; else skip®;
l:=7;if | <= then checkpt; 0 := o0 *[; else checkpt; skip?;
for [=8 to 10 do
if | <=4 then o:=o0*l; else skip®;
write(o);

A single checkpt is inserted after 56 time units, which occurs inside the condi-
tional of the 7th iteration of the for loop. The checkpoint is inserted exactly at the
desired point in both branches of the conditional. The transformation proceeds by

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008.

16 . T. Ayav, P. Fradet, and A. Girault

unrolling the loop and inserting checkpt at the right places. Portions of the code
are then folded to make two for loops.

For the next step, we suppose, for the sake of the example, that checkpt, which
takes 10 units of time, can be split in two parts checkpt = checkpt,;checkpt,
where checkpt; and checkpt, take, respectively, 7 and 3 time units exactly. Recall
that checkpt is composed of the basic instructions of Table I. In other words, the
largest WCET of an atomic instruction remains 3 (it would be 10 if checkpt was
atomic). We add a heartbeat as a first instruction and, in order to finish with
a heartbeat, we must add 5 skip at the end. The transformation Z}0. .. (Facs,0)
inserts a heartbeat every 10 time units and yields:

Facs =hbeat; read(i);
if 4 > 10 then ¢ := 10; hbeat; o0 := 1; else o0 := 1; hbeat; skip3;
for [=1to6do
if | <=1 then hbeat; 0:= 0*[; else hbeat; skipg;
[:=7;if | <=1 then hbeat; checkpt,; hbeat; checkpt,; 0 := 0 * [;
else hbeat; checkpt;; hbeat; checkpt,; skip3;
for | =8 to 10do
hbeat; if [<=4 then o:= 0x*[; else skip®;
write(o); hbeat; skip’; hbeat;

Notice that the exact interval between any two successive hbeat is always equal
to 10 time units, except at two points:

—Between the hbeat located between checkpt; and checkpt,, and the hbeat
located inside the second for loop, the interval is 12 time units. This is because
of the fact that, when the transformation Z reaches the second for loop, the
residual time ¢ is equal to 9; hence, the hbeat cannot be inserted right away,
the 7 transformations enters the for body and the time residual becomes 12. So
the hbeat is inserted at the beginning of the for body. To avoid a clock drift,
the residual time ¢ at this point is reset to 8 since the hbeat should have been
inserted 2 time units earlier. Unfortunately, the next hbeat cannot be inserted
after 8 time units, the reason being similar; instead it is inserted after 10 time
units.

—Between the last but one hbeat and the last hbeat, the interval is 8 time units.
Indeed, the residual time after inserting the last but one hbeat is 8 time units.
Since we are at the end of the program and we want to terminate with a hbeat,
we insert a skip® to match the desired residual time, which is equal to 8 —
EXET(hbeat) = 8 — 3 = 5 at the end of the hbeat.

In Facs, the checkpoint is performed after 83 units of time in both branches,
which is inside the [80,86) interval of Property 4. Finally, since WCET(Facs) = 143
and the period is 200, Equation (5) gives [%W = 6, so the last hbeat must be
changed into hbeat(6).

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008.

Implementing Fault-Tolerance by Automatic Program Transformations . 17

5. IMPLEMENTING THE MONITOR

A special program called monitor is executed on the spare processor. As already
explained, the monitor performs failure detection by checking the heartbeats sent
by each other task. The other responsibility of the monitor is to perform a rollback
recovery in case of a failure. In our case, rollback recovery involves restarting the
failed task on the spare processor from its latest state stored in the stable memory.
In the following subsections, we comprehensively explain heartbeat detection and
rollback recovery actions, together with the implementation details and conditions
for real-time guarantee.

5.1 Failure detection

The monitor periodically checks the heartbeat variables HBTYi] to be sure of the
liveness of the processor running the tasks 7;. For a correct operation and fast
detection, it must check each HBTJi] at least at the period Tgp,. Since each
processor (or each task) has a potentially different heartbeat period, the monitor
should concurrently check all the variables at their own speed. A common solution
to this problem is to schedule one periodic task for each of the n other processors,
whose period is equal to the corresponding heartbeating interval. Therefore, the
monitor runs n real-time periodic tasks I'; = (Det;, Typ,), with 1 < i < n, plus
one aperiodic recovery task that will be explained later. The deadline of each task
T'; is equal to its period Ty p,. The program Det; is:

Det;, = HBT[i] := HBT[i] — 1;
if HBT[i] = —2 then run Rec(i);

When positive, HBT[i] contains the number of T p, periods before the next
heartbeat of 7;, hence the next update of HBT[i]. When it is equal to —2, the
monitors decides that the processor i is faulty, so it must launch the failure-recovery
program Rec. When HBTYi] is equal to —1, the processor 4 is suspected, but not
yet declared faulty. Indeed, it might just be late, or HBT[i] might not have been
updated yet because of the clock drift between the two processors.

In order to guarantee the real-time constraints, we must compute the worst-case
failure detection time «; for each task 7;. Since the detector is not synchronized
with the tasks, the heartbeat send times (o)k>0 of 7; and the heartbeat check times
(0},)k>0 of Det; may differ in such a way that Yk > 0, |0y, —0},| < Tup,. The worst
case is when oy, — 0}, >~ Ty p, and 7; fails right after sending a heartbeat: in such
a case, the detector receives this heartbeat one period later and starts suspecting
the processor i. Hence, it detects its failure at the end of this period. As a result,
at worst, the detector program detects a failure after 3 x T'yp. Remember that the
program transformation always guarantees the interval between two consecutive
heartbeats to be within [Typ,, Tup, + €).

Let L, and L,, denote respectively the times necessary for reading and writing
a heartbeat variable, let £; be the maximum time drift between Det; and 7; within
one heartbeat interval (§; < Typ,), the worst-case detection time «; of the failure
of task 7; then satisfies:

o; < 3(Tup, +€+ &)+ Ly + Ly (9)

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008.

18 . T. Ayav, P. Fradet, and A. Girault

Finally, the problem of the clock drift between the task 7; that writes HBTVi],
and the task Det; that reads HBT[i], must be addressed. Those two tasks have the
same period Ty p,, but since the clocks of the two processors are not synchronized,
there are drifts. We assume that these clocks are quasi-synchronous [Caspi et al.
1999], meaning that any of the two clocks cannot take the value true more than
twice between two successive true values of the other one. This is the case in many
embedded architectures, e.g., TTA and FlexRay for automotive [Rushby 2001].
With this hypothesis, 7; can write HBT[i] twice in a row, which is not a problem.
Similarly, Det; can read and decrement HBTi] twice in a row. Again, this is not a
problem since Det; decides that 7; is faulty only after three successive decrements
(i.e., from 1 to —2).

5.2 Rollback recovery

As soon as the monitor detects a processor failure, it restarts the failed task from
the latest checkpoint. This means that the monitor does not exist anymore since
the spare processor stops the monitor task and starts executing the failed task
instead. The following program represents the recovery operation:

Rec (x) = FAILED := x;
restart (7,, CONTEXT,);

where restart (7,, CONTEXT,) is a macro that stops the monitor application and
instead restarts 7, from its latest checkpoint specified by CONTEXT,. The shared
variable FAILED holds the identification number of the failed task. FAILED = 0
indicates that there is no failed processor. FAILED = z € {1,2,...,n} indicates
that 7, has failed and has been restarted on the spare processor. The recovery
time (denoted with) after a failure occurrence can be defined as the sum of the
failure detection time plus the time to reexecute the part of the code after the last
checkpoint. If we denote the time for context recovering by L, then the worst-case
recovery time (3 is:

8=3 (THB +e+ 1r£1a<x &) +Tcp+Ly+Ly+Lo+WCET(Det)+WCET(Rec) (10)

5.3 Satisfying the real-time constraints

After the program transformations, the WCET of the fault-tolerant program of the
task (S”,T), taking into account the recovery time, is given by Equation (11) below:

WCET(S”) = woET(S) + {%(Sﬂ)-‘ X WCET (hbeat)
HB
+ ([WC%}(DS”)—‘ - 1) X WCET(checkpt) (11)

where the “—1” accounts for the fact that there is no checkpt either at the very

beginning or at the very end of the program, that is, when there is nothing to
backup.

Note that this WCET does not include the error detection time and recovery
time; for this we must add the § term computed by Equation (10). We now wish
to prove that Equation (11) is consistent with Equations (6) and (7), and with

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008.

Implementing Fault-Tolerance by Automatic Program Transformations : 19

the value of T/, p. For the sake of conciseness, we write h for WCET (hbeat), € for
WCET(checkpt), and S for WCET(S). Equation (11), therefore, becomes (note that
neglecting the [.] function is for the purpose of a computation averaged over all
the periods):

<. Q.= o h C _
WZS-‘FS h+S C—E<:> S”-(l—L—L):S—E

Tus Tcp Ty Tcp
— S—¢ S—¢)TcpT
— 5= = (8 =8 Tor Ths - (12)
— h _ TepTyp —Tcph—Tupec
HBE™Top

It is interesting to check that, by combining Equations (6) and (7), we will obtain
the same expression. Indeed, we first get:

N — S—T! h - S—T!
S”:S+E~S, oL 4 _<S+E~M>
Tep—¢ Tup—h Ttp—c

§—T'CP) Tus
Tup —h

— § C -
te g

_ S(Ttp—c+2)—eTtp Tus (S-o)Ttp Tus

T¢tp—t¢ Tup—h Tip—¢ Tup—h

By combining with Equation (3) which gives the value of T(.p, we obtain:

o7 _ (S—72) Tcp _ (S—¢)TepTus (13)
Tor (Tup—h) g{l‘f = _z TepTup—Tcph—Tupe

As expected, we can see that Equations (12) and (13) are identical.

Now, one may also be interested in the optimum values, T} p and T g, ie.,
the values that offer the best trade-off between fast failure detection, fast failure
recovery, and least overhead as a result of the code insertion. If we add the term (G
of Equation (10) to Equation (13), we obtain a two-value function f of the form:

T _ o
f(x,y):(ic_)xy_—i—x+3y+l((14)
ry—xh—yc

where x stands for T¢p, y stands for Ty g, and K is a constant. This function is de-
fined only when the denominator is strictly positive, that is, when zy — 2 h — y e > 0.
Note that this is exactly Equation (4) resulting from Condition 1.

Since the least overhead resulting from the code insertion means the smallest
WCET for S”, we have to minimize f. Now, the computation of its two partial

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008.

20 . T. Ayav, P. Fradet, and A. Girault
derivatives yields:

of _ (S-9yley—ah—ye)—(S—)zy(y—h)

Ox (xy —xh—yc)?
_ (?—E)(myQ—xyﬁ—yQE—ny—i—xyE)+1:1_ (S —¢)y*c
(xy—axh—yt)? (xy —ah—yc)?
of _ (?—E)x(my—xﬁ—yé)—(?—E)xy(x—ﬁ)+3
dy (ry —axh—y7)?
_ (?—E)(a:Qy—xQE:xyE—ny—i-xyE)+3:3_ (?—E_)xzﬁ
(ry—xh—y7)? (ry—xh—y?e)?

From this, we compute the Hessian matrix of f (we skip the details):

ﬁ ﬁ 2(S —¢)y*c(y—h) 2(S—¢)xych
V(o) = 0z2 Oxy _ (xy_—xﬁ—yéf (iy—xﬁ_—yéﬁ (15)

ﬁ ﬁ 2(S—e¢)xych 2(S—72)2*h(z —7¢)

Oyz dy* (ry—xh-ye)?® (zy—xh-ye)P

This matrix is positive definite since its two eigen values are strictly positive
whenever the condition zy — xh — y€ > 0 holds (again, we skip the details). Hence,
the function f if conver and it admits a unique minimum (z*,y*) in the portion
of the plane where xy —xh —ye > 0. The optimal values z* and y* are those
that nullify the two first order partial derivatives. Hence, they are the solutions of
Equations (16) and (17) below:

9Y € | — (S—0)y’c=(zy—axh—y?)? (16)

QT _ A\, 27 _ _ —
(9 Cﬁ)x h_ =3 = (S-02°h=3(xy—ah—yo)? (17)
Y

On the one hand, by combining Equations (16) and (17), we get:

2_ —
(S—2)2’h—-3(S—0)y’c=0 <— 2=30° T=y % (18)

On the other hand, Equation (16) can be rewritten as:

(S—?)y’c=(xy—ah—y?o)? < yy\/e(S—¢)=zy—axh—yc (19)

where only the positive square root is kept, since we are only interested in positive
solutions. Now, in Equation (19), by replacing x, as given by its expression (18),

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008.

Implementing Fault-Tolerance by Automatic Program Transformations

we get:
ﬁ , [3¢ - [3¢ _
- jp—— h —_—
c)=y 7 -y 7 yc
— 3¢ — /3¢
<~ c Cc) = — —h — —¢C since 0
\/ v\5 - (since y # 0)

SN

Finally, by replacing this value of y in Equation (18), we get:

r=¢+ V3ch+/c(S—72)

21

In conclusion, the optimal values T%p and 175 that minimize the overhead due to

the code insertion are:

Ttp = ¢+ V3Ch+ /(S —72)

_ ¢h h(S -2
Thy = h+ (] > + 1] ——
HB + 3 + 3

With our Fac example, we get T¢p = 46.69 ms and Tf5 = 14.76 ms.

(20)

(21)

This

means that the values we have chosen, respectively, 80 ms and 10 ms, were not the
optimal values. Figure 4 is a three-dimension plot of f with the numerical values

of the Fac example.

f(Ter, Tup)

1000
900
800
700
600
500
400
300
200

10

30

0,
50 0.69
N 40 60
70

Tup 70 80 Tep

80

Fig. 4. Three dimensional plot of f(Tcp,Tup).

Equations (20) and (21) give the optimal values for the heartbeat and checkpoint
periods. In order to satisfy the real-time property of the whole system, the only

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008.

22 . T. Ayav, P. Fradet, and A. Girault

criterion that should be checked is:
f(TCP“THBi) <T%, Vi € {1,2,...,71} (22)

Removing the assumption of zero communication time just involves adding a
worst-case communication delay parameter in Equations (9) and (10), which does
not have an effect on the optimum values, T p and T7 5.

Finally, we give the following property in order for our framework to be complete
and sound:

Property 5 The real-time distributed system with the specifications drawn in this
work can always tolerate one failure and still respect its real-time constraints.

Proof: The recovery time [given in Equation (10) relies on fixed heartbeating
and checkpointing intervals (given in Property 4). Therefore, according to Condi-
tion (22), there exist Tep and Typ such that the algorithm completes before its
deadline against one failure. a

5.4 Scheduling all the detection tasks

The monitoring application consists of n detector tasks plus one recovery task.
Detector tasks are periodic and independent, whereas the recovery task will be
executed exactly once, at the end of the monitoring application (when a failure is
detected). Therefore, it can be disregarded in the schedulability analysis. We thus
have the task set I' ={(Det1,Tup,), (Deta,Tup,), --., (Detn, Typ,)} that must
satisfy:

Vie{1,2,..,n},wCET(Det;) < Tup,. (23)

Preemptive scheduling techniques such as rate-monotonic (RM) and earliest-
deadline-first (EDF) settle the problem. Both RM and EDF are the major paradigms
of preemptive scheduling, and basic schedulability conditions for them were derived
by Liu and Layland for a set of n periodic tasks under the assumptions that all
tasks start at time ¢ = 0, relative deadlines are equal to their periods, and tasks
are independent [Liu and Layland 1973]. RM is a fixed-priority based preemptive
scheduling, where tasks are assigned priorities inversely proportional to their peri-
ods. In EDF, however, priorities are dynamically assigned inversely proportional to
each task’s distance from its deadline (in other words, as a task gets nearer to its
deadline, its priority increases). For many reasons, as remarked in [Buttazzo 2005],
RM is the most common scheduler implemented in commercial RTOS kernels. In
our context, it guarantees that I' is schedulable if:

WCET(Det;)

! <22V — 1) (24)
Ty,

n

=1

Under the same assumptions, EDF guarantees that I' is schedulable if:
" WCET(Det;
Z WCET(Det;) <1 (25)
i—1 Tusp,

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008.

Implementing Fault-Tolerance by Automatic Program Transformations : 23

The above schedulability conditions highlight the fact that both RM and EDF
are appropriate and sufficient for scheduling the monitoring tasks with deadline
guarantee. EDF allows a better processor utilization, but at the cost of a lot of
context switching when processor utilization is close to 1.

6. EXTENSIONS

We propose two extensions to our approach. The first one concerns transient fail-
ures. The second extension is to tolerate several failures at a time.

6.1 Tolerating transient failures

Our framework tolerates one permanent processor failure. Relaxing this assumption
to make the system tolerate one transient processor failure (one at a time, of course)
implies addressing the following issue. After restarting the failed task on the spare
processor, if the failure of the processor is transient, it could likely happen that
the failed task also restarts, although probably in an incorrect state. Hence, a
problem occurs when the former task updates its outputs, since we would have
two tasks updating the same output in parallel. This problem can be overcome
by enforcing a property such that all tasks must check the shared variables FAILED
and SPARE so that they can learn the status of the system and take a precaution
if they have already been replaced by the monitor. When a task realizes that it
has been restarted by the monitor, it must terminate immediately. In this case,
since there is no more monitor in the system, the task terminates itself and restarts
the monitor application, thus returning the system to its normal state where it
can again tolerate one transient processor failure. Note that this would require the
architecture to be homogeneous: all the processors should be able to replace any
other one with equivalent performances.
The following code implements the needed action:

Rem; = if FAILED = i and SPARE # This Processor then
SPARE := This Processor; FAILED := (; restart monitor ;

where restart_monitor is a macro that terminates the task and restarts the mon-
itoring application, and This Processor is the ID of the processor executing that
code. The shared variable SPARE is initially set to the ID number of the spare
processor.

For example, assume that the task ¢ has failed and has been restarted on the
spare processor. When the previous code is executed on the spare processor, it will
see that even if FAILED is set to 7, the task should not be stopped, since it runs on
the spare processor. On the other hand, the same task resuming after a transient
failure on the faulty processor will detect that it must stop and will restart the
monitor task.

At the very least, an Rem; must be inserted in the program of 7; just before
the output update: write(o) = Rem,;; write(o). Besides, each Rem;; write(o)
sequence of code must be an atomic transaction. Thus, in order to detect any
transient processor failure and to guarantee the real-time constraints, the minimal
duration of the transient failure must be larger than the max of all the tasks’
periods. If we want to tolerate transient failures with shorter durations, we must
insert Rem,; statements at shorter intervals.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008.

24 . T. Ayav, P. Fradet, and A. Girault

6.2 Tolerating several failures at a time

We assumed that the system had one spare processor running a special monitoring
program. In fact, additional spare processors could be added to tolerate more
processor failures at a time. This does not incur any problem with our proposed
approach. The only concern is the implementation of a coordination mechanism
between the spare processors, in order to decide which one of them should resume
the monitor application after the monitor processor has restarted a failed task 7;.

7. APPLICATION: THE CYCAB VEHICLE

We illustrate the implementation of our program transformations on the embed-
ded control program of the CYCAB autonomous vehicle. This application does
not exactly fit our theoretical model, the main difference being that it consists
of communicating tasks rather than independent tasks. Our goal in this section
is precisely to show that our technique can be adapted to such applications, and
therefore that the independent tasks assumption can be relaxed. Note, however,
that we have not actually made the CYCAB fault-tolerant, meaning that we have
not modified its hardware architecture. We have just used its control program as a
case study.

First, in Section 7.1, we present the CYCAB and show how a static schedule
is created for its distributed architecture. The program transformations on the
CyCAB’s application are given in Section 7.2. Finally, experimental results with
fault injection are presented in Section 7.3.

7.1 Overview of the CYCAB and the AAA methodology

The CYCAB is a vehicle that was designed to transport up to two persons in down-
town areas, pedestrian malls, large industrial or amusement parks, and airports, at
a maximum speed of 30 km.h~! [Baille et al. 1999; Sekhavat and Hermosillo 2000)].
It is shown in Figure 5. The mechanics of CYCAB is borrowed from a small electri-
cal golf car frame, already produced in small series. The steering is done through
an electrical jack mechanically linked to the wheels. Each wheel motor block has
its own power amplifier. There are two MPC555 microcontrollers, named F555
and R555, which drive respectively the power amplifiers of the two front wheels
and the rear wheels. The communications between the nodes are made through a
CAN serial bus. The CAN bus has been designed specially for automotive appli-
cations and allows safe communications in disturbed environment, with a rate of
1 Mbit.s~!. The architecture also includes a PC board that drives the screen and
the hard disk. In the remainder of this article, we call these nodes F555, R555, and
ROOT respectively.

Concretely implementing our program transformations would require one addi-
tional node, named MONITOR, connected to the four motor blocks via dual com-
mands in order to be able to control them after the failure of either one of the F555
or RH55 processors. The architecture graph of the CYCAB is therefore given in Fig-
ure 6. Also, neither the MPC555 microcontroller nor the PC board are fail-silent; so
guaranteeing that they obey this assumption requires additional hardware: for each
processor, this requires the addition of a dual board with self-checking hardware to
switch off the output when a failure is detected.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008.

Implementing Fault-Tolerance by Automatic Program Transformations : 25

Camera

Joystick

Multimedia terminal

Infra red tracking camera

Infra red beacons

Batteries +

Induction charger

Steering jack

Ultra sound sensors

Sylvain Fauconnier - INRIA 1997 Wheel drive + Electric brake

Fig. 5. The CyCAB vehicle.

F555 {(mpc555) BUS (CAN) Manitar (Manitor-mP)
i it
fl fl
root (rtaidEs) (main) R555 {mpcasa)
il 0
fl fl

Fig. 6. Architecture graph of the CYCAB application.

For the present case study, we consider the “manual-driving” application imple-
mented on the CYCAB. This application is distributed on the architecture using
the SYNDEX tool that supports the algorithm architecture adequation methodology
(AAA). The goal of this methodology is to find out an optimized implementation
of an application algorithm on an architecture, while satisfying distribution con-
straints. AAA is based on graphs models to exhibit both the potential parallelism
of the algorithm and the available parallelism of the multicomponent architecture.
The implementation is formalized in terms of graphs transformations [Grandpierre
et al. 1999; Grandpierre and Sorel 2003]. Concretely, starting from a graph spec-
ification of the application and a graph specification of the target architecture,
SYNDEX first produces a static multiprocessor schedule of the application on the
architecture, then generates the corresponding embeddable code.

Concerning the CYCAB manual-driving application, its algorithm graph is given
in Figure 7.

Task execution times and communication times are defined and given in Tables II
and IV (see later), respectively (“n/a” means that this task cannot be executed
onto this processor). We take into account the communication times between all
the tasks (including to and from the tasks running on the MONITOR node).

The AAA algorithm of SYNDEX produces the static schedule shown in Figure 8.
The real-time constraint is the completion time of the whole algorithm. Let Sy, Ss,
and S3 be the programs of processors F555, ROOT, and R555, respectively. Let

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008.

26 . T. Ayav, P. Fradet, and A. Girault

FSangle
F555

RL, RR, FL and FR tasks:

ctrlrl | Ipf_rl
ctrlrr , Ipf_rr
ctrl_fl | Ipf_fl
ctrl_fr , Ipf_fr
/
F555 /
[t
A =
minusOne 7 e P
ik
B
ik (i [o
RLtlll
\ speed]
0
[}t j—tTo—=o] 11
/
RRtlll
jtkX and jykY tasks: accell
Ipf_x , ctrx
Ipf_y , ctr_y itk y [v
FRtlll

Fig. 7. Application graph of CYCAB. A processor name written inside a task indicates a processor
constraint, i.e., that task must be scheduled onto that processor.

S1, Sa, and S3 be equal to WCET(S1), WCET(S2), and WCET(S3), respectively. The
completion time of the whole algorithm is therefore given by Equation (26) below:

S = max(Sy, Sa, S3) (26)

_According to Figure 8, S; = 4.19ms, Sy = 3.05 ms, S3 = 4.10 ms, hence,
S = 4.19 ms. The period of the algorithm, i.e., the deadline, is set to 10 ms in
this case study.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008.

Implementing Fault-Tolerance by Automatic Program Transformations . 27

Table II. Task execution times (ms) of the CyCAB application algorithm.

| Task name || WCET on F555 | on Rb555 | on ROOT | on MONITOR |

FSAngle, FSPwm 0.3 n/a n/a 0.3

jtk n/a 0.3 n/a 0.3

RLinc, RRinc n/a 0.2 n/a 0.2

FLinc, FRinc 0.2 n/a n/a 0.2

ctr_x, ctr_y, FS 0.6 0.6 0.6 0.6
Ipf_x, Ipf_y, speedl

sat2, ctrlrl, Ipfrl 0.2 0.2 0.2 0.2

ctrl_rr, Ipf_rr, ctrl_fl
Ipf_fl, ctrl_fr, 1pf{r

accell 0.3 0.3 0.3 0.3

satl 0.3 0.3 0.3 0.3
RLcurtis, RRcurtis n/a 0.5 n/a 0.5
FLcurtis, FRcurtis 0.5 n/a n/a 0.5
disp n/a n/a 0.5 0.5

Table III. Task execution times (ms) of heartbeating and checkpointing.

Task name [[WeET on F555 | on R555 | on ROOT | on MONITOR |
hbeatl, cpl 0.06 n/a n/a 0.06
hbeat2, cp2 n/a 0.06 n/a 0.06
hbeat3, cp3 n/a n/a 0.06 0.06
monitorl, monitor2, monitor3
cpsavel, cpsave2, cpsave3 n/a n/a n/a 0.06

Table IV. Communication times.
Communication [| Duration (ms) |

hbeat — monitor Anpeat = 0.12
checkpt — cpsave Acheckpt = 0.15
Other messages A =0.15

7.2 Applying program transformations

Our approach is to apply our program transformations on the static schedules gen-
erated by SYNDEX rather than on the embeddable code generated by SYNDEX.
The heartbeating and checkpointing program transformations periodically insert
heartbeating and checkpointing codes at the appropriate places in the static sched-
ule of Figure 8, while generating the monitor application for heartbeat checking and
error recovery operations on the MONITOR, processor. The graph representation
of heartbeat and checkpoint operations is given with Figure 9. We assume that all
the tasks are atomic, i.e., heartbeat and checkpoint codes cannot be inserted inside
the tasks; rather, they are placed between the tasks. For example, according to
Table II, the execution time of the longest task, €, is equal to 0.6 ms. In fact, AAA
suggests to divide tasks as much as possible to exhibit more potential parallelism
(therefore achieving a better schedule length but at the cost of a more expensive
heuristics). Hence, this approach simplifies the transformation while still satisfying
the properties. Moreover, the checkpointed data to be stored will be much less
since checkpoints are taken only between the tasks, i.e., internal variables of tasks

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008.

28 . T. Ayav, P. Fradet, and A. Girault

F555 CAN BUS ROOT RE55 MOMITOR
I I
tk FSAngle
Ipf % jtke=pt Y FLinc
jth-=disp Inf
FoAngle-=F3 BLY
cir_x FLing-=ctrl_fl
cir_y
RRinc
RLinc FRinc
speed] RL|nc-|=ctrI_rI accall
satl accell-=disp sat2
| satd-=cirl 1 ctrl_fr
ctrl_rr satd-=cirl 1l
sat2-=disp ctrl_fl cltrTI-_frI
) i
- ctrl_tr I>Ipf_rr T |pf_r|
Inf fl-=FLcurtis Ipf_rr Pl
Ipf rl-=RLcudis disp .
| Ipf_rr-=RReurtis - FReurtis
F&-=FSPwm 3.05 ms
RRcuttis
FLcurtis
RlLcurtis FSPwm
_ _ 419 ms J' —4ims

Fig. 8. Static schedule generated by the SYNDEX tool (completion time=4.19 ms).

The
hbeatl manitari hheatz manitorz hbeatd manitors
F555 Monitor RS55 konitor root Manitar
[o wli | [o »i | [@ =
Tep
cpl cpsavel cpe cpsaves cpa cpsaved
Faa5 konitar RES5 Monitar root ronitor
[o g [0 o (I HE i |

Fig. 9. Application graphs for heartbeating and checkpointing. The two algorithms are executed
periodically with the periods Ty p and T¢ p, respectively.

are not included in the checkpoint data.

For proper operation, each processor failure should be detected. Therefore, heart-
beating and checkpointing transformations are independently applied to each pro-
cessor. In order to apply the transformations to a processor, we should fill the
idle times between tasks with no-operations. For instance, the program Ss of the
ROOT processor is as follows:

So = idle time; ctrl fl; Ipf_fl; Ipf_rr; disp;

Even though all idle times are filled with no-operations before insertion, task

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008.

Implementing Fault-Tolerance by Automatic Program Transformations : 29

dependency may cause new idle times after placing a checkpoint or heartbeat,
since an insertion slightly changes the static schedule. Hence, after each insertion,
the resulting static schedule is checked once more and all idle times are filled again
before continuing with the next insertion.

Before applying our transformations, we must also calculate the optimal heart-
beating and checkpointing periods by modifying the computations presented in the
previous sections. First, the worst-case error detection time and the recovery time
given with Equations (9) and (10) can be expressed by Equations (27) and (28)
below:

Oéi<THB¢+€+§i+Lr+Lw (27)
B=Tup+e+ max & +Tcp+ Ly + Ly + Lo + WCET(Det) + WCET(Rec) (28)

where n is the number of processors. The reason why the “3” factor in Equation (9)
has been removed in Equation (27) is that the tasks monitor; are not scheduled
anymore with a rate monotonic policy (implying a complete lack of synchronization
with the tasks hbeat;), but, instead, are scheduled statically by SYNDEX thanks
to the data-dependencies expressed in the application graphs of Figure 9 (implying
a synchronization between each task hbeat; and its corresponding task monitor;).
The reasoning is the same between Equations (10) and (28).

Checkpoint and heartbeat transformations are applied to the processor’s pro-
grams S7, S3, and S3 independently. The following ML code illustrates how we
apply the program transformations to the whole application.

let (S}, —) = T3 (S1, Thp) im
let (51{/’ _) = Ig;léft(sz{’ 0) in
SY; hbeat(k;) Vi e {1,2,3}

where

ke — {T - WCET(S{';hbeat)-‘
' Tup

Note that the timing analysis presented here does not use any knowledge of the
initial static schedule and assumes the worst case, i.e., all processors and communi-
cation buses are fully-utilized. Fully-utilized here means that programs S7, S, and
S3 do not have idle times between their tasks. The communication bus has also no
idle time. Normally, as can be seen in Figure 8, idle times appear between tasks
and between messages, because of the data dependency. These idle times might be
filled with hbeat and checkpt tasks and their communications. If there is no idle
time, then each insertion of checkpt (resp. hbeat) increases the completion time
by € + Acheckpt (resp. h + Appeat), at worst, because of the data dependency.

Therefore, the maximum value of the completion time of the algorithm in the

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008.

30 . T. Ayav, P. Fradet, and A. Girault

presence of one failure can be computed as follows:

— =5, -T,
S,mam = S+Z T_CEP X (E+Acheckpt) (29)
=1
3 a / N
— — — Si —T _ h+Ahbeat
S maz = 5"+ S+ 5L % (4 Acnec —_— 30
; Top—¢ (heckpt) Ton—h (30)

The worst-case recovery time 3 of Equation (10) can be rewritten for our application
as follows:

B=Tup+e+ Jmax & +Tcp+ Ly + Ly + Lo + WCET(Det) + WCET(Rec) (31)

When we add the term 8 to Equation (30), we obtain the completion time of the
application algorithm as a two-value function f of the form:

f(xay) = ?mam+5
S+ (S1+ 82+ 53

h + Anpea
)%—i—x—ky

i (gl + 32 + 33)?/ - 33/'2/ + 3$E % (E + Ac:heckpt)(y + Ahbeat)

= + K (32
xy —xh —yc y—nh (82)

where x stands for Top, y stands for Typ and K’ is a constant, ie., 8 —x — v.
Taking into account the execution times of Det and Rec, we find that K’ ~ 0.2 ms.

Similarly, f is the WCET that may occur only if the initial schedule given in
Figure 8 has fully utilized the processors and communication buses. The analysis
considers the worst case and it holds for any given schedule. Generally, and as in
our case seen in Figure 8, processors and communication buses will have idle times
that might be filled by hbeat tasks, checkpt tasks, and their communications.
Therefore, the actual completion time is expected to be less than the one given in
Equation (32). In critical conditions, the analysis can be relaxed by taking into
account the static schedule so that the completion time can be calculated precisely
to check whether the deadline is met.

The computation of the two partial derivatives of f(x,y) yields:

af 1 —2 —

= = =———————(h 2* + 2h(¢ —)2y + y(y(4c® — 2z + 2? + 3eA

Oz (hx T (E _ x)y)Q(() Yy y(y(checkpt)

+3E(E + Acheckpt)Ahbeat) - y(E + Ac:heckpt)(y + Ahl:weat)(S_l + S_Q + S_B))

of 1 —

= = = = h—y)%(@(y* — 3zA

0y " TPl G)

+ Ex(3ﬁa: + QEZJ — 2y2 + 3.’13Ahbeat - 3AcheckptAhbeat)

£E2 (EQ _ QEy + y2 —+ 3EAcheckpt + 3AcheckptAhbeat))
— (ha*(h —y)* — hy(2ha + (€ — 22)y) Acheckpt
— (€= 2)a(h — 9)* + (B + (€ — 2)y) Acheckpr) Anvea)(S1 + S2 + S3))

As in Section 5.3, we can compute the Hessian matrix of f and show that this
matrix is positive definite since its two eigen values are strictly positive whenever

|

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008.

Implementing Fault-Tolerance by Automatic Program Transformations : 31

the condition zy —2h —ye > 0 holds (again, we skip the details). Hence, the
function f if convexr and it admits a unique minimum (z*,4*) in the portion of
the plane where 2y — 2 h — y¢ > 0. The optimal values z* and y* are those that
nullify the two first order partial derivatives.

Taking into account the values given in Tables IIT and IV, we find the optimal
values as follows:

Tép = 1.71348 ms
Tt 5 = 1.57404 ms

Recalling Property 5 and Condition (22), it can be proved that the transformed
program always meets its deadline, even in the presence of one failure:

Fa*y) =8 maw +y* +y* + K <T
<= 6.48439+1.71348 +1.57404 + 0.2 < 10
<— 9.97191 ms < 10 ms

7.3 Results and discussion

If we apply the transformations to insert hbeat and checkpt tasks with the peri-
ods of T and T p respectively, we obtain the schedule given in Figure 10. For
instance, the ROOT processor will have the following task sequence after our trans-
formations:

hbeat ; nop®’; hbeat ; nop?; checkpt ; nop?? ; ctrlfl; hbeat ; Ipf_fl; nop ;
checkpt ; nop; Ipf_rr; disp; hbeat ;

In failure-free operation, the completion time of the new algorithm is 5.60 ms as
shown in Figure 10. The overhead of the fault-tolerance properties is, therefore,
5.60 —4.19 = 1.41 ms.

Thanks to Equation (32), we prove that the deadline is always met in spite of one
processor failure. Figure 11, on the other hand, illustrates how the failure detection
and recovery operations are handled in one iteration of the algorithm.

For a correct failure recovery, two kinds of messages must be dealt with, the
messages sent to the faulty processor and the messages sent by the faulty processor:

—TFollowing a failure, the MONITOR rollsback to the last checkpoint and restarts
the schedule of the faulty processor. To do this, it needs the data sent by all the
processors to the faulty one. Therefore, all the messages flying on the bus must
be stored in the stable memory.

—A task, blocked because it is waiting for some data that was supposed to be
sent by the faulty processor, just needs to wait for the MONITOR to rollback,
reexecute the schedule of the faulty processor, and send the awaited data (this
is what happens between task Ipfrr on processor ROOT and task ctrlrr on
processor FMPC555 in Figure 11). To guarantee that the monitor task will not
mistake the faulty processor and the blocked processor, each task waiting for
some communication must periodically execute a hbeat.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008.

32 . T. Ayav, P. Fradet, and A. Girault

F&55 CAMBUS ROOT R&55 MOMNITOR

) hhbeatd-=monitord ‘
itk hbeat?-=monitor? FSAngle mo;q__o
|

hbeat!-=rmaonitar] rnonfol
0.6 Ipf_x th-=lpf_y FLinc m01|_;1__0

jtk-=disp Ipf_y
FSAngle-=F5
FLing-=ctrl_fl

= [|

1 cir_x

clr_y

RRinc

iy RLinc FRinc

speed RLinc-=ctrl_rl
hheat?-=monitor?
hbeat!-=rmonitor
satl lhbeats-=rmonitor3]
cp2-=cp-savel
accell-=disp cirl_fr
25 cpl-=cp-savel ctrl i
cp3-=cp-saved —
sat2-=ctrl_rr Ipf_fr
3 ctri_rr satd-=cirl_fl lpf_rl
B sat2-=disp
Ipf_rl-=RLcurtis
35 F& hbeat?-=rmonitor2 Ipf_fl
= cirl_re-=lpf_rr ronar
Ipf_fl-=FLcurtis
hbeat!-=rmonitor
lhbeat3-=rmonitor3) monfio
hbeat?-=manitor2 FLeurtis monio
F5-=FSPwm rmaniiof
[Ipf_rr-=RRcurtis
45 cpl-=cp-savel
RRcurtis cp3-=cp-saved
hheat3-=monitord

accell

sat2

FRcurtis

2 oy [

CR-Save
CR-Save
[EATa]ali o]

RLcurtis

: hbeatt-=monitort 5.6023 ms
@

time 1 nop task
{ms) hbeat task
e checkpt task

Fig. 10. Fault-tolerant static schedule with heartbeating and checkpointing (the completion time
is 5.6023 ms).

Finally, we have performed some tests to show the completion time of the trans-
formed program after a failure recovery. Figure 12 shows the completion times of
the algorithm for 60 failure instants. For each failure instant, the figure illustrates
three completion times for the failure of the three processors. Processor failures
are injected by software at relative failure times that range from 0.1 to 6 ms with
0.1 ms intervals. For example, the completion time will be 8.78 ms if processor
F555 fails at the failure instant t = 3.8 ms, 7.02 ms if processor ROOT fails at the
same instant and 7.99 ms if processor R555 fails at the same instant.

According to this experiment, the maximum completion time is achieved for
the failure of processor F555 when the failure instant is around 3.75 ms, i.e., just
after a heartbeat (it maximizes the detection delay) and just before a checkpoint
(it maximizes the roll-back delay); see Figure 10. The monitor will notice the

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008.

Implementing Fault-Tolerance by Automatic Program Transformations . 33

Fa55 CANBUS ROOT R555 MOMITOR
0
hhbeatd-=monitord
hheat?- =manitar? FSAngle
05 hheat!-=rmaonitor - monitor
= Ipf x ith-=Inf v FLinc
jtk-=disp Ipfy
FSAngle-=FS =
1
_1 Hr FLinc-=ctrl_fl
clr_y
RRinc
1_'5 RLinc FRinc
ELinc-=ctrl rl "
hbeat2-=manitor2 —— acce
2 hbeatl-=maonitor]
I satl hhbeatd-=moniord 2
cpZ-=cp-savel? 54
accell-=disp cirl_fr
2'5 cpl-=op-save] ctrl 1l
cpd-=op-saved =
7 sat?-=ctrl i Inf_fr
3 FAILURE satd-=ctrl 1 Ipi_tl
N |__sat-=disp |
eaen FAILURE DETECTION
e 2 e T FReurtis
hbeat-=monitor2 Ipf_f and RECOVERY
35 : e
— Inf fl-=FLecurtis satl
hheat3-=maonitor3
4 -m__________,_:/ FLeurtis
45 cpa-=cp-gavel o ctrl_rr

ctrl_rr-=Ipf_rr

FS
i Ipf_rr-=RRcurtis
hheat?-=monitor?
FS-=FSPwm
55 hheat!-=rmaonitor

=" cpl-=cp-savel

hheat3-=monitord

16 RReurtis

6.5 RLecurtis

7 hbeat!-=monitar
| v 69197ms ~ v

-

[noptask
E hbeat task
(ms) e checkpt task

time

Fig. 11. Example of a recovery when processor F555 fails at time ¢t = 3 ms (the completion time
is 6.9197 ms).

failure approximately Tp ms later and return to the last checkpoint that occurred
approximately Tcp ms before the failure instant. Thus, the completion time will
be approximately T p + Tcp greater than the failure free completion time.

8. RELATED WORK

Related work on failure detectors is abundant. On the theoretical side, Fisher et
al. have demonstrated that, in an asynchronous distributed system (i.e., no global
clock, no knowledge of the relative speeds of the processes or the speed of the
communications) with reliable communications (although messages may arrive in
another order than they were sent), if one single process can fail permanently,
then there is no algorithm that can guarantee consensus on a binary value in finite

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008.

34 . T. Ayav, P. Fradet, and A. Girault

Completion times (ms)

0 05 1 15 2 25 3 35 4 45 5 55]
Failure instant {ms)

—— Completion time of the algorithm when processor F565 fails
—— Completion time of the algerithm when processor ROOT fails

—— Completion time of the algorithm when processor R555 fails
Fig. 12. Completion times when processors F555, ROOT and R555 fails.

time [Fisher et al. 1985]. Indeed, it is impossible to tell if a process has died or if it
is just very slow in sending its message. If this delayed process’s input is necessary,
say, to break an even vote, then the algorithm may be delayed indefinitely. Hence,
no form of fault-tolerance can be implemented in totally asynchronous systems.
Usually, one assumption is relaxed, for instance an upper bound on the communi-
cation time is known, and this is exactly what we do in this paper to design our
failure detector. Then, Chandra and Toueg formalized unreliable failure detectors
in terms of completeness and accuracy [Chandra and Toueg 1996]. In particular,
they have shown what properties are required to reach consensus in the presence
of crash failures. On the practical side, Aggarwal and Gupta present in [Aggarwal
and Gupta 2002] a short survey on failure detectors. They explain the push and
pull methods in detail and introduce QoS techniques to enhance the performance
of failure detectors.

Our program transformations are related to software thread integration (STI).
STI involves weaving a host secondary thread inside a real-time primary thread
by filling the idle time of the primary thread with portions of the secondary
thread [Dean and Shen 1998]. Compared to STI, our approach formalizes the
program transformations and also guarantees that the real-time constraints of the
secondary thread will be preserved by the obtained thread (and not only those of
the primary thread).

Other work on program transformation for fault-tolerance has been conducted
by Liu and Joseph [Liu and Joseph 1992]. A program is modeled as a sequence of
atomic actions, each action being a transition from the program’s internal state to
its next state. The union composition is used to model choice. The authors use a

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008.

Implementing Fault-Tolerance by Automatic Program Transformations : 35

simple specification language with assignment, sequential composition, conditional
composition (if then else with multiple clauses), and iterative composition (do
while). Each action is assumed to terminate. They also define the semantics of
this language. Failures are then formally specified as additional actions putting the
program into an error state. The failures considered here are hardware fail-stop,
and are assumed not to affect recovery actions. The error state is identified by a
special variable f, which is true only in this state (it is assumed that the initial
program never modifies f). This assumption eliminates the problem of failure
detection. The authors then add a set of recovery actions to put back the error
state of a faulty program in a good state. Backward and forward recovery actions
are two special cases of such recovery actions. The authors then show how to insert
checkpointing and recovery actions thanks to program refinement (a particular case
of program transformation). Although they present a sound theoretical framework,
they do not specifically deal with concrete fault-tolerance techniques to achieve
fault-tolerance. Also, their assumption concerning failure detection eliminates the
need for a specific program transformation to obtain this; in contrast, we treat this
specifically with heartbeating. Finally, a crucial distinction with our own work is
that they do not address real-time properties.

Other works on failure recovery include the efforts of reserving sufficient slack
in dynamic schedule, i.e., gaps between tasks resulting from precedence, resources,
or timing constraints, so that the scheduler can reexecute faulty tasks without
jeopardizing the deadline guarantees [Mossé et al. 2003]. Further studies proposed
different heuristics for reexecution of faulty tasks in imprecise computation models
such that faulty mandatory sub-tasks may supersede optional subtasks [Aydin et al.
2000]. In contrast, our work is entirely in the static scheduling context.

Other related work on automatic transformations for fault-tolerance include the
work of Kulkarni and Arora [Kulkarni and Arora 2000]. It involves synthesizing a
fault-tolerant program starting from a fault-intolerant program. A program is a set
of states (valuations of the program’s variables) and a set of transitions between
states. A fault is a set of transitions. Two execution models are considered: high
atomicity (the program can read/write any number of its variables in one atomic
step, i.e., it can make a transition from any one state to any other state) and low
atomicity (it can’t). The initial fault-intolerant program ensures that its specifica-
tion is satisfied in the absence of faults although no guarantees are provided in the
presence of faults. Three levels of fault-tolerance are studied: failsafe f¢ (in the pres-
ence of faults, the synthesized program guarantees safety), non-masking ft (in the
presence of faults, the synthesized program recovers to states from where its safety
and liveness are satisfied), and masking ft (in the presence of faults the synthesized
program satisfies safety and recovers to states from where its safety and liveness
are satisfied). Thus six algorithms are provided. In the high atomicity model (resp.
low), the authors propose a sound algorithm that is polynomial (resp. exponen-
tial) in the state space of the initial fault-intolerant program. In the low atomicity
model, the transformation problem is NP-complete. Each transformation involves
recursively removing bad transitions. This principle of program transformation im-
plies that the initial fault-intolerant program should be maximal (weakest invariant
and maximal non-determinism). In conclusion, Kulkarni et al. offer a comprehen-

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008.

36 . T. Ayav, P. Fradet, and A. Girault

sive formal framework to study fault-tolerance. Our own work could be partially
represented in terms of their model, since our programming language can be easily
converted to the finite-state automaton consisting of a set of states and transitions.
Moreover, our study complies well with their detector-corrector theory presented
thoroughly in [Arora and Kulkarni 1998]. However, we deal explicitly with the
temporal relationships in the automatic addition of fault-tolerance by using heart-
beating and checkpointing/rollback as a specific detector-corrector pair. Therefore,
defining and implementing our system in terms of Kulkarni’s model might require
much effort and be of interest for future research.

Finally, discrete controller synthesis [Ramadge and Wonham 1987] has been suc-
cessfully applied to derive automatic program transformation methods for fault-
tolerance [Dumitrescu et al. 2004; Girault and Rutten 2004; Girault and Yu 2006;
Dumitrescu et al. 2007]. The principle is similar to the work of Kulkarni and Arora,
except that the set of events labeling the transitions is partitioned into the two sub-
sets of controllable and uncontrollable events, faults being uncontrollable. Besides,
a synthesis objective is given by the user, usually in terms of invariant or reachable
states sets. Discrete controller synthesis then involves traversing exhaustively the
state space of the system (with symbolic algorithms) to build a controller that will
steer the system in such a way that it satisfies its synthesis objective whatever be
the uncontrollable events. This approach is thus richer (thanks to the uncontrol-
lability of events) and more flexible (thanks to the synchronous product used to
specify the labeled transition system of the initial fault-intolerant system) than the
work of Kulkarni and Arora.

9. CONCLUSION

In this paper, we have presented a formal approach to fault-tolerance. Our fault-
intolerant real-time application consists of periodic, independent tasks that are dis-
tributed onto processors showing omission/crash failure behavior, and of one spare
processor for the hardware redundancy necessary to fault-tolerance. We derived
program transformations that automatically convert the programs such that the re-
sulting system is capable of tolerating one permanent or transient processor failure
at a time. Fault-tolerance is achieved by heartbeating and checkpointing/rollback
mechanisms. Heartbeats and checkpoints are thus inserted automatically, which
yields the advantage of being transparent to the developer, and on a periodic basis,
which yields the advantage of relatively simple verification of the real-time con-
straints. Moreover, we choose the heartbeating and checkpointing periods such
that the overhead resulting from the addition of fault-tolerance is minimized. We
also proposed mechanisms to schedule all the detection tasks onto the spare proces-
sor, in such a way that the detection period is, at worst, three times the heartbeat
period. To the best of our knowledge, the two main contributions presented in this
article (i.e., the formalization of adding fault-tolerance with automatic program
transformations, and the computation of the optimal checkpointing and heartbeat-
ing periods to minimize the fault-tolerance overhead) are novel.

This transparent periodic implementation, however, has no knowledge about the
semantics of the application and may yield large overheads. In the future, we plan
to overcome this drawback by shifting checkpoint locations within a predefined
safe time interval such that the overhead will be minimum. This work can also

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008.

Implementing Fault-Tolerance by Automatic Program Transformations : 37

be extended to the case where processors execute multiple tasks with an appropri-
ate scheduling mechanism. On the other hand, these fundamental fault-tolerance
mechanisms can also be followed by other program transformations in order to tol-
erate different types of errors such as communication, and data upsetting. These
transformations are seemingly more user dependent, which may lead to the design
of aspect-oriented based tools.

Another area of future research will be to use a proof assistant (e.g., PVS, ACL2,
Coq, ets.) to prove that a task is fault-tolerant and meets its deadline even when a
failure occurs. The results we have presented in this article are a first step towards
this goal.

REFERENCES

AGGARWAL, A. AND GUPTA, D. 2002. Failure detectors for distributed systems. Tech. rep., Indian
Institute of Technology, Kanpur, India. http://resolute.ucsd.edu/diwaker/publications/ds.pdf.

AGUILERA, M., CHEN, W., AND TOUEG, S. 1997. Heartbeat: A timeout-free failure detector
for quiescent reliable communication. In Proceedings of the 11th International Workshop on
Distributed Algorithms. Springer-Verlag, Saarbrucken, Germany, 126-140.

ARORA, A. AND KULKARNI, S. 1998. Detectors and correctors: A theory of fault-tolerance compo-
nents. In International Conference on Distributed Computing Systems, ICDCS’98. IEEE, Los
Alamitos, CA, Amsterdam, The Netherlands, 436—443.

AvVIZIENTS, A., LAPRIE, J.-C., RANDELL, B., AND LANDWEHR, C. 2004. Basic concepts and tax-
onomy of dependable and secure computing. IEEE Trans. Dependable Secure Comput. 1, 1
(Jan.), 11-33.

AypIN, H., MELHEM, R., AND Mossg, D. 2000. Optimal scheduling of imprecise computation
tasks in the presence of multiple faults. In Real-Time Computing Systems and Applications,
RTCSA’00. IEEE, Los Alamitos, CA, Cheju Island, South Korea, 289-296.

BAILLE, G., GARNIER, P., MATHIEU, H., AND PISSARD-GIBOLLET, R. 1999. Le CYCAB de I'Inria
Rhne-Alpes. Technical report 0229, Inria, Rocquencourt, France. Apr.

Beck, M., PLANK, J., AND KINGSLEY, G. 1994. Compiler-assisted checkpointing. Tech. rep.,
University of Tennessee.

BurTAZZ0, G. 2005. Rate monotonic vs EDF: Judgment day. Real-Time Syst. 29, 1, 5-26.

Caspi, P., MazueT, C., SALEM, R., AND WEBER, D. 1999. Formal design of distributed control
systems with Lustre. In International Conference on Computer Safety, Reliabilitiy, and Se-
curity, SAFECOMP’99. Number 1698 in LNCS. Springer-Verlag, Toulouse, France, 396-409.
Crisys Esprit Project 25.514.

CHANDRA, T. AND TOUEG, S. 1996. Unreliable failure detectors for reliable distributed systems.
J. ACM 43, 2 (Mar.), 225-267.

CoLIN, A. AND PuauT, 1. 2000. Worst case execution time analysis for a processor with branch
prediction. Real-Time Syst. 18, 2/3, 249-274.

DEAN, A. AND SHEN, J. 1998. Hardware to software migration with real-time thread integration.
In Euromicro Conference. IEEE, Los Alamitos, CA, Vasteras, Sweden, 10243-10252.

DuMITRESCU, E., GIRAULT, A., MARCHAND, H., AND RUTTEN, E. 2007. Optimal discrete controller
synthesis for modeling fault-tolerant distributed systems. In Workshop on Dependable Control
of Discrete Systems, DCDS’07. IFAC, New-York, Cachan, France, 23-28.

DumMIiTRESCU, E., GIRAULT, A., AND RUTTEN, E. 2004. Validating fault-tolerant behaviors of
synchronous system specifications by discrete controller synthesis. In Workshop on Discrete
Event Systems, WODES’0/. IFAC, New-York, Reims, France.

FisHER, M., LYyNCH, N., AND PATERSON, M. 1985. Impossibility of distributed consensus with one
faulty process. J. ACM 32, 2, 374-382.

GIRAULT, A. AND RUTTEN, E. 2004. Discrete controller synthesis for fault-tolerant distributed
systems. In International Workshop on Formal Methods for Industrial Critical Systems,
FMICS’04. ENTCS, vol. 133. Elsevier Science, New-York, Linz, Austria, 81-100.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008.

38 . T. Ayav, P. Fradet, and A. Girault

GIRAULT, A. AND YU, H. 2006. A flexible method to tolerate value sensor failures. In Interna-
tional Conference on Emerging Technologies and Factory Automation, ETFA’06. IEEE, Los
Alamitos, CA, Prague, Czech Republic, 86-93.

GRANDPIERRE, T., LAVARENNE, C., AND SOREL, Y. 1999. Optimized rapid prototyping for
real-time embedded heterogeneous multiprocessors. In 7th International Workshop on Hard-
ware/Software Co-Design, CODES’99. ACM, New York, Rome, Italy.

GRANDPIERRE, T. AND SOREL, Y. 2003. From algorithm and architecture specifications to auto-
matic generation of distributed real-time executives: A seamless flow of graphs transformations.
In International Conference on Formal Methods and Models for Codesign, MEMOCODE’03.
IEEE, Los Alamitos, CA, Mont Saint-Michel, France.

JALOTE, P. 1994. Fault- Tolerance in Distributed Systems. Prentice-Hall, Englewood Cliffs, New
Jersey.

KALAISELVI, S. AND RAJARAMAN, V. 2000. A survey of checkpointing algorithms for parallel and
distributed computers. Sadhana 25, 5 (Oct.), 489-510.

KoPETzZ, H. 1997. Real-Time Systems: Design Principles for Distributed Embedded Applications.
Kluwer Academic Pub., Novell, MA.

KULKARNI, S. AND ARORA, A. 2000. Automating the addition of fault-tolerance. In International
Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems, FTRTFT’00,
M. Joseph, Ed. LNCS, vol. 1926. Springer-Verlag, Pune, India, 82-93.

LisPER, B. 2006. Trends in timing analysis. In IFIP Working Conference on Distributed and
Parallel Embedded Systems, DIPES’06. Springer, Braga, Portugal, 85-94.

Liu, C. AND LAYLAND, J. 1973. Scheduling algorithms for multiprogramming in hard real-time
environnement. J. ACM 20, 1 (Jan.), 46-61.

Liu, Z. AND JOSEPH, M. 1992. Transformation of programs for fault-tolerance. Formal Aspects
Comput. 4, 5 (Sept.), 442-469.

MILNER, R., TOFTE, M., AND HARPER, R. 1990. The Definition of Standard ML. MIT Press,
Cambridge (MA), USA.

MossE, D., MELHEM, R., AND GHOSH, S. 2003. A nonpreemptive real-time scheduler with recovery
from transient faults and its implementation. IEEE Trans. Software Engin. 29, 8, 7T52-767.
NELSON, V. 1990. Fault-tolerant computing: Fundamental concepts. IEEE Comput. 23, 7, 19-25.
NIELSON, H. AND NIELSON, F. 1992. Semantics with Applications — A Formal Introduction.

Wiley.

PUSCHNER, P. 2002. Transforming execution-time boundable code into temporally predictable
code. In Design and Analysis of Distributed Embedded Systems, DIPES’02, B. Kleinjohann,
K. Kim, L. Kleinjohann, and A. Rettberg, Eds. Kluwer Academic Pub., Novell, MA, Montréal,
Canada, 163-172.

PUSCHNER, P. AND BURNS, A. 2000. A review of worst-case execution-time analysis. Real-Time
Syst. 18, 2/3, 115-128.

RAMADGE, P. AND WONHAM, W. 1987. Supervisory control of a class of discrete event processes.
SIAM J. Control Optim. 25, 1 (Jan.), 206-230.

RusHBY, J. 2001. Bus architectures for safety-critical embedded systems. In International Work-
shop on Embedded Systems, EMSOFT’01. LNCS, vol. 2211. Springer-Verlag, Tahoe City (CA),
USA.

SEKHAVAT, S. AND HERMOSILLO, J. 2000. The Cycab robot: A differentially flat system. In IEEE
Intelligent Robots and Systems, IROS’00. IEEE, Los Alamitos, CA, Takamatsu, Japan.

SILVA, L. AND SiLvA, J. 1998. System-level versus user-defined checkpointing. In Symposium on
Reliable Distributed Systems, SRDS’98. IEEE, Los Alamitos, CA, West Lafayette (IN), USA,
68-74.

THEILING, H., FERDINAND, C., AND WILHELM, R. 2000. Fast and precise WCET prediction by
separate cache and path analyses. Real-Time Syst. 18, 2/3 (May), 157-179.

Ziv, A. AND BRUCK, J. 1997. An on-line algorithm for checkpoint placement. IFEE Trans.
Comput. 46, 9 (Sept.), 976-985.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008.

Implementing Fault-Tolerance by Automatic Program Transformations : 39

Appendix - Formalization and Proof of Property 3

Property 3 ensures that the transformation ZT' (S, T') inserts a command c after each
T time units (modulo €). This time interval is intuitively clear but not formalized.
The standard approach to formalize and prove Property 3 would be to define a
timed semantics of programs (i.e., a semantics where time evolution is explicit) and
then to show that the execution of Z1 (S, T) involves reducing ¢ each T time units.
In order to stick to our program transformation framework, we rather explicit all the
execution traces of a program, and we prove by induction on all the possible traces
that two successive commands ¢ are always separated by T time units (modulo).
For this, we define the function Traces which associates to each program the set
of all its possible executions. An execution is represented as sequences of basic
instructions aq;...;a,. Basically, the Traces function unfold loops and replaces
conditionals by the two possible executions depending on the test. Formally, it is
defined as follows:

Transformation rules 5

Traces(a) = {a} if a is atomic

Traces(51;52) = {T;T> | T1 € Traces(S1), T2 € Traces(S2)}
Traces(if b then Sy else S3) = {skip;T | T € Traces(S1) U Traces(S2)}
Traces(for | =njy to ng do S) = Traces(Unfold(for | =ny to ny do S))

=W N

The instruction skip in rule 3 above represents the time taken by the test, i.e., one
time unit. For any initial state, there is always a trace 7 in Traces(S) representing
exactly the execution of S. The important point is that such execution traces 7 have
a constant execution time (i.e., BCET(7) = WCET(7) = EXET(7)), and, moreover,
we have for any 7:

BCET(S) < EXET(7) < WCET(S) and

BCET(S) = WCET(S) = EXET(T) = EXET(S) (33)

T € Traces(S) = {
We consider that Traces treats ¢ (the command inserted by the transformation 7)
as an atomic action.

We introduce the equivalence relation = to normalize and compare execution
traces. The relation is a syntactic equivalence modulo the associativity of sequenc-
ing. It also allows the introduction of the dummy instruction void, similar to skip,
except that EXET(void) = 0. The relation = is such that:

(t1;72);73 = T15(72573) 7 = (void;T) = (7;void)
We generalize Property 3 to take into account any initial time residual before in-
serting the first command c:
Property 6 Let S, c, t, and T be such that:

(0) BCET(S) = wCET(S) (1) EXET(c)+e<T
(2) t < EXET(S) (3) —e<t<T

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008.

40 . T. Ayav, P. Fradet, and A. Girault

Then V7 € Traces(ZX'(S,t)), T = S1;¢;92...¢,S, (1< n) and verifies:

t <EXET(S)) <t+e (Init)
T —e <EXET(;S;)) <T+e (1<i<n) (Period)
r—¢& < EXET(S,) <r If EXET(S)=1t+q(T —EXET(c))+7r (End)

with 0 < q and 0 < r < T — EXET(c)

Property 6 states than any execution trace of the transformed program starts
by an execution of ¢ (modulo €) time units before inserting the first command c.
Then, the execution inserts a ¢ every T time units (modulo). After the last ¢,
the program takes less than r < T — EXET(c¢) unit of times to complete, r being
the remaining of the division of EXET(S) by (T' — EXET(c)). This last condition is
based on a periodic decomposition of the execution of the source program S. It
also ensures that there is no time drift. The property relies on the four following
conditions:

0. The program S should have been time equalized beforehand.

(1) The period T must be greater than the execution time of the command ¢
plus the execution time of the most expensive atomic action. This condition
ensures that it is possible to execute at least one atomic action between two ¢
and therefore the program will make progress.

(2) The global execution time must be greater than ¢ (otherwise there is nothing
to insert).

(3) The time residual ¢ might be negative but no less than . Otherwise, it would
mean that the ideal point to insert ¢ has been missed by more than e time
units.

Proof that Property 6 holds for positive time residuals. We prove that
Property 6 holds for 0 < ¢t < T, by structural induction on S.

CASE S = a: By hypothesis, 0 < t < EXET(a), so Z1 (a,t) = a;c. The only
execution trace is a;c = a;c;void, which satisfies the property. Indeed:

—DBy definition of ¢, EXET(a) < € and, by hypothesis, 0 < ¢ and ¢ < EXET(a),
therefore:

t <EXET(a) <t+e (Init)
—From EXET(a) =t +r with 0 <r < e and EXET(void) = 0, it follows that:
r —e < EXET(void) < r (End)
CASE S = 51;53: There are two sub-cases depending on .

(1) BxET(S;) < t: Therefore Z1'(S1;52,t) = S1;Z2(Sa,t — EXET(S1)) because of
rules 1 and 4.
Condition (2) enforces that ¢ < EXET(S1;S2) = EXET(S1)+EXET(S2), therefore
t—EXET(S1) < EXET(S2). Condition (3) enforces that ¢ < T and, by hypothesis,
EXET(S7) < t therefore 0 < ¢t — EXET(S1) < T —EXET(S1) < T. Hence, S; sat-
isfies the induction hypothesis, and V7o € Traces(ZX (Sq,t — EXET(S1))), T2 =

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008.

Implementing Fault-Tolerance by Automatic Program Transformations . 41

S215¢;522. .65, (1 <n) and verifies:

t — EXET(S1) < EXET(S2,1) <t — EXET(S1) +¢ (Init)
T —e <EXET(¢;S2,;) <T+¢e (1<i<mn) (Period)
r—e < EXET(S2,,) <r If EXET(S2) =t — EXET(S1) + ¢(T — EXET(c)) + r

with 0 < ¢ and 0 <r < T — EXET(c) (End)

Any execution trace 7 of Z1(S;;S2,t) is made of an execution trace 7 of
X (Sy,t) followed by an execution trace 75 of ZX(Sa,t — EXET(S1)). In other
words, 7 = 71;52,1;¢;52,2 . . . ¢;52,,,. The property is satisfied if,
t < EXET(71;52,1) < t + ¢, which follows from the fact that the Traces func-
tion satisfies the Property (33), i.e., EXET(7;) = EXET(S]), and the hypothesis
EXET(S7) < t.
t < EXET(S7): In this case, there will be at least one insertion of ¢ in S, after
t time units, and possibly other insertions every T time units:
IZ(SlaSQ;t) = ZZ(Slat)vﬂ(527tl)

with EXET(S1) =t + ¢(T — EXET(c)) + 7, 0<g¢q, 0 <r <T —EXET(c)),

t1 =T —EXET(c) — r

Since t < EXET(S1), S1 satisfies the induction hypothesis and
V71 € Traces(ZX(S1,t)), 1 = S11;¢;512...¢51m (1 <m) and verifies:

t <EXET(S1,1) <t+¢ (Inity)
T —e <BXET(¢;S1,) <T+e (1 <i<m) (Periody)
r—¢& < EXET(S1m) <7 (Endy)

The transformation is then applied on Sy with the time residual t; = T —
EXET(¢;S1,m). There are two sub-cases depending on the execution time of .Ss.
(a) T — EXET(c) — r < EXET(S2):
This is condition (2) to apply the induction hypothesis on S3. Condition
(3) is —e < T'— EXET(c) —r < T, which follows from the fact that EXET(c)
and r are positive and r < T'— EXET(c)). By induction hypothesis, V7o €
Traces(ZX (So, T — (EXET(c) +7))), 72 = S2.1;¢;522...¢;52, (1 <n) and

verifies:
T — EXET(c) —r < EXET(S21) <T —EXET(¢c) —r+¢ (Inits)
T —e <EXET(¢;S2,) <T+e (1<i<m) (Periods)

ro — €& < EXET(S2,,) < T2
If EXET(S,2) =T — EXET(c) — r + ¢2(T — EXET(c)) + 72
with 0 < g2 and 0 < 7y < T — EXET(c) (Ends)
Any execution trace 7 € Traces(ZX (S1;52,t)) is of the form:
T=2511;6512 .- 651,m392,1;¢:52,2 ... ;52
We just have to check that T'—e < EXET(¢;51,m;52,1) < T'+¢ which follows
from:
(Endy) r—¢& < EXET(S1m) <7
(Inits) T —EXET(c) —r < EXET(S2,1) < T —EXET(¢c) —r+¢
We get T'— ¢ < EXET(c) + EXET(S1,m) + EXET(S2,1) < T + ¢, and the
combined trace 7 satisfies the property.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008.

42 . T. Ayav, P. Fradet, and A. Girault

(b) EXET(S2) < T — EXET(c) — 1=
Any execution trace 7 € Traces(ZX (S1;52,t)) is of the form:

T=2511;651,2-..6S1,m;iT2

Since EXET(S1) = t+q(T—EXET(c))+r, exet(S1;52) = t+q(T—EXET(c))+
r+EXET(S2) and 0 < r+EXET(S2) < T —exect(c). We have to check that

r + EXET(S2) — € < EXET(S1,m;72) < r + EXET(S?2)

which follows directly from (End;) and the fact that the Traces function
satisfies the Property (33), i.e., EXET(72) = EXET(S2).

CASE S =if b then Sy else S5. Recall that:
7 (if b then S; else Sy,t) = if b then 77 (Sy,t — 1) else Z. (Sa,t — 1)

Hence, traces are of the form 7 = skip;S1,1;¢;51,2 ... ¢;51,m or T = skip;S2.1;¢;52,2
...¢;S2,m. Sincet > 0and e < 1, we havet—1 > —¢, so the induction hypothesis ap-
plies on Sy (resp. S2). Therefore, V1 € Traces(ZX (S1,t)), 1 = S1.156812..¢S1,m
(1 <m) and verifies:

t—1<EXET(S11)<t—1+c¢ (Inity)

T—¢e<EXET(¢;S1,:) <T+e (1<i<m) (Periody)

r—e& < EXET(S1,m) <r If EXET(S)=t—1+¢(T —EXET(c)) +r (End)
with 0 < g and 0 <r < T — EXET(c)

It follows that ¢ < EXET(skip;S1,1) < t + ¢ and the combined trace satisfies the
property. The reasoning is the same with Ss.

CASE S =forl=nq tong doS: Recall that:
T (for I = ny to ng do S,t) = Fold(ZX (Unfold(for | = ny to ny do S),t))
It follows that:
Traces(Fold(ZX (Unfold(for | = ny to ng do S),t)))
= Traces(ZX (Unfold(for | = ny to ny do S),t))
= Traces(ZX (1 :=n1; S;... 1))

The operator Unfold replaces for-loop by sequences of commands. This case boils
down to the already treated case S = S7;955. [l

Proof that Property 6 holds for negative time residuals. For —¢ <t <0 we
have Z1'(S,t) = ¢;ZT (S, T — EXET(c) + t). Since Property 6 holds for positive time
residuals, it follows from EXET(c)+¢& < T and —e < ¢ that T —EXET(c) 4+t is positive
and therefore V7 € Traces(ZX (S, T — EXET(c) + 1)), T = S1;¢;9...¢S, (1 < n)
and verifies:

T —EXET(c) +t < EXET(S1) < T —EXET(c) +t +¢ (Init)
T —e <EXET(;S;) <T+e (I1<i<mn) (Period)
r—e < EXET(S,) <r (End)

If EXET(S) =T — EXET(c) +t + q(T — EXET(c)) + r
with 0 < ¢ and 0 <r < T — EXET(c)

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008.

Implementing Fault-Tolerance by Automatic Program Transformations : 43

The traces in Traces(ZX (S, T — EXET(c) +t)) are of the form:
c;51;¢,99 ... ¢S, = void;c;S1;¢;59: ... ¢;9,
Since EXET(void) = 0 and, by hypothesis, —e < ¢t < 0, we have:
t <EXET(void) <t+e¢e (Init)

It remains to show that the (Period) condition holds, i.e., T — & < EXET(¢;S1) <
T + . We have:

T —EXET(c) +t < EXET(S1) < T —EXET(c) +t +¢
Since EXET(¢;S1) = EXET(c) + EXET(S1) and —e < ¢t <0, we conclude:

T—e<T+t<EXET(¢;S1) <T+t+e<T+e¢

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, July 2008.

