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Abstract: We introduce a unified framework to describe, relate, compare and classify functional lan-
guage implementations. The compilation process is expressed as a succession of program transforma-
tions in the common framework. At each step, different transformations model fundamental choices. A
benefit of this approach is to structure and decompose the implementation process. The correctness
proofs can be tackled independently for each step and amount to proving program transformations in
the functional world. This approach also paves the way to formal comparisons by making it possible to
estimate the complexity of individual transformations or compositions of them. Our study aims at cov-
ering the whole known design space of sequential functional languages implementations. In particular,
we consider call-by-value, call-by-name and call-by-need reduction strategies as well as environment
and graph-based implementations. We describe for each compilation step the diverse alternatives as
program transformations. In some cases, we illustrate how to compare or relate compilation tech-
niques, express global optimizations or hybrid implementations. We also provide a classification of
well-known abstract machines.
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1 INTRODUCTION

One of the most studied issues concerning functional languages is their implementation.
Since Landin’s seminal proposal, 30 years ago [31], a plethora of new abstract machines or
compilation techniques have been proposed. The list of existing abstract machines includes
the SECD [31], the Cam [10], the CMCM [36], the Tim [20], the Zam [32], the G-machine
[27] and the Krivine-machine [11]. Other implementations are not described via an abstract
machine but as a collection of transformations or compilation techniques such as compilers
based on continuation passing style (CPS) [2][22][30][52]. Furthermore, numerous papers
present optimizations often adapted to a specific abstract machine or a specific approach
[3][8][28]. Looking at this myriad of distinct works, obvious questions spring to mind: what

are the fundamental choices? What are the respective benefits of these alternatives? What are
precisely the common points and differences between two compilers? Can a particular opti-
mization, designed for machie be adapted to machi® One finds comparatively very

few papers devoted to these questions. There have been studies of the relationship between
two individual machines [37][43] but, to the best of our knowledge, no global approach to
study implementations.



The goal of this paper is to fill this gap by introducing a unified framework to describe,
relate, compare and classify functional language implementations. Our approach is to ex-
press the whole compilation process as a succession of program transformations. The com-
mon framework considered here is a hierarchy of intermediate languages all of which are
subsets of the lambda-calculus. Our description of an implementation consists of a series of
transformationg\ 2 A, Zo..n N, each one compiling a particular task by mapping
an expression from one intermediate language into another. The last langeagsists of
functional expressions that can be seen as assembly code (essentially, combinators with ex-
plicit sequencing and calls). For each step, different transformations are designed to repre-
sent fundamental choices or optimizations. A benefit of this approach is to structure and
decompose the implementation process. Two seemingly disparate implementations can be
found to share some compilation steps. This approach also has interesting payoffs as far as
correctness proofs and comparisons are concerned. The correctness of each step can be tack-
led independently and amounts to proving a program transformation in the functional world.
Our approach also paves the way to formal comparisons by estimating the complexity of in-
dividual transformations or compositions of them.

We concentrate on puleexpressions and our source languadeE ::=x | AX.E | E; E,.
Most fundamental choices can be described using this simple language. The two steps which
cause the greatest impact on the compiler are the implementation of the reduction strategy
(searching for the next redex) and the environment management (compilationBeafethe
duction). Other steps include the implementation of control transfers (calls & returns), the
implementation of closure sharing and update (implied by the call-by-need strategy), the
representation of components like the data stack or environments and various optimizations.

In Section 2 we describe the framework used to model the compilation process. In Sec-
tion 3, we present the alternatives to compile the reduction strategy (i.e. call-by-value and
call-by-name). The compilation of control used by graph reducers is peculiar. A separate
section (3.3) is dedicated to this point. Section 3 ends with a comparison of two compilation
techniques of call-by-value and a study of the relationship between the compilation of con-
trol in the environment and graph-based models. Section 4 (resp. Section 5) describes the
different options to compile th@-reduction (resp. the control transfers). Call-by-need is
nothing but call-by-name with redex sharing and update and we present in Section 6 how it
can be expressed in our framework. Section 7 embodies our study in a taxonomy of classical
functional implementations. In Section 8, we outline some extensions and applications of the
framework. Section 9 is devoted to a review of related work and Section 10 concludes by in-
dicating directions for future research.

In order to alleviate the presentation, some more involved material such as proofs, vari-
ants of transformations and other technical details have been kept out of the main text. We
refer the motivated reader to the (electronically published) appendix. References to the ap-
pendix are noted © ”. A previous conference paper [16] concentrates on call-by-value and
can be used as a short introduction to this work. Additional details can also be found in two
companion technical reports ([17], [18]) and a PhD thesis [19].



2 GENERAL FRAMEWORK

Each compilation step is represented by a transformation from an intermediate language to
another one that is closer to machine code. In this paper, the whole implementation process
is described via a transformation sequefce™ A, Z A, Z A, 2 A, starting withA

and involving four intermediate languages (very close to each other). This framework pos-
sesses several benefits:

« It has astrong formal basisEach intermediate language can be seen either as a formal
system with its own conversion rules or as a subset if-ttadculus by defining its con-
structs ad\-expressions. The intermediate languages share many laws and properties; the
most important being that every reduction strategy is normalizing. These features facili-
tate program transformations, correctness proofs and comparisons.

< ltis (relatively)abstract Since we want to model completely and precisely implementa-
tions, the intermediate languages must come closer to an assembly language as we
progress in the description. The framework nevertheless possesses many abstract features
which do not lessen its precision. The combinators of the intermediate languages and
their conversion rules allow a more abstract description of notions such as instructions,
sequencing, stacks, than an encoding asexpressions. As a consequence, the compi-
lation of control is expressed more abstractly than using CPS expressions and the imple-
mentation of components (e.g. data stack, environment stgdk, a separate step.

e Itis modular Each transformation implements one compilation step and can be defined
independently from the former steps. Transformations implementing different steps are
freely composed to specify implementations. Transformations implementing the same
step represent different choices and can be compared.

< Itis extendableNew intermediate languages and transformations can be defined and in-
serted into the transformation sequence to model new compilation steps (e.g. register al-
location).

2.1 Overview

The first step is the compilation of control which is described by transformationg\ftom
N The intermediate languade (Figure 1) is defined using the combinatargush, and a
new form ofA-abstractiomx.E. Intuitively, o is a sequencing operator aBgo E, can be
read “evaluatds, then evaluat&,”, push, E returnsk as a result anix.E binds the previ-
ous intermediate result tobefore evaluating. The pair push,, Ay specifies a component
(noteds) storing intermediate results (e.g. a data stack)p8sh, andA, can be seen as
“store” and “fetch ins.

The most notable syntactic feature/\qfis that it rules out unrestricted applications. Its
main property is that the choice of the next weak redex is not relevant anymore: all weak re-
dexes are needed. This is the key point to view transformations/frimi\; as compiling
the evaluation strategy.

Transformations fronf\g to A, are used to compile tH&reduction. The languagk,
excludes unrestricted uses of variables which are now only needed to define macro-combina-



tors. The encoding of environment management is made possible using the new pair
(push,, A)). They behave exactly gaish, andAg they just act on a (at least conceptually)
different componeng (e.g. a stack of environments).

N,  Ei=Xx|E oE,|pushE|AXE

Ne E:i=x|E oE,|pushs E|AXE |push, E|AXE

N  E:u=X|E;0E,|pushE|AXE |push, E|AXE |push E|AXE

AW E:=x|E; o E, | push, E | AX.E | push, E | AX.E | push  E | AX.E | push,E | A X.E

Figure 1 The intermediate languages

Transformations fronf\, to A\, describe the compilation of control transfers. The lan-
guage/\, makes calls and returns explicit. It introduces the jpaist§, A,) which specifies a
componenk storing return addresses.

The last transformations fromy to A, adds a memory component in order to express
closure sharing and updating. The languagétroduces the paip(sh, A,) which speci-
fies a global heap. The expressions of this last language can be read as assembly code.

2.2 Conversion Rules

The substitution and the notion of free or bound variables are the sameealénlus. The

basic combinators can be given different definitions (possible definitions are given in 2.5).
We do not pick specific ones up at this point; we simply impose the associativity of sequenc-
ing and that the combinators satisfy the equivaleftaridn-conversions (Figure 2).

(assoc) EioE)oE;=E 0(E0Ey)
(B) (push F) o (Ax.E) = E[F/X]
(ny) Ax.(push xoE) =E if x does not occur free in E

Figure 2 Conversion rules in/\; (for i O {s,e,k,R)

We consider only reduction rules corresponding to the clagsieaduction:
(push F) o A\ x.E) O E[F/X]

As with all standard implementations, we are only interested in modeling weak reduc-
tions. In our framework, a weak redex is a redex that does not occur inside an expression of
the formpush E or A;x.E Weak reduction does not reduce ungesh’s or A;’s and, from



here on, we write “redex” (resp. reduction, normal form) for weak redex (resp. weak reduc-
tion, weak normal form).

The following example illustratgy-reduction (note thgiush, F o A:z.G is not a (weak)
redex of the global expression).

push, E o push, (pushy F 0 AzG) o AxAy.pushypush, y o X)
O push, E o Ay.pushypush,y o pushyF 0 AzG)
O push (push.E o push,F 0 Azz.G)

Any two redexes are clearly disjoint and flygeductions are left-linear so the term re-
writing system is orthogonal hence confluent [29]. Alternatively, it is very easy to show that
the relatiord is strongly confluent therefore confluéht Furthermore, any redex is needed
(a rewrite cannot suppress a redex) thus

Property 1 All A reduction strategies are normalizing.

This property is the key point to view transformations frono /A as compiling the re-
duction order.

2.3 A Typed Subset

All the expressions of the intermediate languages can be given a meahiegmessions
(Section 2.5). Using conversion rules such as (assoc) the same expression can be represented
differently. For example, one can write equivalently

pushy E; o (pushy E, 0 AXAY.E5) or  (pushg E; o pushy Ey) o AXAY.E;

This flexibility is very useful to transform or reshape the code. However, unrestricted
transformations may lose information about the structure of the expression. Many laws and
transformations (see e.g. laws (L2) and (L3) in Section 2.4 or transfornttionSection
6.1) rely on the fact that a subexpression denotes a result (i.e. can be reduced to an expres-
sion of the formpush E) or a function (i.e. can be reduced to an expression of the form
AX.E). If we allow subexpressions such gaigh E; o pushg E,) which neither denote a re-
sult nor a function, less laws and transformations can be expressed. It is therefore convenient
to restrict/\; using a type system (Figure 3).

l-E:o Fro{xoc}}FE:1 TFE:ROTFE:0 ;1
oooooo oooooono oOobogogoo oooooooogooo
Fro{xo}pFxo MTkFpushE:Ro TFAXE:0 ;1 T}FEOoE:T

Figure 3 A typed subset (¢ ) (for i O {s,e,k,h)

The restrictions enforced by the type system are on how results and functions are com-
bined in/,;. For example, the compositi@;j o E, is restricted so thd&; denotes a result (i.e.



has typeR;a, R; being a type constructor) arit} denotes a function. The type system re-
stricts the set of normal forms (which in general includes expressions spashag; o
push E;) and we have the following natural falts

Property 2 - If a closed expressionfo has a normal form then EJ push V
- If a closed expression.& —; T has a normal form then E] Ax.F

So, the reduction of any well-typed expresstonF either reaches an expression of the
form push; A’ o Ax.F or loops.

Our transformations implementing compilation steps will produce well-typed expres-
sions denoting results and, during all the compilation process, the compiled program will be
well-typed. Typing is used to maintain some structure in the expression and does not impose
any restrictions on sourdeexpression% . It should regarded as a syntactic tool not a se-
mantic one. lll-typed\;-expressions have a meaning in terma-ekpressions as well (see
Section 2.5).

2.4 Laws

This framework possesses a number of algebraic laws that are useful to transform the func-
tional code or to prove the correctness or equivalence of program transformations such as

If x does not occur free in F (AXE)oF=Ax.(EoF) (L1)
For all E;:R;0, if x does not occur free in,E E; o (AX.(E; 0 E3)) = E, 0 (E; 0 AXEg)) (L2)
Forall E;:Rio, E;Rtand xgy  Ej o (E;0 A XAY.Eg) =E, 0 (E; 0 (\YAXEp)) (L3)

These rule€’ permit code to be moved inside or outside function bodies or to invert
the evaluation order of two intermediate results (which is correct because we consider only
purely functional expressions). To illustrate the conversion rules at work, let us prove the law
(L1). Note thaix does not occur free izk.E) nor, by hypothesis, i and

(A\XE)oF = Axpush xo ((AXE)oF) M)
= AX.((push xo AX.E)) o F) (assoc)
= AX.(E[X/{ o F) ®)
= AX(EoF) (subst)

Even if using some rules or laws (e.g. (assoc) or (L1)) may lead to untyped programs,
we still can use them as long as the final program is well-typed. For example, a closed and
well-typed expression

(push, V o (AX.pushs E)) o (Ay.F)

can be transformed using (assoc) and (L1) into the well-typed expression



push; Vo Ax.(pushs E o (AY.F))

To simplify the presentation, we often omit parentheses and write for expugbleE o
AX.F o G for (push E) o Ax.(F o G)). We also use syntactic sugar such as tuples.(x,)
and simple pattern-matching(xy,...,X,).E.

2.5 Instantiation

The intermediate languag8sare subsets of thecalculus made of combinators. An impor-

tant point is that we do not have to give a precise definition to combinators. We just assume
that they respect propertig}); (n;) and (assoc). Definitions can be chosen only after the last
compilation step. This feature allows us to shift from fiheeduction in/\; to a state-ma-
chine-like expression reduction. Moreover, it permits to specify the implementation of com-
ponents independently from the other steps. For example, we may eventually choose to
implement the data componerdnd the environment componergither as a single stack or

as two separate ones. We present in Section 7 an example of instantiation for the Cam.

In order to provide some intuition, we nevertheless give here some possible definitions
in terms of standard-expressions. The most natural definition for the sequencing combina-
tor iso = Aabca (b 0, that isk; o E, = Ac.E; (E, ¢). The (fresh) variable can be seen as a
continuation and implements the sequencing.

The pairs of combinatord,( push) can be seen as encoding a component of an under-
lying abstract machine and their definitions as specifying the state transitions. A sequence of
code such apush E; o... o push E, o ... suggests that the underlying machine must pos-
sess a componen(such as a stack, a list, a tree or a vector) in order to store intermediate re-
sults. We can choose to keep the components separate or merge (some of) them.

Keeping all the components separate leads to the following possible defirgtisng,(k, h
being fresh variables):

push,N = AcAsAeAkAh.c(s,Nekh AXX =AcA(sx).AeAkAh.Xcsekh
push,N = Ac.AsAeAkAh.c s(e,N k h AXX =AcAsA(ex).AkAh.Xcsekh
push N = Ac.AsAeAkAh.c s e(k,N) h AXX = AcAsAeA(kx).Ah.Xcsekh
push,N =AcAsAeAkAh.c s e Kh,N) ApxX = AcAsAerkA(hx).Xcsekh

Then, the reduction (using classiateduction and normal order) of our expressions
can be seen as state transitions of an abstract machine with five components (code, data
stack, environment stack, control stack, heap), e.g.:

push NCSEKH- C(SNEKH
push,NC S E KH- C S E K(H,N)

According to the definition aof the rewriting rule for sequencing is



(E;0E;)CSEKH - E; (E,C) SEKH
Note thatC plays the role of a continuation. A code can be seen as a state transformer of type
(data - env - control -~ heap— Ang - data - env- control -~ heap- Ans

To be reduced, a code is applied to an initial continuationi@®,dnitial (empty) data, envi-
ronment and control components and an initial heap.

Keeping some components separate brings new properties such as
push E o push F = push F o push E ifi ]
allowing code motion and simplifications.

A second option is to merge all the components. The underlying abstract machine has
only two components (the code and a data-environment-control-heap stack). Possible defini-
tions are:

pushg N = push, N = push, N = push, N=Ac.Azc (z,N
AXX = AXX = AXX = AXX =ACA(zX).X CZ
and the reduction of expressions is of the fggush N C Z - C(Z,N) fori O{s,ekh

Let us point out that our use of the term “abstract machines” should not suggest a layer
of interpretation. The abstraction only consists of the use of components and generic code.
At the end of the compilation process, we get realistic assembly code and the “abstract ma-
chines” resemble real machines.

3 COMPILATION OF CONTROL

We focus here on the compilation of the call-by-value and the call-by-name reduction strate-
gies. Call-by-need is only a refinement of call-by-name involving redex sharing and update.
It is described in Section 6. We first present the two main choices taken by environment-
based implementations. Following Peyton Jones’ terminology [42], these two options are
named theval-applymodel (presented in Section 3.1) andphsh-entemodel (presented

in Section 3.2). The graph-based implementations use an interpretative implementation of
the reduction strategy. They are presented in Section 3.3. Finally, we compare the eval-apply
and the push-enter schemes for call-by-value and we relate environment machines and graph
reducers.

3.1 The Eval-Apply Model

In the eval-apply model, &-abstraction is considered as a result and the application of a
function to its argument is an explicit operation. This model is the most natural choice to im-
plement call-by-value where functions can be evaluated as arguments.



3.1.1 Call-by-value

In this scheme, applicatiofi§ E, are compiled by evaluating the argumEgtthe function

E, and finally applying the result & to the result oE,. Normal forms denote results; 5o
abstractions and variables (which, in strict languages, are always bound to normal forms) are
transformed into results (i.eush, E). The compilation of right-to-left call-by-value is for-
malized by the transformatiorkz in Figure 4.

This compilation choice is taken by the SECD machine [31] and the Tabac compiler
[22]. The rules can be explained intuitively by reading “return the valugiush,, “evalu-
ate” for 74, “then” foro and “apply” forapp. Even if environment management will be tack-
led only in Section 4, it is also useful to keep in mind tha{ aexpression returning a
function (such apush, (AX.E)) will involve building a closure (i.e. a data structure contain-
ing the function and an environment recording the values of its free variables).

Va: N\ - Ng

Va [X] = push,x

Va [AX.E] = push,(Ax.74 [E])

Va [E;E)] = va [E)] o Va [E;] oapp with app = Af.f

Figure 4 Compilation of right-to-left call-by-value in the eval-apply model ()

Strictly speaking 7z does not enforce a right-to-left evaluatiark [E;] could be re-
duced beforas [E,] ). However, after instantiation, the normal order of reductions will en-
force the sequencing nature of”. It is easy to check thats produces well-typed
expressions of result tyfe o @

The correctness ofz is stated by Property 3 which establishes that the reduction (
of transformed programs simulates the call-by-value reductigp) (of sourceA-expres-
sions’ . Asiitis standard, we consider that the source program (i.e. the global expression) is
a closed\-expression.

Property 3 For all closedA-expression E, E., V if and only ifz[E] T 72[V]

It is clearly useless to store a function to apply it immediately after. This optimization is
expressed by the following law

push,Eoapp=E (pushs E o Af.f =p f[E/f] = E) (L4)
Example. Let E = (Ax.X)((Ay.y)(Az.2)); after simplifications, we get:
Va[E] =pushyAzpush,2) o (Ay.pushyy) o (AX.pushgx)

O pushy(Azpush, 2) o (AX.pushg X)
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0O pushdAzpush,2) = Ya[AzZ]

The source expression has two redex&x)((Ay.y)(Az2)) and dy.y)(Az.2) but only the latter
can be chosen by a call-by-value strategy. In contta§t€] has only the compiled version
of (A\y.y)(Az2) as redex. The illicit (in call-by-value) reductign- (Ay.y)(Az.z) cannot occur
within 7z[E] . This illustrates the fact that the reduction strategy has been compiled and
that the choice of redex i is not semantically relevant. O

The law (L4) is central in the implementationusfcurrying(see e.g. [2]). To illustrate a
simple case of uncurrying, let us take the case of a function applied to all of its arguments
(Axq...A%,.Eq) E; ... E,, then

Va [(AXq...A%,.EQ) E; ... EJ]

=Va[EJo... 0% [E] opush,(AX...(push,(AX,.Va [Egl)...) cappo ... oapp

using (L4), (assoc) and (L1) this expression can be simplified into

=Va[EJo...oVa [E{] o(AXyAKo...AX,.Va [Eg])

All the app combinators have been statically removed. In doing so, we have avoided the
construction of intermediary closures corresponding tothenary functions denoted by
AX;...AX%,.Ep. An important point to note is that, i, AX;...AX,.E denotes always a n-ary
function, that is to say a function that will be applied to at leasguments (otherwise there
would bepush's between tha.'s).

There exist several variants @k such asVs_(used by the Cam) which implements a
left-to-right call-by-value orVs (used by the SML-NJ compiler) which does not assume a
data stack and disallows several pushes in a row

3.1.2 Call-by-name

For call-by-name in the eval-apply model, applicatiBp&, are compiled by returning,,
evaluatingE; and finally applying the evaluated function to the unevaluated argument. This
choice is implemented by the call-by-need version of the Tabac compiler [22] and it is de-
scribed by the transformatioxg in Figure 5.

Na:A = A
Az [X] = X

A [AE] = push, \x\z[E])

Az [E, E,] = push, (A [E,]) o Aa [Ey] o app with app = Aff

Figure 5 Compilation of call-by-name in the eval-apply model%()
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The correctness ofjz is stated by Property 4 which establishes that the reduction of trans-
formed expressions((]) simulates the call-by-name reduction,{) of source\-expres-
sions.

Property 4 For all closedA-expression E, E.; V if and only ifAz[E] T A&[V]
Example. Let E = Ax.X)((Ay.y)(Az2)); after simplifications, we get:
Az [E] = pushypush(push(Az2)) o Ayy) o Axx
O pushypushyAz2)) o Ayy
O push(Az2) = Va[Az7]
The illicit (in call-by-name) reductioB - (Ax.x)(Az.z) cannot occur withim@[E] . O

Like 74, the transformatiomz has a variant which does not assume a data stack (i.e.
disallows several pushes in a row)

3.2 The Push-Enter Model

In the eval-apply model, the straightforward compilation of a function expectargu-

ments produces a code buildingclosures. In practice, much of this overhead can be re-
moved by uncurrying but this optimization is not always possible for functions passed as
arguments. The main motivation of the push-enter model is to avoid useless closure build-
ings. In the push-enter model, unevaluated functions are applied right away and application
is an implicit operation.

3.2.1 Call-by-value

Instead of evaluating the function and its argument and then applying the results as in the
eval-apply model, another solution is to evaluate the argument and to apply the unevaluated
function right away. With call-by-value, a function can also be evaluated as an argument. In
this case it cannot be immediately applied but must be returned as a result. In order to detect
when its evaluation is over, there has to be a way to distinguish if its argument is present or
absent: this is the role afiarks After a function is evaluated, a test is performed: if there is

a mark, the function is returned as a result (and a closure is built), otherwise the argument is
present and the function is applied. This technique avoids building some closures but at the
price of performing dynamic tests. It is implemented in Zinc [32].

The marke is supposed to be a value that can be distinguished from others. Functions are
transformed intgrab, E which satisfies the reduction rules

push € o grabg E 0 push,E
that is, a mark is present and the functois returned and

push,VograbE O push,VoE (VEE)
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that is, no mark is present and the functois applied to its argumeit

The combinatograb, and the marle can be defined iy‘\sm . In practicegrab is im-
plemented using a conditional testing the presence of a mark. The transformation for right-
to-left call-by-value is described in Figure 6.

VN - N

Vm[x] = grabgx

VYm[AX.E] = grabg AX. Vm[E])

Vm[E; E;] = pushyeo ¥m[E,] o Vm[Ej]

Figure 6 Compilation of right-to-left call-by-value in the push-enter model ¢/im)

The correctness afim is stated by Property 5.
Property 5 For all closedA-expression E, E.,, V if and only ifvm[E] T ¥m[V]
Example. Let E = (Ax.X)((AY.y)(Az2)) then after simplifications
Vm[E] = pushs€ o pushyAzgrab, 2) o (Ay.grabgy) o (Ax.grabg x)
O push, € o grabg (Azgrabg 2) o (Ax.grabg x)
O push (Azgrabg 2) o (Ax.grabg x)
O grabg (Azgrab,2) = Yn[AzZ] O

As before, when a functiokx; ...Ax,..E is known to be applied toarguments, the code
can be optimized to savedynamic tests. Actually, it appears tiai is subject to the same
kind of optimizations ag/z. Uncurrying and related optimizations can be expressed based
on the reduction rules gfrabg and (L2).

It would not make much sense to consider a left-to-right strategy here. The whole point
of this approach is to prevent building some closures by testing if the argument is present.
Therefore the argument must be evaluated before the function. However, other closely relat-
ed transformations using marks eXist

3.2.2 Call-by-name

Contrary to call-by-value, the most natural choice to implement call-by-name is the push-en-
ter model. In call-by-name, functions are evaluated only when applied to an argument. Func-
tions do not have to be considered as results. This option is taken by Tim [20], the Krivine
machine [11] and graph-based implementations (see Section 3.3.2). The transfofgaation
formalizes this choice; it is described in Figure 7.
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i A - Ag
A [X] = x

A [AX.E] = Ax\in [E]

Ain [E; E;] = push(ar [E;)) o Air [E;]

Figure 7 Compilation of call-by-name in the push-enter model«(n)

Variables are bound to arguments which must be evaluated when accessed. Functions
are not returned as results but assume that their argument is present. Applications are trans-
formed by returning the unevaluated argument to the function. The correctmgsssaitat-
ed by Property 6.

Property 6 For all closedA-expression E, E.; V if and only ifAiz[E] T A [V]
Example. Let E = (Ax.X)((Ay.y)(Az2)) then
A [E] = push(push(Az2) o Ayy) o Agx
O pushyAz2) o Ayy
O Azz=Nm[Az7] O

Arguably, Ain is the simplest way to compile call-by-name. However, it makes the com-
pilation of call-by-need problematic. After the evaluation of an unevaluated expression
bound to a variable (i.e. a closure), a call-by-need implementation updates it by its normal
form. Contrary tong, Ammmakes it impossible to distinguish results of closures (which have
to be updated) from regular functions (which are applied right away). This problem is
solved, as inVm, with the help of marks. We come back to this issue in Section 6.

Transformations fronA to Ag share the goal of compiling control with CPS transforma-
tions [21][47]. Actually, with a properly chosen instantiation of the combinators, the trans-
formation 7 is nothing but Fischer’'s CPS transformation PZl}As for CPS-expressions, it
is also possible to design an inverse transformation [15] mapgiagpressions back #-
expression

3.3 Graph Reduction

Graph-based implementations manipulate a graph representation of thesexjpcession.

The reduction consists of rewriting the graph more or less interpretatively. One of the moti-
vations of this approach is to elegantly represent sharing which is ubiquitous in call-by-need
implementations. So, even if call-by-value can be envisaged, well-known graph-based im-
plementations only consider call-by-need. In the following, we focus on the push-enter mod-
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el for call-by-name which is largely adopted by existing graph reducers. Its refinement into
call-by-need is presented in Section 6.2.2.

3.3.1 Graph building

As before, the compilation of control is expressed by transformations/rm,. Howev-

er, this step is now divided in two parts: the graph construction, then its reduction via an in-
terpreter. The transformatian(Figure 8) produces an expression which builds a graph (for
now, only a tree) when reduced.

GN = N

G [ = pushyxomkVar

G [AX.E] = push(Ax.G [E]) o mkFung
G [E1E5l = G [El 0 G [Eq] omkAppg

Figure 8 Generic graph building code )

The three new combinatonskVar ;, mkFung andmkApp  take their arguments from tise
component and return graph nodes (respectively variable, function and application nodes) on
s. The following condition formalizes the fact that the reductiog ¢E] is just the graph
construction which terminates and yields a result irstt@mponent.

(CondG) For all A-expression EG [E] T pushyV

The graph is scanned and reduced using a small interpreter denoted by the combinator
unwindg. After the compilation of control, the global expression is of the fgrpi] o un-
windg. This transformation is common to all the graph reduction schemes we describe. The
push-enter or eval-apply models of the compilation of call-by-value or call-by-name can be
specified simply by defining the interactionsuofvindg with the three graph buildersk-
Var , mkFungandmkApp.

3.3.2 Call-by-name: the push-enter model

This option is defined by the three following conditions:
(GAmd) (EomkVar g o unwindg = E o unwindg
(gNm2) Vo (pushg F o mkFung) o unwindg = (V o F) o unwindg
(GNin3) (E; 0 E; o mkApPpP ) o unwindg = E, 0 E; o unwind,

These conditions can be explained intuitively as:
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* (GNmml) The reduction of a variable node amounts to reducing the graph which has been
bound to the variable. The combinatokVar ; may seem useless since it is bypassed by
unwindg. However, when call-by-need is consideretkVar ¢ is needed to implement
updating without losing sharing properties. As the combiraito{53], it represents in-
direction nodes.

* (gNn2) The reduction of a function node amounts to applying the function to its argu-
ment and to reducing the resulting graph. This rule makes the push-enter model clear.
The reduction of the function node does not return the funEtema result, but immedi-
ately applies it.

* (gNin3) The reduction of an application node amounts to storing the argument graph and
to reducing the function graph.

Figure 9 presents one possible instance of the graph combinators.

mkVar = Ax.pushx

mkFung = Af.pushy (Aa.(pushyaof) o unwind)
MKAPPs = AXy-AXp.pushy (pushs x; o x)
unwindg =app = AX.X

Figure 9 Instantiation of graph combinators according toGA# (option node-as-code)

Here, the graph is not encoded by data structures but by code performing the needed ac-
tions. For examplenkFung takes a functior and returns a code (i.e. builds a closure) that
will evaluate the functiof applied to its argumeist usingunwindg whereasnkApp ; takes
two expressions,; andx, and returns a code that will appdyto x,. This encoding simplifies
the interpreter which just has to trigger a code; thatrigjindy is just an application. It is
easy to check that these definitions verify the conditialasdG), (GNird), (GN2), and
(GAn3). Moreover, the definition ahkVar ¢ (the identity function im\y makes it clear that
indirection chains can be collapsed. That is to say,

OEOA, GLE] omkvar = G[E] (L5)

With this combinator instantiation, the graph is represented by closures. More classical
representations, based on data structures, are mentioned in Section 3.3.3. The correctness of
G with respect to conditiongAgr is stated by Propert)pl

Property 7 Let(CondG), (GNinl), (GNin2), (GNin3) and (L5) hold, then for all closed\-ex-
pression E, if E.» V thenGg[E] ounwind,= G[V] ounwind,

Compared to the corresponding properties for the previous transformatioug:,(vm,
Nim), Property 7 is expressed using equality instead of reduction This is because the
normal form ofG[E] o unwindg may contain indirections nodeskVar ) and is not, in
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general, syntactically identical ®[V] ounwind,. Actually, G verifies a stronger (but less
easily formalized) property than PropertygfE] o unwind, reduces to an expressi¥n
which, after removal of indirection chains, is syntactically equal to the gragh\f .

Example. Let E = Ax.X)((Ay.y)(Az.2) and
lw = (A (pushgao (Aw.pushywo mkVar ) o unwindy) then

GLE] ounwind = (G[AzZ o G[Ay.y] o mkAppY o G[AXX] o mkApp o unwind,

Dx—

pushypushy(pushl,oly) ol,) o unwindg

(|

pushypushsl,01y) o (A@. (pushsao (Ax.pushsx o mkVarg) o unwindy)
T push (push1,01y) o unwindg
O pushl,o (Aa. (pushsao (Ay.pushyyomkVary) o unwindy)

*

O (pushgl,omkVary) o unwindg[0 push |, o unwindg

In this example, there is no indirection chain and the result is syntactically equal to the graph
of the source normal form. That fish, 1,0 unwind,is exactlyG[Azz] o unwindg after the
few reductions corresponding to graph construction.

The first sequence of reductions corresponds to the graph constructionnwied, scans

the (leftmost) spine (the firpush, represents an application node). The graph representing
the function Ax.x) is applied. The result is the application npdsh; (pushs1,01,) which is
scanned byinwind,. Then, the reduction proceeds in the same way until it reaches the nor-
mal form. O

Because of the interpretative essence of the graph reduction, a naive implementation of
call-by-need is possible without introducing marks (as opposedntin Section 3.2.2).
Such a scheme performs many useless updates some of which can be detected by simple
syntactic criteria or a sharing analysis. An optimized implementation, performing selective
updates, can be defined by introducing marks. These two points are presented in Section
6.2.2.

3.3.3 Other choices

A graph and its associated reducer can be seen as an abstract data type with different imple-
mentations [41]. We have already used one encoding that represents nodes by code (i.e. clo-
sures). Another natural solution is to represent the graph by a data structure. It amounts to
introducing three data constructafarNode, FunNode and AppNode and to defining the
interpreterunwindg by a case expression. A refinement, exploited by the G-machine, is to
enclose in nodes the code to be executed when it is unwound. Adding code in data structures
comes very close to the solution using closures described in Figure 9. The intenpreter
wind can just execute the code and does not have to perform a dynamic test. In any case, the
new combinator definitions should still verify tlg\in properties in order to implement a
push-enter model of the compilation of call-by-name.
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By far, the most common use of graph reduction is the implementation of call-by-need
in the push-enter model. However, the eval-apply model or the compilation of call-by-value
can be expressed as well. These choices are specified by redefining the interaatiens of
windg with the three graph buildermkVar,, mkFung, mkApp). In each case, it amounts
to defining new properties likesQ\inl), (GNin2), and GAi3).

More details on these alternate choices can be found in [18].

3.4 Comparisons

We compare the efficiency of codes produced by transformatio(eval-apply CBV) and

Vm (push-enter CBV). Then, we exhibit the precise relationship between the environment
and graph approaches. In particular, it is shown how to derive the transformgatioom G

and the properties\i=i). We take only these two examples to show the advantages of a uni-
fied framework in terms of formal comparisons. It should be clear that such comparisons
could be carried on for other transformations and compilation steps.

3.4.1 YaversusVm

Let us first emphasize that our comparisons focus on finding complexity upper bounds. They
do not take the place of benchmarks which are still required to take into account complex
implementation aspects (e.g. interactions with memory cache or the garbage collector).

A code produced bym builds less closures than the corresponditgode. Since a
mark can be represented by one bit (e.g. in a bit stack parallel to the dataigtasHikely
to be, on average, more efficient with respect to space resources. Concerning time efficiency,
the size of compiled expressions provides a first approximation of the cost entailed by the
encoding of the reduction strategy (assungngh,, grab, andapp have a constant time im-
plementation). It is easy to show that code expansion is linear with respect to the size of the
source expression. More precisely, ¥6r= Va or Vm, we have

If Size (E) = nthensize (Vx[E]) < 3n.

This upper bound can be reached by taking for exampl&x.x ... X (n occurrences of
X). A more thorough investigation is possible by associating costs with the different combi-
nators encoding the contrgushfor the cost of “pushing” a variable or a maglgs for the
cost of building a closure (i.push, E), appandgrab for the cost of the corresponding com-
binators. If we take, for the number ok-abstractions and, for the number of occurrences
of variables in the source expression, we have

Cost(Va[E]) = n, clos+n, push+ (n-1) app
and Cost (Vm[E]) = (n, +n,) grabt+ (n,-1) push

The benefit oftim over Va is to sometimes replace a (useless) closure construction by a
test. When a closure has to be buili; involves a useless test compared/toSo ifclosis
comparable to the cost of a test (for example, when returning a closure amounts to building a
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pair as in Section 4.1.2)m will produce more expensive code than If closure building is

not a constant time operation (as in Section 4 ¥3¢an be arbitrarily better thavk. Actu-

ally, it can change the program complexity in contrived cases. In practice, however, the situ-
ation is not so clear. When no mark is presgrath, is implemented by a test followed by an
app. If a mark is present, the test is followed bgush (i.e. a closure building fak-ab-
stractions). So, we have

Cost (Vm[E]) = (ny+n) test+ p (ny+n,) app+ p n, clos+ p n,push+ (n,-1) push

with p (resp.p) representing the likelihoogp{p=1) of the presence (resp. absence) of a
mark which depends on the program. The best situatiomads when no closure has to be
built, that isp=0 andp=1. If we take some reasonable hypothesis sudtestsapp and

m, <n,<3n,, we find that the cost of closure construction must be 3 to 5 times more costly
thanapp or testto make?n advantageous. With less favorable odds sughps1/2, clos

must be worth 7 or 8pp.

We are led to conclude thatz should be considered only when closure building is po-
tentially costly (such as thac2 transformation in Section 4.1.3 which builds closures by
copying part of the environment). Even so, tests may be too costly in practice compared to
the construction of small closures. The best way would probably be to perform an analysis to
detect cases wheMr is profitable. Such information could be taken into account to get the
best of each approach. We present in [17] hdwand 7m could be mixed.

3.4.2 Environment machineversusgraph reducer

Even if their starting points are utterly different, graph reducers and environment machines
can be related. This has been done for specific implementations such as [43] which shows
how to transform a G-machine into a Tim. We focus here on the compilation of control and
compare the transformatiog: with the gGagn approach to graph reduction.

The two main departures of graph reduction from the environment approach are

« The potentially useless graph constructioRsr example, the rulg [E; E;)] = G
[E;l o G [E;] o mkApp, builds a graph foE, even ifE, is never reduced (i.e. if it is
not needed). On the other hamdn suspends all operations (such as variable instantia-
tion) onE, by building a closureXin [E; E,] = pushs (Nin [E,l) o Aoz [E4] ).

e The interpretative nature of graph reductidéven in the “node-as-code” instantiation,
each application nodenkApp ) is “interpreted” byunwindg. In the environment family,
no interpreter is needed and this approach can be seen as the specialization of the inter-
preterunwindg according to the source graph built §y] .

In order to formalize these two points, we first change the rule for graph building in the
case of applications by

G [E; E;] = push, (G [E,] ounwindy) o G [E;] o mKApp,
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This corresponds to a lazy graph construction where the graph argument is built only if
needed. In particular, variables will be bound to unbuilt graphs. This new kind of graph en-
tails replacing propertygigrl) with

(Gam) (pushy E o mkVar ) o unwind, = E

We can now show thatin [E] is merely the specialization einwindg with respect to the
graph of; that is

N [E] = G [E] o unwindg
For example, the specialization for the application case is:
G [E; E;] ounwindg

=pushy(G [E;] o unwindy) o G [E;] o mkAppounwindg (unfolding G)

=push, (G [E,] ounwindy o G [E;] ounwindg (GNn3)
= push (An [E,]) o Nin [E4] (induction hypothesis)
= Nm [E; E)] (folding &) O

This property shows that, as far as the compilation of control is concerned, environment
based transformations are more efficient than their graph counterpart. However, optimized
graph reducers avoid as much as possible interpretative scans of the graph or graph building
and are similar to environment-based implementations.

4 COMPILATION OF THE B-REDUCTION

This compilation step implements the substitution using transformations /fgoim A..

These transformations are akin to abstraction algorithms and consist of replacing variables
with combinators. Compared th, A\, adds the pairpush,, A, encoding an environment
component and it uses variables only to define combinators. Graph reducers use specific
(usually environment-less) transformations. We express in our framewo8Kthabstrac-

tion algorithm (Section 4.2).

4.1 Environment Based Abstractions

In the A-calculus, the3-reduction is defined as a textual substitution. In environment-based
implementations, substitutions are compiled by storing the value to be substituted in a data
structure (an environment). Values are then accessed in the environment only when needed.
This technique can be compared with the activation records used by imperative language
compilers. The main choice is using list-like (shared) environments or vector-like (copied)
environments. For the latter choice, there are several transformations depending when the
environments are copied.
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4.1.1 A generic abstraction

The denotational-like transformatiolyy (Figure 10) is a generic abstraction which will be
specialized to model several choices in the following sections. It introduces an environment
where the values of variables are stored and fetched from. The transformation is done with
respect to a compile-time environmen(initially empty for a closed expression). We ngte

the variable occurring at the ith entry in the environment.

Ag:Ng - env- A

Ag[E; 0 Ey] p =dupleoAg[Ef] p o swap.o A7[E,] p
Ag[push E] p = pushs (A7 [ E] p) o mkclos
Ag[AX.E] p =mkbind o Ag[E] (p.X)

Ag[x] (...((p.%;)X.1)..-,Xg) = accesso appclos

Figure 10 A generic abstraction fy)

Ag needs six new combinators to express environment saving and restiupig (
swap,, closure building and callingrkclos, appclog, access to valueagcesy and add-
ing a binding kbind).

The first combinator paid(pl,, swap,) is defined im\, by
dupl, =Aepush,eopush, e swap,. = AX.AL.push, x o push, e

Note thatswap,, is needed only i§ ande are implemented by a single component. In
our approach, this choice is made in the final implementation step (see Section 2.5). If even-
tually e ands are implemented by, say, two distinct stacks then new algebraic simplifications
become valid; in particulsswap,, can be removed (its definition as\a@xpression will be
the identity function).

The closure combinatorsnkclos, appclog can have different definitions ik, as long
as they satisfy the condition

(push, E o push, X o mkclos) o appclosﬁ push, Eo X

That is, evaluating a closure made of the func@mnd environmerfE amounts to eval-
uatingX with the environmenk. For example, two possible definitions are

mkclos = Ax.Ae.pushy(x,e appclos=A(x,6).push, eo x

or mkclos = Ax.Ae.pushypush, e o x) appclos=app = AX.x
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The first option uses pairs and is, in a way, more concrete than the other one. The sec-
ond option abstracts from representation considerations. It simplifies the expression of cor-
rectness properties and it will be used in the rest of the paper.

In the same way, the environment combinatarkkind, accesg can have several in-
stantiations im\,. Let us noteeomb' the sequenceombo ... o comb (i times), then the def-
initions of mkbind andaccessmust satisfy the condition

(push, X, o ... o push, X o push, E o mkbind™*%) oaccess(] push, X;

This property simply says that addird. bindingsx;,...,X; in an environmernk then ac-
cessing the ith value is equivalent to returning direstlfxamples of definitions fank-
bind andaccessappear in Figure 11 and Figure 12.

The transformatiorfly can be optimized by adding the rules
Ag[E oapp] p = Ag[E] p o appclos
Ag[AX.E] p = popseo Ag[E] p if x not free in E withpops—= AeAX.push, e

Variables are bound to closures stored in the environment. With the original rules,
Ag[pushy] would build yet another closure. This useless “boxing”, which may lead to long
indirection chains, is avoided by the following rule:

Ag[pushyx] (...((P%).%.1)-... %) = access

Whether this new rule duplicates the closure or only its address depends on the memory
management (Section 6). In call-by-need, one has to make suaedhagreturns the ad-
dress of the closure since closure duplication may entail a loss of sharing.

4.1.2 Shared environments

A first choice is to instantiatgs with linked environments. The structure of the environment

is a tree of closures and a closure is added to the environment in constant time. On the other
hand, a chain of links has to be followed when accessing a value. The access time complexi-
ty is O() wheren is the number ok 's from the occurrence of the variable to its binding

(i.e. its de Bruijn index). This specialization, noteglis used by the Cam [10], the SECD

[31] and the strict and lazy versions of the Krivine machine [32][11].

Specializingdy into As amounts to defining the environment combinators as follows

mkbind =AeAx.pushy(e, access= fst' o snd

with ¢ =co...oc (itimeg fst =Ag(e,X.push,e  snd=A (e,X.pushsx

Figure 11 Combinator instantiation for shared environments {s)
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Example.  As[AX;AXy.push  Eox;] p =mkbind o mkbind o duplgo
push, (4s[E] ((p,X1),%o)) 0 mkclos o swap,. 0 accesgo appclos

Two bindings are addedhkbind o mkbind) to the current environment and theaccess is
coded byaccesg=fst o snd O

The correctness oisis stated by Property% .

Property 8 For all closed well-typed\.-expression E,push, () 0o As[E] () = E

4.1.3 Copied environments

Another choice is to provide a constant access time. In this case, the structure of the environ-
ment must be a vector of closures. A code copying the environmenlefegtb) opera-

tion) has to be inserted il in order to avoid links. This scheme is less prone to space leaks
since it permits suppressing useless variables during copies.

The macro-combinata€opy p produces code performing this copy according’so
structure.

Copy (...(0:Xy).---%g) = (dupl, o accesgo swap, o ...

o (dupl, 0 accesgo swap,) o accesgo push, () o mkbind ™!

The combinatordupl, andswap,, are needed to pass the environment to eacésswhich
will store each value of the environmensirWith all the values is, a fresh copy of the en-
vironment can be built (usingush, () o mkbind ™). If we still see the structure of the envi-
ronment as a tree of closures, the effed€opy p is to prevent sharing. Environments can
thus be represented by vectors. The combimatdnsind now adds a binding in a vector and
accessbecomes a constant time operation (Figure 12).

mkbind = AeAx.push,(e[nex]:=x) access= Ae.push; (€[i])

where ¢nex{:=x  adds the value x in the first empty cell of the vector e

Figure 12  Combinators instantiation for abstraction with copied environments fc)

The indexnextdesignates the first free cell in the vector. It can be statically computed as
the rank of the variable (associated withriibind occurrence) in the static environment
For example, in

Ac[AY.E] ((0.%2):%1).%o) = mkbind o Ac[E] (((().%2) X1).%0).Y)

we havenext=rank y((((),%2).X1).Xo),y) = 4, andy is stored in the fourth cell of the environ-
ment. The maximum size of each vector can be statically calculated too. To simplify the pre-
sentation, we leave these administrative tasks implicit.
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There are several abstractions according to the time of the copies. We present them by
indicating only the rules that differ frorfy. A first solution (Figure 13) is to copy the envi-
ronment just before adding a new binding (as in [20][46]). From the first compilation step
we know that n-ary functions\§;...Ax,.E) are fully applied and cannot be shared: they
need only one copy of the environment. The overhead is placed on function entry and clo-
sure building remains a constant time operation. The transformatiqgroduces (possibly
oversized) environments which can be shared by several closures but only as a whole. So,
there must be an indirection when accessing the environment. The envirgnreprasents
p restricted to variables occurring free in the subexpre&sion

Ac1 [A...AX.E] p = Copy p o mkbind™ Yo Ac1 [E] (...(p%)... %)

Figure 13 Copy at function entry (AcI)

Example. 4c1 [Ax AKo-Pushy E; 0 x;] p = Copy p o mkbind? o duplg o
push (Ac1 [E] ((p,%1),%))) 0 mkclos o swap,. 0 accesgo appclos

The code builds a vector environment made of a specialized copy of the previous environ-
ment and two new bindingmkbind ?); thex, access is now coded by a constant time
access. O

A second solution (Figure 14) is to copy the environment when building and opening
closures (as in [22]). The copy at opening time is necessary in order to be able to add new
bindings in contiguous memory (the environment has to remain a vector). The transforma-
tion 4c2 produces environments which cannot be shared but may be accessed directly (they
can be packaged with a code pointer to form a closure).

Ac2[pushy E] p = Copy p o pushy(Copy p o Ac2[E] p) o mkclos

Figure 14 Copy at closure building and opening4c2)

A refinement of this last option, th#&3 abstractiof! , is to copy the environment only
when building closures. Variations gf:3 are used in the SML-NJ compiler [2] and the
spineless tagless G-machine [42]. In order to be able to add new bindings after closure open-
ing, an additional local environment is needed.

Starting from different properties a collection of abstractions can be systematically de-
rived from Ag. Some of these abstractions are new, some have already been used in well-
known implementations. For example, starting from the equalipfE] p = swap, o
Ag[ E] p one can derive the swap-less transformagignWith this variation, the references
to environments stay at a fixed distance from the bottom of the stack until they are popped
(the references are no mawapped). These variations introduce different environment ma-
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nipulation schemes avoiding stacks elements reordering (swap-less), environment duplica-
tion (dupl-less), environment building (mkbind-less) or closure building (mkclos@Iess)

4.1.4 Comparison

Assuming each basic combinator can be implemented in constant time, the size of the ab-
stracted expressions gives an approximation of the overhead entailed by the encoding of the
B-reduction. It is easy to show that entails a code expansion which is quadratic with re-
spect to the size of the source expression. More precisely

if Size(E) = n thenSize(As (1a[E])) < nn,n,+6n+6

with n, the number ok-abstractions and,the number of variable occurrences (fi=m) of
the source expression. This expression reaches a maximum jftik1%2. This upper
bound can be approached with, for exampig,..Ax,.X; ... X, The product n, indicates
that the efficiency ofts depends equally on the number of accessgaid their length §).
For Ac1 we have

if Size(E) = n thenSize (Ac1 (Va[E])) < 6n,% 6n,+7n+6

which makes clear that the efficiencyfl is not dependent of accesses. The two transfor-
mations have the same complexity order, nevertheless one may be more adapted than the
other to individual source expressions. These complexities highlight the main difference be-
tween shared environments that favors building, and copied environments that favors access.
Let us point out that these bounds are related to the quadratic growth implied by Turner’s ab-
straction algorithm [53]. Balancing expressions reduces this upper boundiegr((28].

It is very likely that this technique could also be applied-expressions to get a @ggn)
complexity for environment management.

The abstractions can be compared according to their memory usageztoopies the
environment for every closure, whefier may share a bigger copy. So, the code generated
by 4c2 consumes more memory and implies frequent garbage collections whereas the code
generated bylci may create space leaks and needs special tricks to plug them (see [43] sec-
tion 4.2.6).

4.2 A SKI Abstraction Algorithm

Some abstraction algorithms do not use the environment notion, but encode separately every
substitution. A simple algorithm [13] uses only three combinat8r&{ 1} but is inefficient

with respect to code expansion. Different refinements, which use extended combinators fam-
ilies (e.g. § K, I,B, C, S, B, C'}), have been proposed [28][53][54]. They usually lower

the complexity of code expansion from exponential with K, I} to quadratic or even
O(nlogn). We describe only the SKI abstraction algorithm in this paper. It should be clear
that the optimized versions could be expressed as easily in our framework.

It is possible to define a transformatigkI [ E] x that can be applied to al-expres-
sions ([18]). In particular, it can be composed with the transformations for the compilation
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of the graph reduction control (Section 3.3). The resulting code, although correct, does not
accurately model the classical compilation scheme of the SKI-machine. The easiest way to
model it precisely is to define a transformation specialized to graph code (Figure 15).

SKI: N\g - var — Ng
SKI[E] x = E o (push, Ks o mkFuny) o mkApp x not free in E
SKI[E; o E; o mkApp ] X

= SKI[E;] X o (SKI[E,] X o (push, Sso mkFun) o mkApp ) o mkApp
SKI[pushy Ay.E) o mkFung x = SKI[ SKI[E] yl x
SKI[push, x o mkVar J x = push, Is o mkFung

Figure 15 Abstraction SKI (5%1)

The Ss Ks andls combinators build or select a graph. They can be defined as
Ss= AL, AL AX.(pushy X o pushg e, o MKApPp ) o (pushy x o pushg e,0 MKApPpP ) o MKApp
Ks = AgeAxpush,e Is = AX.push, x

In the same way, the transformati@p, (adupl-less,swap-less andnkbind-less ab-
straction algorithm) can be specialized for graph code ([18]). It would then precisely model
the classical abstraction of the G-machine ([27]).

5 COMPILATION OF CONTROL TRANSFERS

A conventional machine executes linear sequences of basic instructions. In our framework,
reducing expressions of the foappcloso E involves evaluating a closure and then return-
ing to E. We have to make calls and returns explicit. We present here two solutions.

St A - A withi=s,e

S[E; 0 Ep] = push (S[EJ) o S[E]

S[push E] = push (S[E]) orts; with rts; = Ax A k.push x o k
SIAX.E]= Ax.S[E]

S[x1=x

Figure 16 General compilation of control transfers §)
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The first solution, adopted by most implementations, is to save the return address on a
call stackk. The transformatios (Figure 16) saves the code following the function call us-
ing push,, and returns to it withts; (= A;x.A,f.push x o f andi = sor €) when the function
ends. Intuitively these combinators can be seen as implementing a control stack. Compared
to A\, \-expressions do not hae@pcloso E code sequences. The correctnessis stated
by Property 9.

Property 9 For all closed well-typed\.-expression E and N a normal form,
if E O N thens[E] T S[N]

An optimized version of for the different previous transformations could easily be de-
rived. For example, we get

S[dupl, o E; o swap,o E,] = dupl,opush, (swap,.o S[E,]) oswap.o S[E;]

The second solution is to use a transformagibbetween the control and the abstrac-
tion phasesy/: A\g — AJ). It transforms the expression into CPS. The continu&tercodes
return addresses and will be abstracted as an ordinary variable. Let us present only two
transformation rules

S[push E] = Akpushg (S[[E]) ok
SITE; 0 E;] = Ak.push, (push, ko S[[E,]) o SITE;]

The first one replaces returns by continuation calls, and the second rule encodes the re-
turn stack ofs by a continuation composition. This solution is used in the SML-NJ compiler

(2].

6 SHARING AND UPDATES

The call-by-need strategy is an optimization of the call-by-name strategy which shares and
updates closures. In order to express sharing, we introduce a memory component to store
closures. The evaluation of an unevaluated argument amounts to accessing a closure in the
memory, to reducing it and to updating the memory with its normal form. This way, every
argument is reduced at most once. The new intermediate lanfgyagds to\, the combi-

nator pair push,, A,,) which specifies a memory componénthis component is represent-

ed and accessed via a heap pointer. A first transformagidrom A, to A, threads the
componenh in which closures are allocated and accessed. Then we express updating and
present several options specific to graph reduction.

6.1 Introduction of a Heap

The transformatior#c (Figure 17) introduces a new componbnivhich encodes a heap
threaded through the expression. Throughout the reduction of such an expression, there is
only one reference to the heap (hés single-threaded [48]).
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The transformed expressigfi[E] takes the heap as an argument and returns the heap
as result. The last two rules @t are responsible for making closure allocation and access
explicit. In our framework, constructions of updatable closures are of thepfesigE with
E:R0, and accesses of updatable closures are of thexfoRRgt wherex is bound by a\..

These rules use two contexts. The conErte[E] can be read as: allocate a new cell in the
heap, write the codg in this cell, return its addressand the heap. The conteall[E] can

be read as: access the expression stored in the heap in the cell of Bdthreasreduce it

(with the heap as an argument). Henceforth, the argument of a function is a closure address
rather than the closure itself. A closure address is represented by an integer and the heap is
represented by a pair made of a list of written cells and the address of the next free cell
((tail,{addval}), free). The initial empty heap is noteinptyH and is defined as ((). The

three combinatoralloc, write andread perform basic heap manipulations. Sicis sin-
gle-threaded, these combinators can be implemented efficiently as constant time operators
on a mutable data structure.

He: N - Ny with i =seork andh a fresh variable
He[E 0E)] = He[E;] o Hc[E)]
He[AXE] = AjhAxpush,ho Hc[E] with i =s, eork
He[push E] = Store[#Hc[E]] if i=sandE:RO
= Agh.push (#c[E]) opush, h otherwise (=s,eork)
He[X] = Call[x] if X : Rgt bound byAx.
= X otherwise

with  Store [E] = A h.push, hoalloc o Ajh.Aa.
pushg E o pushg a o push, h o write o Aph. pushgao push, h
Call [E] =A,h.push, E o push, horead o Ay. push, hoy
alloc= A, (heap,fregpush, freeo push, (heap,free 1)
write = A, (heap,fregA;addAyval.push, ((heap{add,va}), freg
read = Ay((heap{add,val}) freg.Aadd,.

if add,=add, thenpush, val elsepush, (heap,fre¢o push, add, o read

Figure 17 Introducing a heap where closures are allocated and accessef)(

We can apply the transformatiof to get new versions of the combinators introduced
by the previous compilation steps. When a combinator neither create nor call a closure, the
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transformatiorzic threads the heap without interaction. For example, for the combthator
pl. introduced by the abstracticly, we get

duplg, = He[dupl] = Ajh.Aepush, eopush, eopush, h

On the other hand, combinators suckaagclosandmkclos create or call closures. So,
their transformed definitions u§all andStore:

appclos, = #Hc[appclod = Hc[AxX] = Ajh.Ax.push, ho Call[X]
mkclos, = He[mkclos] = AhAXAL. push, h o StorefA h.push, eopush, hoX]

6.2 Updating

The transformatiortc only makes memory management explicit. A heap stored closure is
still reduced every time it is accessed. The call-by-need strategy updates the heap allocated
closures with their normal forms.

The main choice is whether the update is performed by the caller (i.e. by the code from
which the closure is accessed) or by the callee (i.e. by the code of the closure itself). The
caller update scheme updates a closure every time it is accessed, when the callee-update
scheme updates closures only the first time they are accessed: once in normal form, other ac-
cesses will not entail further (useless) updates. This last scheme is more efficient and is im-
plemented by all the realistic, environment-based implementations. We model here only
callee updates.

6.2.1 Callee update

In order to have self updating closures, the transformatiatiee (Figure 18) changes the
rule of #c for push E. It introduces a combinatapdt which takes as its arguments the
heaph, the addresb of the result, and the addressf the closure to be updated. It returns
the addresb and a new heap where the @liontains an indirection @ The combinator
swap,, reorders the addregsnd the heap.

Ucallee : N\ - Ny, with E: RO

Ucallee[ push, E] = Store[push, a o swap,,o Ucallee[E] o updt]

with  swap, =Aa.A.h.pushao push, h

and updt =Ah.AbAapush (A h.pushs b o push, h) o pushg ao push, howrite
oAgh.push,b o push, h

Figure 18 Callee closure updateWcallee)
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A closure is allocated in the heap when it is created ag,ibut its code is modified.
The closure now stores its own addrgsssfy a), and its evaluation is followed hypdt.
Note thata is a variable bound in the contetore[] (see the definition oStore) and de-
notes the address of a fresh allocated cell. Of course, Ehemlready (syntactically) in
normal form the simple rul@caflee [push, E] = Store] Ucallee[ E] ] suffices. Thus, a closure
is updated at most once (i.e. after the first access) because the compiled code of its normal
form (#c[push; N]) contains naupdt.

The callee update scheme can be used wjthHowever, as noted in Section 3.2.2,
marks have to be inserted in expressions to suspend the reduction before performing an up-
date. The rule fok-abstractions becomes

2in [AXE] = grabAx.2\in [E])
and Ucallee is specialized for the push-enter model as follows:
Ucallee[ push  E] =
Store[push, a o swap,, o pushg € o swap,, 0 Ucallee[E] o updt o resumeg]]
with resume, = Ajh.Ax.pushg h o grab;, x

An evaluation context is isolated by inserting a medfter the update addregsughg
a); andresums, resumes the reduction once the update has been performed. The combinator
grab,, is defined by#c[grabJ] . Marks are used by Tim[20], Clean [46], the Krivine Ma-
chine [11] and the spineless-tagless G-machine [42]. The codes produeédabg Ain
have the same update opportunities. As in call-by-name, the call-by-need vergiomay
prevent from building unnecessary intermediate closures.

6.2.2 Updating and graph reduction

The previous transformations can be employed to transform the call-by-name graph reduc-
tion schemes into call-by-need. Here, we present two updating techniques (spineless and
spine variations) that have been introduced for the G-machine.

The spineless G-machine [8] updates only selected application nodes. Unwinding appli-
cation nodes entails stacking either their address (updatable) or only the argument address
(non updatable). So, in general, the complete leftmost spine of the graph does not appear in
the stack. The code must annotate updatable nodes and marks are necessary to dynamically
detect when an update must be performed. Updatable nodes are distinguished using the com-
binatormkAppS, which has the same definitiona&App ,, andmkFung, must be redefined
to detect marks:

MkAPPS; = Ay A Push (pushy X, 0 xy)
mkFung = Af.push, (grabyA.a.(pushsaof) o unwindy))

The transformatioricallee for the push-enter model can be applied to the graph constructors.
For mkAppS, we get
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Ucallee[MKAPPS = A h. A Ag,.Storefpushg a o swapyy, o pushg € o swapy, o
Ucallee[ push X, 0 X;] o updt o resume)

As suggested in Section 3.3.2, the use of marks is not mandatory to express updating in
the G-machine [27] where graph building and graph reduction are separate steps. Applica-
tion nodes must stack their address as they are unwound, then updates can be systematically
inserted between each graph building and reduction step. However, this naive scheme (that
we call the spine variation) cannot be expressed using the previous transformations. Indeed,
the canonical definition ahkApp for Gagn is

MKAPPs = AXy.AXo.pushg (pushg X, o x;) where pushy X, 0X;: 0; -0y

Since #Hc shares only expressions of the fopush, E with E:R0, application nodes
will not be considered for updating with this definitiomafApp . In order to model the G-
machine scheme, a new transformation should be definedi{gein [18]).

The introduction of the threaded memory component in our functional intermediate
code makes formal manipulations more complicated. For example, a property ensuring that
the reduction of{c[E] simulates the reduction &, should use a decompilation transfor-
mation in order to replace the addresses in reduced expressions by their actual values which
lie in the heap. This prevented us from finding a simple and convincing formulation of cor-
rectness properties for the transformations presented in this section.

7 CLASSICAL FUNCTIONAL IMPLEMENTATIONS

The description of the compilation process is now complete. A compiler can be described by
a simple composition of transformations. Figure 19 states the main design choices structur-
ing several classical implementations. There are cosmetic differences between our descrip-
tions and the real implementations. Some descriptions of the literature leave the compilation
of control transfers implicit (e.g. the Cam and Tim). Also, some extensions and optimiza-
tions are not described here.

Let us describe precisely our modeling of the categorical abstract machine and state the
differences with the description in [10]. The Cam implements the left-to-right call-by-value
strategy using the eval-apply model and has linked environments. In our framework, this is
expressed asaM = 4s- Vg . By simplifying this composition of transformations, we get:

caMIx] p = fstosnd

CAM [AX.E] p push, (mkbind o (CAM[E] (p,X))) o mkclos
CAM [E;E;l p = duplyo (CAMIE, ] p) o swap,.o (CAM[E,] p) o appclosg
with appclog = AxAd.pushixof

To illustrate its output, let us consider the expresEien(AX.X)((AY.y)(Az2)), then

CAM [E] = duplgopushs C; o mkclos o swap,.o dupl,opush, C; o mkclososwap,,
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o pushy C; o mkclos o appclos o appclosg
with  C; =mkbind osnd

The code is made of two linear code sequences, each of them composed of combinators
which can be implemented by a few standard assembly instructions. The minor step consist-
ing of naming code fragments has been left implicit. By instantiating the combinators, we
get the rules of the machine. In the Cam, both composeamde are merged; the instantia-

tion is therefore:

o=Aabca(b 0 pushg N = push, N=AcAzc (z,N AXX =AXX =ACA(zX).XcCz

The definitions of the (macro) combinators follow. For example:

dupl, =Aepush, eo push,e=Ac.A(ze).c ((z€).€)
mkbind = AeAx.push(e,d =Ac.A((z€),X).c (z(e,X)
snd =A(e,X.push,x =Ac.A(z(e,X).c (zX)

If these combinators are considered as the basic instructions of an abstract machine, their
definitions imply the following state transitions:

dupl, C(ZPB - C(zB.B
mkbind C((Z,B,X) -  C(Z(EX)
snd CZEX) - CzZX

Thefst, snd, dupl, andswap,, combinators correspond to Canfst, Snd, Pushand
Swap. The sequengaush (E) o mkclosis equivalent to Cam®&ur (E). The only difference
comes from the place afikbind (at the beginning of each closure in our case). Shifting this
combinator to the place where the closures are evaluated and mergingaipmatbs , we
getA((X,8).push, eo mkbind o x, which is exactly Cam’s sequenCens;App.

Figure 19 gathers our modelings of 13 implementations of strict or lazy functional lan-
guages. It refers to a few transformations not described in this paper but which can be found
in [17] and [18].

Let us quickly review the differences between Figure 19 and real implementations. The
Clean implementation is based on graph rewriting, however the final code is similar to envi-
ronment machines (for example, a closure is encoded by an n-ary node). Our replica is an
environment machine that we believe is close. However, the numerous optimizations and es-
pecially the lack of clear description ([46] details only examples of final code) makes it diffi-
cult to precisely determine the compilation choices.



32

Compiler Transformations Components

/\ - AS - /\e - /\k - /\h

Cam Va, As Id Id s=e
Clean Nnl Acl Id UCallee sekh
G-machine GNim Aclyyy 14 USpine sekh
Spineless G-machine GNinl  Aclyyy Id Ucallee sekh
Spineless tagless G-machine  Ninl Ac3 Id UCallee (s=k)eh
Mak (cbn) Ninl As Id UCallee s=e=kh
Maks (cbv) Vi As S Id s=e=k
SECD Va As S Id s (e=k)
SKI-machine GNin SKI Id USpine sh
SML-NT Va, Ac3 St d s e (registers)
Tabac (cbv) Va A2y, S Id (s=e)k
Tabac (cbn) Na A2y, S UHybrid (s=e)kh
Tim Ninl Acl,, 4 Ucallee sekh

Figure 19 Several classical compilation schemes

The G-machine [27] and the spineless G-machine [8] perform only one test for all the
arguments of the function (by comparing the arity of the function with the activation record
size) whereas owgrab, combinator performs a test for every argument. So, an n-ary combi-
natorgrabs, should be introduced.

The spineless tagless G-machine [42] uses also an n-ary vergjoabgfand a local
and a global environment. The abstraction with two environmelatsn( our framework) is
not directly compatible witlgrab, and extra environment copies must be inserted. The sim-
plest way to model faithfully the real machine would be to introduce an specialized abstrac-
tion algorithm.

The Grab instruction of the Krivine abstract machine (Mak) [11][32] is a combination
of ourgrabg (in fact, a recursive versid%) andmkbind combinators.

The SECD machine [31] saves environments a bit later than in our sdhenther-
more, the control stack and the environment stack are grouped into a component called
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“dump”. The data stack is also (uselessly) saved in the dump. Actually, our replica is closer
to the idealized version derived in [24].

The SKI-machine [53] reduces a graph made of combin&dks | and application
nodes. The graph representing the source expression is totally built at compile time. The ma-
chine is made of a recursive interpreter and a data stack to store the unwound spine. Our
modeling is close to the somewhat informal description of the SKI-machine in [53].

The SML-NJ compiler [2] uses only the heap which is represented in our framework by
a unique environmem It also includes registers and numerous optimizations not described
here.

The Tabac compiler is a by-product of our work in [22] and has greatly inspired this
study. It implements strict or non-strict languages by program transformations. Tabac inte-
grated many optimizations that we have not described here.

Our call-by-name Tim description is accurate according to [20]. The environment copy-
ing included in the transformatioftz have the same effect as the preliminary lambda-lifting
phase of Tim. A n-argrab, should be added to our call-by-need version.

8 EXTENSIONS AND APPLICATIONS

Our framework is powerful enough to handle realistic languages and to model optimizing
compilers or hybrid implementations. We illustrate each point in turn. We first present the
integration of constants, primitive operators and data structures, then we take an example of
how to express a classical global optimization and finally we describe a hybrid transforma-
tion.

8.1 Constants, Primitive Operators and Data Structures

We have only considered pukeexpressions because most fundamental choices can be de-
scribed through this simple language. Realistic implementations also deal with constants,
primitive operators and data structures which are easily taken into account in our framework.

Concerning basic constants, one question is whether results of basic type are returned in
s or another componenpish,, A) is introduced. The latter has the advantage of marking a
difference between pointers and values which can be exploited by the garbage collector. But
in this case, precise type information must also be available at compile time to transform
variables and-abstractions correctly. In a polymorphic setting, this information is not avail-
able in general (a variableof polymorphic typex can be bound to anything) so constants,
functions and data structures must be storexdTie fix-point operator, the conditional and
primitive operators acting on basic values are introduced in our language in a straightfor-
ward way. The compilation of control using the eval-apply model for these constructs is de-
scribed in Figure 20.

A naive compilation of3-reduction for letrec expressions yields a code building a clo-
sure at each recursive call. Two optimizations exist. The first one consists in building a circu-
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lar environment or graph. A second optimization for environment based machines is to
implement recursive calls to statically known functions by a jump to their aldress

V]letrec f=E] = push, AJ.V[E]) oY with push,F oY O push(push,FoYJ)oF
YIn] = pushn

V[if E; then E else E] = V[E,] o cond, (V[E,] , V[E])

with push, Trueocond, (E, F O E and push, Falseocond, (E, F) O F
VIE; +E)] = Y[E)] o V[E] oplus,  with pushyn, o pushin; o plus,0 pushyn;+n,
Y[head = head, with head,= A(tagh,t).push;h

Y[cons E E;] = V[E,] o Y[E;] oconsg  with cons=AhAL.push(tagh,t)

Figure 20  An extension with constants, primitive operators and lists

As far as data structures are concerned, we can choose to represent them using tags or
higher-order functions [20]. Figure 20 describes a possible extension using the data stack to
store constants and tagged cells of lists. It just indicates one simple way to accommodate
data structures in our framework. The efficient implementation of data structures brings a
whole new collection of choices (see e.g. [42]) and optimizations (see e.g. [23] [51]). A thor-
ough description of this subject is beyond the scope of this paper.

Until now, we considered only pukeexpressions and the typing of the source language
was not an issue. When constants and data structures are taken into account two cases arise
depending on the typing policy of the source language. If the source language is statically
typed then the code produced by our transformation does not need to be modified (however,
supporting polymorphism efficiently involves new and specific optimizations such as unbox-
ing of floats and tuples [33]). For dynamically typed languages, functions, constants and
data structures must carry a type information which will be checked by combinators or prim-
itive operators at run time.

8.2 Optimizations

Let us take the example of the optimization brought by strictness analysis in call-by-need
implementations. It changes the evaluation order and, more interestingly, avoids some
thunks using unboxing [9]. If we assume that a strictness analysis has annotated Hye code
E, if E; denotes a strict function amdf the variable is defined by a strictabstraction then

“Aa can be optimized as follows

Az [X] = pushyx ANa [E; E5] = Na [E)] o Na [Ej] oapp
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Underlined variables are known to be already evaluated; they are represented as un-
boxed values. For example, without any strictness information, the expression

(Axx+1) 2
is compiled into push (pushg 2) o (Ax.x 0 pushg 1 o plusy).

The codepush, 2 will be represented as a closure and evaluated by the da the
boxed representation of 2. With strictness annotations we have

push, 2 o (AX.push X o push, 1 o plusy)

and the evaluation is the same as with call-by-value (no closure is built). Actually, more gen-
eral forms of unboxing (as in [33] or [44]) and optimizations (e.g. let-floating [45]) could be
expressed as well.

8.3 Hybrid Implementations

The study of the different options showed that there is no universal best choice. It is natural
to strive to get the best of each world. Our framework makes intricate hybridizations and re-
lated correctness proofs possible. It is for example possible to mix the eval-apply and push-
enter models and to desigrva-Vim hybrid transformation ([17]). Here, we describe how to

mix shared and copied environments. We suppose that a static analysis has produced an an-
notated code indicating the chosen mode for each subexpression.

One solution could be to use coercion functions to fit the environment into the chosen
structure (list or vector). Instead, we describe a more sophisticated solution (Figure 21)
which allows lists and vectors to coexist within environments (as in [50]). Motivations for
this feature may be to optimize run time using vectors (resp. links) when access (resp. clo-
sure building) cost is predominant or to optimize space usage by using a copy scheme (e.g.
vectors) when it eliminates a space leak which would be introduced by linking environ-
ments.

MixA[AX.E ®P] p=Mix p8omkbind” o Mixa[E] (6 O x)

MixA[%] (...(P.0y),....Po) = acces$o Mixa[x] p with x in p;
MixA[x] [P:pi:...:po] = acces$ o MixA[x] p; with x in p;
MixA[X] (...(PX)..... %) = acces§ o appclos

MixA[x] [p:X:...:%] = acces$ oappclos

with acces’ (resp.accesY) is theaccessversion which accesses a list (resp. a vector)

Figure 21 Hybrid Abstraction (extract)
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EachA-abstraction is annotated by a new mixed environment strutared O (O
{vl}) which indicates how to bind the current value (as a veestasr‘as a link 1”). Mixed
structures are built bykbind", mkbind' and the macro-combinatdtix which copies and
restructures the environmemiccording to the annotatié(Figure 21). Paths to values are
now expressed by sequencesiafes$andacces¥. The abstraction algorithm distinguishes
vectors from lists in the compile time environment using constructors “:” and “,”.

9 RELATED WORK

We review in this section the different formalisms used in the description of functional im-
plementations: th@-calculus,A-calculi with explicit substitutions, combinators, monads.

We also present papers comparing specific implementations and the related area of seman-
tic-directed compiler derivation.

Our approach and this paper stem from our previous work on compilation of functional
languages by program transformation [22]. Our goal then was to show that the whole imple-
mentation process could be described in the functional framework. The two main steps were
the compilation of control using a CPS conversion and the compilation @friduction
using indexed combinators that could be seen as basic instructions on a stack. We remained
throughout within the\-calculus and did not have to introduce an ad-hoc abstract machine.
We described only one particular implementation; our main motivation was to make correct-
ness proofs of realistic implementations simpler not to describe and compare various imple-
mentation techniques. The SML-NJ compiler has also been described using program
transformations including CPS and closure conversions [2]. Other compilers use the CPS
transformation to encode the reduction strategy withinAticalculus [30][52]. Encoding
implementation issues within tiiecalculus leads to complex expressions (e.g. sequencing
is coded as a composition of continuations). The construptesly, o andA; make our
framework more abstract and simplify the expressions. The instantiation of these construc-
tors asA-expressions provides an interesting new implementation step (Section 2.5): the
choice of the number and the representation of the components of the underlying abstract
machine are kept apart. Within thecalculus, one has to choose before describing an imple-
mentation whether, for example, data and environments are stored in two separate compo-
nents or in a single one.

The de Bruijnk-calculus [14], which uses indices instead of variables, has been used as
an intermediate language by several abstract machines. As we saw in Section 4.1.2, a de
Bruijn index can be seen as the address of a value in the run-time environment. A collection
of formalisms, theA-calculi with explicit substitutions, emphasize also the environment
management and can be seen as calculi of closures [1]. These calculi help formal reasoning
on substitution and make some implementation details explicit. However, important imple-
mentation choices such as the representation of the environments (lists or vectors) are, in
general, not tackled in these formalisms. Hardial §25] introduce\o,,, a weak\-calculus
with explicit substitutions, which can serve as the output language of functional compilers.
They describe several abstract machines in this framework. However, their goal is to exhibit
the common points of implementations not to model precisely existing implementations.
Another variantAaZ [7], can describe sharing and eases the proofs concerning memory
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management. Theo? -expressions stay at a higher level than real machine code since, for
example, sharing is modeled by formal labels and parallel reductions.

A closely related framework used as intermediate language is combinatory logic [13].
Combinators have been used to encode the compilation @frémuction. Some compila-
tion issues, such as the representation of environments, are usually not dealt with. Different
set of combinators, such a§K,l,B,C}[53], have been used to define abstraction algo-
rithms for graph reducers [28][36]. The categorical combinators [12] have been used in envi-
ronment machines such as the Cam [10] and the Krivine machine [4].

Arising from different roots, our first intermediate languéges surprisingly close to
Moggi's computational metalanguage [40]. In particular, we may interpret the monadic con-
struct[E] aspush, E and (et x O E; in E,) asE; o AX.E, and get back the monadic laws
(letB), (letn) and (ass). The monadic framework is more abstract. For example, one can
write monadic expressions such as

let 0O writeStackK) in (leted readEnv()n E)

whereas, in our formalism, we need to reorder data and environmentswtpaombina-
tor:

push; X o swap.oAL£E

These administrative combinators allow us to merge several components in the instanti-
ation step. The abstract features of monads can be an hindrance to express low level imple-
mentation details and to get closer to a machine code. For example, the monadic call-by-
value CPS expressiote{ad Ain (letf O Fin [f a])) evaluates the argumeft the func-
tion F and returns the applicatiohd), but does not state if the application is reduced before
it is returned. 1M\, we disallow unrestricted applications and make the previous reduction
explicit with anapp combinator. A key feature of our approach is to describe and structure
the compilation process as a composition of individualized transformations. The monadic
framework does not appear to be well suited to this purpose since monads are notoriously
difficult to compose. Liang &l. [35] needs complex parametrized monads to describe and
compose different compilation steps. The difficulties to compose monads and to represent
low level details are serious drawbacks with respect to our goals. Overall, the monadic
framework is a general tool to structure functional programs [55] whereas our small frame-
work has been tailor-made to describe implementations.

Besides benchmarks, few functional language implementations have been compared.
Some particular compilation steps have been studied. For example, [28] compare different
abstraction algorithms and [26] expresses CPS transformations in the monadic framework.
A few works explore the relationship between two abstract machines such as CMC and Tim
[37] and Tim and the G-machine [43]. Their goal is to show the equivalence between seem-
ingly very different implementations. CMC and Tim are compared by defining transforma-
tions between the states of the two machines. The comparison of Tim and the G-machine is
more informal but highlights the relationship between an environment machine and a graph
reducer. Also, let us mention Asperti [4] who provides a categorical understanding of the
Krivine machine and an extended Cam and Crégut [11] who has studied the relationship be-
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tween the Tim and the Krivine machine. All these implementation comparisons focus on
particular compilation steps or machines but do not define a global approach to compare im-
plementations.

Related work also includes the derivation of abstract machines from denotational or op-
erational semantics. Starting from a denotational semantics with continuations, Wand [56]
compiles theB3-reduction using combinators and linearizes expressions in sequences of ab-
stract code. The semantics of the program is translated into a sequence representing the code
and a machine to execute it. In our approach, semantics or machines do not appear explicitly.
Hannan [24] and Sestoft [49] start from a “big step” (natural) operational semantics, incre-
mentally suppress ambiguities (e.g. impose a left-to-right reduction order) and refine com-
plex operation (e.gB-reduction), until they get a “small step” (structural) operational
semantics. Some of the refinement steps have to deal with operations specific to their frame-
work (e.g. suppressing unification). Meijer [38] uses program algebra to calculate some sim-
ple compilers from a denotational semantics via a series of refinements. All these derivation
techniques aim at providing a methodology to formally develop implementations from se-
mantics. Their focus is on the refinement process and correction issues and, usually, they de-
scribe the derivation of a single implementation. Not surprisingly, the derived compilers do
not model precisely existing implementations. They are best described as idealized than so-
phisticated or optimized implementations. Comparisons of implementation choices seem
harder with a description based on semantics refinement than with a description by program
transformations. Also, some choices seem difficult to naturally obtain by derivation (e.g. the
push-enter model for call-by-value). On the other hand, these semantics based methodolo-
gies can potentially be applied to any language that can be described in their semantics
framework.

10 CONCLUSION

Let us review the implementation choices encountered in our study. The most significant
choice for the compilation of control is using the eval-apply motielq(s) or the push-en-

ter model (/m, A\im). There are other minor options such as stackless variatiay S\[(zf) or
right-to-leftvs left-to-right call-by-value. We have shown that the transformations employed

by graph reducers can be seen as interpretative versions of the environment-based transfor-
mations. For the compilation @freduction, the main choice is using environment-less (e.g.
SKI) abstraction algorithms, list-like (shared) environment$ ¢r vector-like (copied) en-
vironments @c). For the latter choice, there are several transformations depending on the
way environments are copiedd, Ac2, Ac3). Actually, a complete family of generic trans-
formations modeling different managements of the environment stack can be derived. For
control transfers, one can introduce a return address stack or use CPS conversion. Self up-
datable closures (i.e. callee update) is the standard way to implement updating but graph re-
duction brings other options.

Our approach focuses on (but is not restricted to) the description and comparison of
fundamental options. The transformations are designed to model a precise compilation step;
they are generic with respect to the other steps. It is then not surprising that, often, simple
compositions of transformations do not model accurately real implementations whose de-



39

sign is more ad-hoc than generic. In most cases, the differences are nevertheless superficial
and it is sufficient to specialize the transformations to obtain existing implementations.

The use of program transformations appears to be well suited to precisely and com-
pletely model the compilation process. Many standard optimizations (uncurrying, unboxing,
hoisting, peephole optimizations) can be expressed as program transformations as well. This
unified framework simplifies correctness proofs. For example, we do not introduce explicitly
an abstract machine and therefore we do not have to prove that its operational definition is
coherent with the semantics of the language (as in [47] and [34]). Program transformations
makes it possible to reason about the efficiency of the produced code as well as about the
complexity of transformations themselves. Actually, these advantages appear clearly before
the last compilation step. The introduction of a threaded state seriously complicates program
manipulations and correctness proofs. This is not surprising because our final code is similar
to a real assembly code.

Our main goal was to structure and clarify the design space of functional language im-
plementations. The exploration is still far from complete. There are still many avenues for
further research:

« It would be interesting to give a concrete form to our framework by implementing all the
transformations presented. This compiler construction workbench would make it possi-
ble to implement a wide variety of implementations just by composing transformations.
This would be useful to try completely new associations of compilation choices and to
assess the implementations and optimizations in practice.

« A last step towards high quality machine code would be the modeling of register alloca-
tion. This could be done via the introduction of another component: a vector of registers.

« A systematic description of standard optimizations and program transformations should
be undertaken. A benefit would be to clarify the impact of a program transformation de-
pending on the implementation choices. Let us consider, for exaxdlftig, a contro-
versial transformation [27][39]. Intuitively, A-lifting can be beneficial for
implementations using linked environments. Indeed, in this case, its effect is to shorten
accesses to variables by performing copies. Whether the gain is worth the cost depends
on how many times a variable is accessed. We believe that this question could be studied
and settled in our framework. Also, proving the correctness of optimizations based on
static analyses is a difficult (and largely neglected) problem [9]. Expressing these optimi-
zations as program transformations in our unified framework should make this task easi-
er.

< Another research direction is the design of hybrid transformations (mixing several com-
pilation schemes). We hinted at a solution to mix copied and linked environments in Sec-
tion 8.3 and a solution to mix the eval-apply and the push-enter model in [18]. Others
hybrid transformations as well as the analyses needed to make these transformations
worthwhile have yet to be devised. Without the help of a formal framework, such trans-
formations would be quite difficult to design and prove correct. The description of previ-
ously unknown compositions of transformations, the mechanical derivation of new
abstraction algorithms and hybrid transformations all indicate that our approach can also
suggest new implementation techniques.
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* Many interesting formal comparisons of transformations remain to be done. At the mo-
ment, we have just compared a few couples of transformatigrasn@ 7m, Na and Ajn
[18], 45 andA4c1). It might be the case that a specific choice for a compilation step desig-
nates a best candidate for the compilation of another step. This could be established by
comparing compositions of transformations (elg. Va andAci « V).

We believe that the accomplished work already shows that our framework is expressive
and powerful enough to tackle these problems.
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APPENDIX

& The strong confluence of tfiereduction is evident. The important point to note is that
different redexes are always disjoints. Therefore, an expreBsiath two redexeR};, R,
can always been written &R;][R,] (C[ ][ ] being a context) and two different reductions

EOQ F,andEQ F,
canbeseenas C[R[R,] O C[N;][R;] andC[R{I[R,] O C[R;1[N,]

with E = C[R{][R;], N; andN, the reduced redexes (ifg,= C[N,][R;] andF, = C[R;][N,]).
Then clearly, the expression®&C[N,][N,] is such that; 0 G andF, 0 G

b. Proof of Property 2 and other typing issues.

For simplicity reasons, we implicitly assume that the source language can be typed using a
standard type system. Let us note however that we could allow reflexive types (e.g. using a
type system similar tdp-Curry [6]) to type any source expression and its compiled version.
For example, the expressiar.x xwould have typga.a — 3 whereas its compiled form

using, for exampleya (Section 3.1) ipushy(Ax.pushyx o X) and would have typB (upa.a

- ¢RP). Typing in/\; does not impose any restrictions on soir@xpressions. The restric-
tions enforced by the type system are on how results and functions are combiped in

In order to prove Property 2, we must first show a subject reduction property
Property 10 IfE O FthenT F E:TO T F:1

Proof. It is clearly sufficient to show the property for one reduction step. The proof for the
inductive rules such &0 NO EoF O NoF is obvious. The interesting rule is fBere-
duction and the proof boils down to the proofdt F:candlr O{xc} FE: 1O T} E

[FI/X] : T. This is shown by structural induction.

e E=x then o=tandx[F/X]=Fsol F FFoO T} E[F/X|(EF):T1(=0)

e XUE (ie.E=y# xorE=AxE)thenf O{xc} - E:10 I} E[F/X] (EE):1

* E=AzFE (z#X) then
Fr{xo} FAzE :1(E1y->1y) e TO{xo} O{z1} F E :1,
sincez# x,I O {zty} O {x0} | E": 1,and since the definition of
substitution enforcesnot to occur free ifr (by variable renaming or

convention) - F:oO I O{zt1y} | F: 0. So, by induction hypothe-
sis,I O {zt1y} } E’ [F/X] : T, which implied” | AzE’ [F/X] : 1, T,.

* E=E;0E,then
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Nd{xo} F EoE,:t0 T O{x0o} | E;: Rty andl O {xo} | E;
T, -;T. Usingl |- F: o and the induction hypothesis we g€tl {x:a}
F Ej[F/X: Rityandl O {x:a} | EJ[F/X]: 1,—;tsol O {x:a} |- (E; 0
E) [F/X: T

* E=pushFE then

No{xo} } push E: 1(=R1) O I O{xo}  E: 1,0 I O{xac} |
E’[F/X]: T4 (by induction hypothesid) I O {x:a} }- push E'[F/X]:
RT1(E1) O

We also have the following property:

Property 11 A closed expressionEis either canonical (i.e. E push V or Ax.F) or reduc-
ible.

Proof. Structural induction. We have to show that an expregsi6tf o E,° ~'is reducible.
If E; = push E then eitheE, = A\;x.F (andE, o E; is a redex) oE, =E’, 0 E”, and by hy-
pothesisE, has a redex (thus; o E, is reducible). Otherwisg, = E’; o E”; and by hypoth-
esisk,; has a redex (thus, o E, is reducible). O

Property 2 is a direct consequence of the two previous properteR;tthas a normal form
N thenE T N. By Property 10 N:R;t and by Property 1IN(is not reducibleN= push V,
soE [ push V. Same thing withE:o - ;T 0

Another consequence of the type system, is that the reduction of typed closed expres-
sions can be specified by the following natural semantics:

E, O push V E, 0 AxF FIVIX] O N
DDDDDDDDDDDDDDDDDDDDDD (with N a normal form)
E10E2|:|N

and we have
Property 12 For all typed closed expressionE B N < EO N (with N a normal form)

Proof. Induction on the reduction tree. EvidenEifs canonical (by the implicit rule O
N). If E = E; o E,, since all reduction strategies are normalizing :

EDO N < E; O pushyVandE, T AxF andF[V/{ T N (Property 2)
< E; 0 pushyVandE, O Ax.F andF[V/Y O N (by induction hypothesis)

- EON U

C. Laws (L2) and (L3)

As stated, laws (L2) and (L3) are valid only within the corresponding of a classical consis-
tent extension of the-calculus. Our framework comprises the two additional rules:
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(Q) If the closed expressions M and N do not have a (weak) normal form then M =N
(w) Letl O{zao} M, N:tif for all closed expressiopZ:a, M[Z/Z = N[Z/Z then M= N

Intuitively, the motivation behind this extension is that our only concern is that two equal
terms behave the same during the reduction. That is, we accept to replace an expression by
another as long as they are equal after their free variables are instantiated or to replace a
looping expression by another looping expression.

One may wonder whether the rules (asspg)(;),(Q),(w) define a consistent theory. Re-

call that the meaning @f; expressions are defined in term3 axpressions (Section 2.5). It

is sufficient to verify after the instantiation that these rules are valid in a consistent theory of
A-calculus. With all the instantiations we have considered, it is easy to check that these rules
are valid in the lambda theomyw (according to Barendregt terminology [5]). If we write

[ E] the A-expression obtained after instantiation @ a&xpressiork, then it amounts to
showing that ifE = F in A; then [E] = [ F] in #w The theoryHw is defined by the classic

laws of theA-calculus but also identifies unsolvable terms (a more general case than terms
without weak normal form) (see [5] chapters 16 and 17).

Proof of law (L2). Letz;:0,..., z,:0,, the free variables &, o (AX.E;, o E3) then
0z,:04,..., Z,.0, closed
(El (o] ()\IX'EZ [0} Es))[zl,. ey anzl,. ey Zﬂ]

= El[zl,..., anzl,..., Zn] [0} ()\|X.E2 [Zl""’ anzl,..., Zn] [0} E3[Zl""’ anzl,..., Zn])
If Eq[Z4,..., Z/7,,..., z]] does not have a normal form then both expressiens (\x.E, o
EZy,..., Z/zy,..., z) and €, 0 E; 0o AX.E)Zy,..., Z/Z,,..., z] will not have normal
forms. By Q) they are therefore equal and loy) (ve have

El (o] ()\IX'EZ (o] E3) = EZ (o] El (0] ()\IX'ES)

Otherwise sinc&;[Z,,..., Z/z,,..., Z)] is closed, we know (Property 2) that there exists
such thag,[Z,,...,Z,/z,..., z)] = push N so

(E; 0 \XEy 0 EQ)[Zy. ., Z/2s- ., Z,]
=push No A\XE, [Z,..... Z/z,..., 2] 0 EolZy,.... Z 2., Z)))
=E)Z,,..., Z/z,,..., Z)) 0 E5lZy,..., Z/z,,..., Z][N/Y (B) andx s not free irE,
=E)[Z,,..., Z/z,,..., Z)) opush No \X.Ej[Z;,..., Z/z,..., Z)]) B
=B)[Z,.... Z/7,,..., Z)) oE{[Z,,..., Z/7,,..., 2] o MXES[Zy,..., Z/z,,..., Z)])
= (E,0E 0 AXER) [Zy,.... Z/z7,..., Z)]

So, for allZ,,..., Z, closed
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(E; 0o AXEy, 0 EQ)[Zy,..., Z/zy,..., Z)) = (E; 0 E; 0 N XE)[Zy,.... Z /7y, ..., Z]
and by (v) we have lE; o A\ X.E; 0 E3)) = (E, 0 E; 0 A\ X.E3))

The proof for law (L3) is similar. d

d. We show here thats yields well-typed expressions.

Property 13 0OE OA, E closed-E: 6 0 |7[E] : RO witho -~ T=0 - RJ anda = a
(a type variable)

Proof. We prove the stronger property lean expression with free variables {.. x.} such
that {x;:04,... X,;a,} FE:0 then &:a,,... X,;:0.} F7a[E] : RO.

Proof. By structural induction.

e E=x {xq:aq,... %0} FE:; then §:a4,...x:0,} | pushyx (= Va[x]) : Ry

o E=AzFE {x:04,...X:0} FE:O - Tthatis ;:a4,....X,:0, }0{za} }- E"::T.

By induction hypothesis:a;,... X,;0} 0 {zo} | 74[E’]: Rg

and {%:04,... X0} F AZV4[E']: 0 »RI (0 > 1)

hence K0y, %00} F pushiAZ Va[E']) (= Va[AZE']): R0 - T)
« E=EE, {x£0q,... X0} FE:0 - Tand §:ay,... X0} FE;:0

By induction hypothesis,

{xgay,... X;0.} F Y2[EJ: R(0 - 1) and &:ay,... X;:0.} F V2[E,]: RsO

and |l app:(0-1) -0 - 1) thus f:ay,... X0} F Va[E] oapp:0 -1
and {x;:a,,... X,;:a.}  Ya[E,] o Va[E;] oapp:RJ 0

€. Proof of Property 3.
The proof of Property 3 needs two preliminary lemmas.

A contextX([] is said to be closed if for all expressidhd and variable, X[E] [F/X] = X[E
[FIX]] (i.e. a closed context does not introduce free variables nor does it bind free variables).

Lemma 14 LetX [], Y [I, Z [I[] be closed contexts arih transformation such that
T[X] =X[X] T[ME] =Y [AxT[E]] TIE,E)] =Z[TI[E]QI[ TIE]]

then for all E and F such that[F] =X[F']  T[E[F/K]] =T[E] [F /X
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Proof. By structural induction.
e E=x TI[XF] =7[F] =X[F]1=X[XFX]=X[XDIF/X]=7[X] [F/X
sinceX closed
« XOE T[E[F/IX]] =7[El=7T[E]l[F/X] since7does notintroduce free variables
e E=AzFE (z£X) TIAzE)F/IK] = T[A2EFX] =Y [A2z7[E'[FX]]
=Y [AzT[E'][F'/X)] by induction hypothesis
=Y [Az7[E]]1 [F' /X sinceY closed
=T[AzE'] [F'/X
. E=EE, T [(E, EQIFIX] =7 [(E, [FIN) (B, [FIX)]
=Z [T[E, [F WM [ TLE, [FIX]
=Z[7T[E] [FIX][ TIE)] [F/X] by induction hypothesis
sZ[TIENITIEN[F /X sinceZ closed
=T[E, E)] [F/X O

In particular, the transformatior (but alsoVim, A\in, N\a) verifies the conditions of the lem-
ma. So, we have

Va[E[FIX]] = Va[E] [F'/X if Ya[F] =push,F

We will prove Property 3 for the notion of reductidnwhich is equivalent to] (Property
12). We need the following lemma

Lemma 15 OE closedd A 7z [E] O X O [N OA such thattz[N] = X

Proof. If E=Ax.F thenN=E. If E=SE, E,then?a [E] = 72 [E,] o Yz [E;] oapp. By Prop-
erty 13 and Property 2z [E] O push, X so there must be a derivatioa [E,] O pushg
V', Va [E{] O push, Ax.F") andF'[V’/X] O push, X. By induction hypothesis, there are
such thatva [V] = push, V'and Z such thatVs [Z] = push(AX.F") (i.e.Z = Ax.F with Va
[F] =F). SoF' [V'IX] = Va [F1[V'/X]= Ya [F[V/A]] (Lemma 14) and fromz [F[V/IX]] O
push, X we deduce by induction hypothesis that therd such thatva [N] = push, X. 0O

Call-by-value reduction is described by the following natural operational semantic¥/(with
andN normal forms):

EL v \MF E, ;o V. FIVIX] o N
00000000000000000
E,E an N

The proof of Property 3 is on the shape of the reduction trees.
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Axioms.

(O) If Eis not reducible it is of the forax.F (E is closed) and/a [Ax.F] = push, (AX. Vs
[F1) which is not reducible.

(O) If 7a [E] is not reducible thei is of the formAx.F. Indeed, sinc& is closed, the
only alternative would b& = (Ax.F) E; ... E, but then?s [E] would be reducible (there
would be the redepush; (Ax.7a [F]) o app). SoE is not reducible.

Induction.

(O) Eisreducible, thatig€s=E; E, E; w AXF, E, & VandF[V/X] . N. By induc-
tion hypothesis, we havis [E;]1 O 72 [AX.F], va [E;] O v [V] and Y& [F[VIX] O

Va [N]. Since V is closedVa [V] = push,V'and, by Lemma 144 [F]I[V'/X] = Vs
[FIVIX] 1, we have Vs [E,] O push, V', Va [E;] oapp O AXx.%a [Fland va [FI1[V /X
O 7 [N] therefore, Va [E; E;] = Va [E;] o ¥4 [E;] oapp %a [N].

(O) 9% [E] is reducible, that isSE =E; E; and?s [E] O N'. Since?s [E] is well-typed
(Property 13), the reduction tree must be of the fotnfE;] O push, V', 94 [E;] O
push, AXF) and F'[V'/X] O N'. By Lemma 15 we know that thereN&such thatvs [V] =
pushV', Z such thatVa [Z] = pushy (Ax.F), (i.e.Z=Ax.Fwith 94 [F] =F’) andN such
that 72 [N] =N'.So, by induction hypothesi§; .» AX.F, E;, & V. By Lemma 1414
[F1IV'/X] = va [F[VIX]] and, by induction hypothesi§[V/X] « N, thusE . N. O

The proofs for the othergand A transformations are similar

f. Variants of 7

The transformationVs_ which implements a describing left-to-right call-by-value is ex-
pressed as$u except the rule for application which becomes

Va [EL E)l = Vo [E{] o Vs [E,] oapp, with app, = AXAd.pushyxof
This compilation choice is taken by the Cam [10].

Transformations/z and 7a_may produce expressions suclpash, E; o push,E, o...0
push E, o .... The reduction of such expressions requires a structure (such as a stack) capa-
ble of storing an arbitrary number of intermediate results. Some implementations (such as
the SML-NJ compiler [2]) make the choice of not using a data stack and, therefore, disallow
several pushes in a row. In this case, the rule for applicatiotig should be changed into

Vi [E; E5] = ¥y [Ed o AWy [E] om)

Reading the transformation rules as grammar rules, it is cleat/ihagéver produces
expressions where twmush, occur in a row (such gaushg A o pushg B). For these expres-
sions, the component on whiplish, andA4 act may be a single register. Another possible
motivation for this style of transformation (called stackless) is that the produced expressions
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now possess a unique redex throughout the reduction. The reduction sequence must be se-
quential and is unique.

The two variationsls, and Vs are easily derived from¥z using conversions rules and
algebraic laws.

0. Variant of Aa

Like 7/, transformatiom@ may produce expressions suclpash E; o ...o push, E,,which
require a stack to store intermediate results. To get a stackless varianttef rule for
compositions should be changed into:

Naf [E. E)] = push (9\[af [E)]) o ()\sa.ﬁ\[af [Ei] o (Af.push;aof))

With this variant, the component on whighish,andA act may be a single register.

h. The combinatograbg and the marle can be defined ing much in the same way that
conditional expressions can be defined in pucalculus. A possibility is:

grabg E = push E o AxA(mV).push, (pushy(i,X)) o push (pushsvo x)) om

Each argument is associated with a mark in a pair. The preaNgx.Ay.x selects the first
alternative (apply the functiof) whereag = (AXAY.y,id) is a mark (associated with a
dummy functiorid) selecting the second alternative (yiglds result). It is obviously much
more efficient to implememgrab, using the predefined conditional operator provided by the
target machine.

I. Variants of Vi

For call-by-value, a generic transformation using marks can be described as follows :

Vg [X] = XX
Ving [AE] = 9 (\x. Vi [E])
Vmg [Eq E5] = pushy€ o Vimg [E;] o Ving [Eq]
X,Yandz being combinators such that 9=XoZz
push, € 0 %(E) O pushy Z(E)
and push;Vo9(E) O pushVoE

Figure 22 Generic Compilation of Right-to-Left Call-by-Value with Marks (fVmg)
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We get backVm by takingy=x=grab, andz=id. The second “canonical” transformation
(see [32] page 27) i8m with 9=Z=grab, andx=id (i.e. the reduction rule @frabg, is re-
cursive). By making all thgrabg explicit in the coded/m permits more simplifications than
the alternative. For example,

YV [(AXX X AY.E)] = push, Ay.Vm[E]) o (AX.pushsXo X)

(one mark&rabg has been simplified), whereas the other transformation
yields push, (grabg (Ay.¥m’[E])) o (AX.pushs€ o x 0 X) andgrab,, would be executed
twice.

j. Relationship with CPS Conversion

Since CPS expressions have only gne redex throughout the reduction, the closest transfor-
mations are the stackless ones (V@.m and?\[af@ ). Indeed, if we take the definitions

(DEF1) AXX =ACAXXC push,N=Ac.c N o=AaAbAc.a(b

(which satisfy (assoc)p(), and () we can rewritels as follows:

Va [X] = pushyx=Ac.c X (DEF1)
Va [AX.E] = push, AX.Vi%[E]) = Ac.c A\cAX. Vs [E] ©) (DEF1)
Vg [Eq Bl = Ac. Vo [Eq] (Amy. Vg [E5] (Amp.my € 1)) (DEF1), ()

which is exactly Fischer’'s CPS transformation [21].

As far as types are concerned we saw tHat if then?s [E] : ROwithc - T=0 -
RJ anda = o. We recognize CPS types by givingRigand - ¢ the meanings:

Ro=(0c - Ang - Ans and 0 - RI=(T - Ang - 0 - Ans

Ans being the distinguished type of answers. Note that if n-ary functions are allowed we
should add the rule - (T - Ang - v=(T - AN - 0 - U

K. An inversion transformation for Ngexpressions

As for CPS-expressions [15], it is also possible to design an inverse transformation. The
transformation [J* (Figure 23) can be seen as a generic decompilation transformation and
it is easy to show by structural induction that

Property 16 For all A-expression E[C [E]] = E (for C= 14, 14, 14, A&, A&, An)

Note that the transformation [Jis just a left inverse. In order to get a true inverse
transformation, the domain of [} should be restricted to the expressions encoding an eval-
uation strategy.
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[17%:A = A
[X] 1=x [push, E] * = [E]
[AxE] = Ax [E] [E,0 )l 1=[E)] 1[E;] *

Figure 23 Back toA-expressions

|. Proof of Property 7

Call-by-name reduction is described by the following natural operational semantics:

E, - AxF FIE,/X]
DD“‘BDDDDDDDDD@D N normal form
E,E, —N

The proof of Property 7 is on the shape of the reduction trees. We need two lemmas.

Lemma 17 GI[E] oAX.GIF]l = GIFIl GLEV pushX]

The condition (ondG) insures thatG[E] = pushy V. So, G[E] o AX.G[F] = GIF][ V/X].
Using the definition of; (Figure 8), it is easy to check that a free varial@éan expression
GLE] occurs only apushyx. So,G[F][ V/X]= G[FI[ push, V/ push,x] = G[FI[ GIE)
push x].

Moreover, using (L5), it is easy to prove by structural induction that
Lemma 18 G[E][ GIEV push,X] = G[Ey[ EX]]
Axioms.

If Eis not reducible, it is of the forax.F (E is closed). We have thé&he V and the property
is trivially verified.

Induction.

If Eis reducible, that i€ =E, E; E;  AxFandF[E,/x] - N.By induction hypothesis,
we haveG[E;] o unwindg = G[AX.F] o unwindg and G[F[E,/X]] o unwindg = G[N] o un-
wind, SoG[E; E;] o unwmd = GlE] o g[E]] o MKApp ;o unwindg

= G[E4 0 G[Ey] o unwind, (G7i3)
= GIE;] o G[AX.F] o unwindg induction hypothesis
= GI[E,] o pushyAx.G[F]) o mkFungo unwindg (def. G)

= (G[E2l 0 Ax.G[F]) o unwind, (GNri2)
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= (GIFIl GIE) push;X]) o unwind, (Lemma 17)
= (GIF[ Ex//A) ounwind, (Lemma 18)
= G[N] o unwindg induction hypothesis [

M. Proof of Property 8

In order to provepush,() o As[E] () = E, we prove by induction the more general property:
push.po 4s[E] p=E with p = (...(0:X)-- %) and FVE)= {Xg,... X}

where FVE) is the set of free variables Bf

We will make use of the fact that, if FE( O p thenAs[E] p is closed (easy to check).
Note also that it is important that the expres$ion E, is well-typed since we use law (L3)
which relies on types.

. EE E10E2
push, p o 4s[E; 0 E;] p = push, p o dupl, o 4s[E;] p o swap,.0 4s[E)] p
= pushe p o (pushe p o As[E4] p) o Ax-Ace.push x o push €0 As[E;] p(BY).(Be)

=push, p o E; o AXAepush,xopush,eo 4s[E;] p by induction hypothesis

=Ejopushepo As[E)] p (L3).(Be). (N9
=E,0E, by induction hypothesis
« E=pushV

push, p o 4s[push, V] p =push, p o push (As[V] p) o mkclos

= pushy (push, p 0 5[ V] p]) mkclosdef, (39),(Be)
=push,V by induction hypothesis
« E=AXF

push, p o As[AX.F] p = push, p o bind o As[F] (p.xX)

= push, p o AgeAy.push, (ey) o As[F] (p.X) bind def.
= push, p o AgeAx.push, (X) o As[F] (p,X) As[F1(p,X) closed anddy)
= Axpushe (px) o As[F] (p.X) (Be)

=AXF by induction hypothesis
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« E=x
push, p o As[x] p =push, p o accesso appclos with p =(...(0.X))--- %)
= push, x; o appclos accesslef,(By),(Bo)
=x; appclosdef., (By) O

N. 4c3 abstraction algorithm

This refinement consists in copying the environment only when building closures. In order
to be able to add new bindings after closure opening, a local enviroppriemteeded.

When a closure is built, the concatenation of the two specialized environmentg, § is

copied. The code for variables has now to specify which environment is accessed. Although
the transformation scheme remains similar, every rule must be redefined to take into account
the two environments.

Ac3[E; 0 E)] pL pg =dupl2, 0 Ac3[E;] p. pgoSwap2.o Ac3[E,] p. Ps
Ac3[pushs E] p. pg = Copy2(pe++p,) o pushypushe () 0 A3[E] () p++Pg) o mkelos
Ac3[AX-E] p. pg = mkbind2 o Ac3[E] p. (Pe.X)
Ac3[x] (...((PLX)X.1)---Xo) P = getlocalo accesso appclos
Ac3[x] pL (---((Pe:X) %) - --Xo) = getglobalo accesso appclos
with  dupl2, = A8 .A&,.push, & o push, g o push, g o push. g
SWapZe = AX.A8-A&yPUshs X o push, g o push,
mkbind2 =A8.Ag;.AX.push, g o pushs x o push, o mkbind

getlocal=A.g.A&;.push, g getglobal= A8 A8, push, &

Figure 24 Abstraction with Local Environments (4¢3 Abstraction)

Local environments are not compatible with : 4c3[grabg E] would generate two
different versions ofdic3[E] sinceE may appear in a closure or may be applied. This code
duplication is obviously not realistic.
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0. A family of abstractions algorithms

Starting from different properties, a large family of abstractions can be derived4from
These transformations introduce indexed combinators (which are generalizations of previ-
ous combinators) and use the arity notion.

Definition 19 An expression E of tygg - ... - 0,,—~ R0 is said to have arity n.

We present here only tlipl-less transformatioriy, which suppresses the occurrences of
dupl,in Ag[E; o E;] . Duplications are postponed until really needed (in closure building or
opening) Ay, is derived from the equation

Ag4[El p = copy, 0 49[E] p (n arity of E)

Note thattopy, = AeAX;...AX,.push, eopushy x, 0... opushy x; opush, eis a generalized
form of dupl,, (copy, = dupl,). This abstraction algorithm exploits the sequencing encoded
in compositions. Instead of saving and restoring the environment gg§) oE,] ), it is

passed td&; which may add new bindings but has to remove them before passing the envi-
ronment toE,.

Agy : Ns » €NV Ng

g3 [E; 0E)l p = Ag4 [E4] poswapeo Ag4 [Eo] p
Agq [pushs E] p = push (Ag; [E] p o pop) omkclosy
Agq [AX.E] p = mkbind o444 [E] (p.X) o brkbind

Agg [%1 (... ((P:X)%;.1) - - Xo) = COpY, o accessoappclos (n arity of x)

Figure 25 “Dupl-less” abstraction algorithm (Ag,)

In the first rule, following the evaluation gz, [E,] , the unique current environment is
threaded toAg [E;] with the help ofswap,, The second rule builds a closure (usink-
closy), duplicating the current environment. The abstraction rule adds (uingd) an ar-
gument to the environment then removes it (usiridpind ). Finally, the last rule saves the
environment (usingopy,), before calling the closure. We do not give here the definitions of
the new combinatorgop, mkclos; andbrkbind ; they emerge naturally during the deriva-
tion process. This transformation can be used with shared or copied environments. It can
change the depth of the environment stack needed to reduce an expression by an order of
magnitude. For example, B = (...(X, 0X.1)... 0X,) 0X4, the depth of the environment stack
will be n for 4¢[E] p and 1 for 444 [E] p.

As with the other derived abstractions, g abstraction is correct by construction. To
illustrate howAg, is derived fromdy, let us take the rule for compositions
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Ag4[E; 0E;] p =copy, 0 A7[E; oE;] p (Agq4 property)
= copy, o (duple0 A7 [E;] p oswap.0 A7[E,] p) (unfolding)
= copy, 0 Ag[E(] p oswap,.ocopy,.; 0 A7[E>] p (copy,, dupl,, swap,, definitions)
= Ag4[E4] p oswap,04g4[E)l p (folding, E, is O-ary andE, is n+1-ary)

This technique allows us to derive realistic abstraction algorithms, where indexed com-
binators can mimic real stack-machine instructions. In order to compare these different op-
tions it would be imperative to determine the cost of each indexed combinator. According to
their definition and the components instantiation, some indexed combinators have a constant
cost. For exampleopy, boils down todupl whens ande are distinct components and a
combinatorflush, = A;...AX,.push, X, would be implemented as a single instruction on a
stack machine.

It is as easy to define swap-lesgf, mkbind-less {g,), mkclos-less 4y, variations
or any combination of these [17]. Some of these algorithms can be specialized for shared
and copied environments; some are suited to a specific choice. Let us mention Tim [20]
which uses a mkclos-less variationfff and Tabac [22] which integrates a dupl-less, swap-
less, mkbind-less variation gf-2.

P. Recursion
The rewriting rule fory gis
push,F oY O push(push,FoY)oF

A naive way to compile thg-reduction for the fixpoint operator is to build a closure at
each recursive call (a recursive function can have free variables and a closure must be built).
This option can be described by the combinaowith the rewriting rule

push,eopush;FoY,
O push, e o (push, e o push, (push, F o Y,) o mkclos) o F

This solution builds at each call a closure of the functmuslif, e o push, (pushy F o
Yo) o mkclos) which is added to the current environment. Recursive calls access these clo-
sures and execute them using a sequence of code disthv asdo appclos

As the same closure (i.e. same code and environment) is built at each recursive call, a
first refinement is to build a circular environmeYif.must manipulate directly the store to
create a cycle. Recall that the source fixpoint operator is of theléten f= E, the corre-
sponding/\g-expression is of the formpush (Af.E) o Y and therefore thé-expression is
of the formpush, (mkbind o E) o Y. The rewriting rule off, becomes

push, e o push, (mkbind 0o E) 0 Y, O envo E
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with env= push, e o (push, envo push, E o mkclos) o mkbind

The closuredush, envo push, E o mkclos) is built only once for each series of recur-
sive calls (note that the initiahkbind has been suppressed). The circular environemnt
of this closure is made of the environment of the recursive function and the closure itself.
When accessing the closure, circularity makes the code reinstall the enviremwént
free.

A second refinement used in environment based machines is to implement recursive
calls to statically known functions by a jump to their address. It is sufficient to replace a re-
cursive callfst o sndo appclosby fst' o E. A recursive call is not anymore the evaluation of
a closure, but consists in installing the environment (i.e. the free variables) of the function
(fst') and calling its codeH). Of course, in order to get a real code machine, this call should
be implemented by a jump to a label. With this solution, recursive functions appear in clo-
sures only when they are passed as argument.



