
Higher-Order Chemistry∗

Jean-Pierre Banâtre, Pascal Fradet and Yann Radenac

IRISA
Campus Universitaire de Beaulieu
Avenue du Général Leclerc
35042 RENNES Cedex - France

email: {Jean-Pierre.Banatre,Pascal.Fradet,Yann.Radenac}@irisa.fr

Abstract

Gamma is a formalism in which programs are expressed in terms of
multiset rewriting often referred as the Chemical Reaction Model. In this
paper we are concerned with higher-order Gamma programming. First
we review three proposals which introduce the notion of membrane and
higher order facilities. Finally, we propose a higher-order Gamma which
allows the definition of γ-abstractions (in the same sense as λ-abstractions
in the λ-calculus) which are considered as first class citizens.

1 Introduction

Gamma was originally proposed as a formalism for the construction of
programs without artificial sequentiality [2]. Computation is described as
a kind of chemical reaction operating on a collection of data. A Gamma
program is a pair (Reaction condition, Action). Execution proceeds by
replacing in the multiset elements satisfying the reaction condition by the
product of the action. The result is considered as obtained when a stable
state is reached, meaning that no more reactions can occur. Let us take a
traditional example which illustrates the Gamma style of programming:

max : x, y → y ⇐ x ≤ y

x ≤ y specifies the reaction condition which must be fulfilled by the se-
lected elements x and y. This program describes a computation where
two arbitrary integers x and y are selected and rewritten into the greatest
one. The computation terminates when only one element remains in the
multiset. Nothing is said about the order of evaluation of the comparisons.

∗Prepared for the MolCoNet Workshop on Membrane Computing (WMC) – Tarragona –
July 2003

1

If several disjoint pairs of elements fulfill the condition, the reaction can
be performed simultaneously, thus providing a lot of potential parallelism.

Much work has been devoted to the exploiting of Gamma in various
directions ; overviews can be found in [3, 1].

In a first step, we review some contributions concerned with hierarchies
of communicating multisets and higher-order multiset processing: (1) the
Chemical abstract machine (or Cham) which was proposed by Berry and
Boudol [4, 5] to describe operational semantics of process calculi extends
the original Gamma model with the notion of membrane for the descrip-
tion of nested interacting multisets, and (2) two extensions of Gamma
to higher-order multiset programming models. The first one, proposed
by Le Métayer [7], introduces the notion of configuration which is a pro-
gram operating on a record of named multisets. The second proposal [6]
provides a unified view of data and computation within a multiset. In a
second step, this paper describes ongoing work on higher-order Gamma.
It investigates the way of incorporating “gamma programs” as potentially
reacting data in a multiset. This necessitates the precise definition of
a program as a first class citizen and leads to the exploration of a new
Gamma which captures the notion of γ-abstraction and chemical reaction.

2 The chemical abstract machine

The chemical abstract machine (or Cham) was proposed by Berry and
Boudol [4] to describe the operational semantics of process calculi. The
most important additions to Gamma are the notions of membrane and
airlock mechanism. Membranes are used to encapsulate solutions and to
force reactions to occur locally. In terms of multisets, a membrane can be
used to introduce multiset of molecules inside a multiset that is to say “to
transform a solution into a single molecule” [5]. The airlock mechanism
is used to describe communications between an encapsulated solution and
its environment. The reversible airlock operator / extracts an element m
of a solution {m, m1, . . . , mn}:

{m, m1, . . . , mn}
 {m / {m1, . . . , mn}}

The new molecule can react as a whole while the sub-solution {m1, . . . , mn}
is allowed to continue its internal reactions. So the main rôle of the air-
lock is to allow one molecule to be visible from outside the membrane and
thus to take part in a reaction in the embedding solution. The need for
membranes and airlocks emerged from the description of CCS [8] in Cham
and especially the treatment of the restriction operation (which limits the
communication capabilities of a process to labels different from a particu-
lar value). The computation rules of the Cham are classified into general
laws and two classes of rules:

• The general laws include the chemical law and the membrane law:

S → S′

S + S” → S′ + S”

S → S′

{C[S]} → {C[S′]}

2

The former shows that reactions can be performed freely within any
solution, which captures the locality principle. The latter allows
reactions to take place within a membrane (C[S] denotes any context
of a solution S).

• The first class of rules corresponds to the proper reaction rules. The
definition of a specific Cham requires the specification of a syntax
for molecules and the associated reaction rules. As an example,
molecules can be CCS processes and the rule corresponding to com-
munication in CCS would be:

α.P, α.Q 7→ P, Q

• The second kind of rules are called structural and they are reversible.
They can be decomposed into two inverse relations ⇀ and ⇁ called
respectively heating and cooling rules. The first ones break complex
molecules into smaller ones, preparing them for future reactions, and
the second ones rebuild heavy molecules from light ones. Continuing
the CCS example, we have the structural rule:

(P | Q)
 P, Q

where | is the CCS parallel composition operator.

The Cham was used in [4] to define the semantics of various process
calculi (TCCS, Milner’s π-calculus of mobile processes) and a concurrent
λ-calculus. A Cham for the call-by-need reduction strategy of λ-calculus
is defined in [5].

3 Higher-Order Multiset Programming

An approach for the introduction of composition operators in a language
consists in providing a way for the programmer to define them as higher-
order programs. This is the traditional view in the functional program-
ming area and it requires to be able to manipulate programs as ordinary
data. This is the approach followed in [7] which proposes a higher-order
version of Gamma. The definition of Gamma used so far involves two
different kinds of terms: the programs and the multisets. The multiset
is the only data structure and programs are described as collections of
pairs (Reaction Condition, Action). The main extension of higher-order
Gamma consists in unifying these two categories of expressions into a sin-
gle notion of configuration. One important consequence of this approach
is that active configurations may now occur inside multisets and reactions
can take place (simultaneously) at different levels. Thus two conditions
must be satisfied for a simple program to terminate: no tuple of elements
satisfies the reaction condition and the multiset does not contain active
elements.

A configuration is denoted:

[Prog, V ar1 = Multexp1, . . . , V arn = Multexpn]

It consists of a (possibly empty) program Prog and a record of named mul-
tisets V ari. A configuration with an empty program component is called

3

passive, otherwise it is active. The record component of the configuration
can be seen as the environment of the program. Each component of the
environment is a typed multiset. Simple programs extract elements from
these multisets and produce new elements. A stable component Multexpi

of a configuration C can be obtained as the result of C.V ari.
The operational semantics is essentially extended with the following

rules to capture the higher-order features:

X → X ′

{X} ⊕M → {X ′} ⊕M

Mk → M ′
k

[P, . . . V ark = Mk, . . .] → [P, . . . V ark = M ′
k, . . .]

The first and the second rule respectively account for the computation
of active configurations inside multisets and for the transformation of
multisets containing active configurations inside a configuration. Note
that these rules are very similar to the chemical law and the membrane
law of the Cham (section 2).

Let us take one example to illustrate the expressive power provided by
this extension. The application of the sequential composition operator to
simple programs can be defined in higher-order Gamma, and thus does
not need to be included as a primitive. (P2 ◦ P1)(M0) is defined by the
following configuration:

[Q, E1 = {[P1, M = M0]}, E2 = Ø].E2

where Q = [Ø, M = M1] : E1 → [P2, M = M1] : E2

E1 is a multiset containing the active configuration [P1, M = M0] ini-
tially. Note that Q reactions only apply to passive values of E1 which
means that M1 must be a stable state for P1. Then the new active config-
uration [P2, M = M1] is inserted into E2 and the computation of P2 can
start. When a stable state is obtained, it is extracted from the top-level
configuration through the access operation denoted by .E2.

[7] shows how other useful combining forms can be defined in higher-
order Gamma (including the chemical abstract machine). It is also possi-
ble to express more sophisticated control strategies such as the scan vector
model suitable for execution on fine-grained parallel machines.

However, configurations still make a strong difference between data
and computation. In reaction to [7], another proposal [6] does not distin-
guish data and programs within a multiset. Along these lines, Cohen and
Muylaert-Filho define a higher-order calculus, called hmm-calculus, which
considers the one-shot chemical reaction as its basic computational com-
ponent. They investigate a translation of the λ-calculus into their model.
In order to reach the expressing power of the original Gamma model, they
introduce a Y combinator which allows the “recursive” application of a
reaction. This model is used to express Le Métayer’s higher-order calculus
and different Gamma composition operators.

The interesting contribution of this work is the recognition of the one-
shot chemical reaction as the basic constituent of the model.

4

4 Towards a Higher-Order Gamma

Our present work aims at providing a higher-order Gamma where the exe-
cution of a program can be seen as the evolution of a solution of molecules,
which can be simple data or programs (γ-abstractions), which react until
the solution becomes inert.

4.1 Syntax

Molecules (or γ-expressions) are constants, γ-abstractions, multisets or
solutions of molecules. Their syntax is defined as follows:

M ::= 0 | 1 | . . . | ′a′ | ′b′ | . . . ; constants
| γP bCc.M ; γ-abstraction
| M1, M2 ; multiset
| 〈M〉 ; solution

The multiset constructor “,” is associative and commutative. For exam-
ple, the molecule (1, (2, 1)) represents a multiset of three integers and is
equivalent by Brownian motion (i.e. Associative and Commutative rules)
to (2, (1, 1)).

Solutions encapsulate molecules. Molecules can move (Brownian mo-
tion) within solutions but not across solutions. For example, (1, 〈2, 1〉) is
equivalent to (1, 〈1, 2〉) but not to (2, 〈1, 1〉) nor to (1, (2, 1)).

Just like integers and other constants, γ-abstractions are elements of
multisets. They are specified using a pattern P , a condition C and a
product M . For example, a γ-abstraction selecting the greatest of two
integers is written

γ(x : Int, y : Int)bx ≥ yc.x

4.2 Semantics

Equivalence of γ-expressions

Equivalence on γ-terms is defined using three axioms and one inference
rule.

(γpbcc.m1), m2 = φm1 if match(p/m2) = φ ∧ φc ; γ-conversion
m1, m2 = m2, m1 ; commutativity
m1, (m2, m3) = (m1, m2), m3 ; associativity
E1 = E2 ⇒ E[E1] = E[E2] ; chemical law

The γ-conversion describes the reaction mechanism. A reaction takes
place if the pattern p matches a molecule m2 and yields a substitution
φ such that the condition φc holds. The reaction consumes the reactive
molecules γpbcc.m1 and m2 to produce a new molecule φm1.

The pattern has the following syntax:

p ::= x | p, p | 〈p〉

where x is any variable. If the matching succeeds, match(p/m) returns
the substitution corresponding to the unification of variables, otherwise it

5

returns fail. For example, match(x, y/m1, m2) = φ and then φ(x) = m1

and φ(y) = m2, but match(x, y/a) = fail and match(〈x : Int〉/〈5, 2〉) =
fail.

The structural laws are summarized in the so-called chemical law which
formalizes locality of reactions. It is defined using the notion of context
E[] which is a molecule with “holes” (denoted by []) in it.

E[] ::= [] | constant | γP bCc.M | E1[], E2[] | 〈E[]〉

E[E1] denotes the molecule obtained by replacing holes in the context E[]
by the molecule E1.

A molecule is said to be inert if no reaction can be made within.
Formally:

Inert(m) ⇔ (m ≡ m′[(γpbcc.m1), m2] ⇒ match(p/m2) = fail)

Elements inside a solution can be matched only if the solution is inert. So
a pattern 〈p〉 cannot match an active solution. Formally:

∀p, m ¬Inert(m) ⇒ match(〈p〉/m) = fail

The fact that solutions cannot be decomposed before they reach their
normal form permits to control (sequentialize) reactions.

Chemical reactions by reductions

Reactions are represented by γ-reductions:

(γpbcc.m1), m2 → φm1 if match(p/m2) = φ ∧ φc ; γ-reduction

Final results (or normal forms) of chemical reactions are inert γ-expressions.
The structural rules are summarized into the following inference rule

E1 → E2 E ≡ C[E1] E′ ≡ C[E2]

E → E′

For example, consider the γ-abstraction

inc = γ(f : (•, •) → ∗, 〈x〉).f, f, 〈x + 1〉

where the notation (•, •) → ∗ represents the type of a γ-abstraction taking
two basic elements (a basic element can be everything except a multiset)
as argument and produces a molecule of any type. The program:

(γ(f, f, 〈n〉).n), inc, inc, 〈0〉

can be shown equivalent to any integer. The second γ-abstraction (inc)
can produce any integer n (in n reaction steps). The first γ-abstraction
can extract the integer and remove the other γ-abstractions at any step.

Repeated application of a γ-abstraction γpbcc.a can be encoded as
follows. The abstraction is written as

F = γ(f : ∗ → ∗, p)bcc.f, f, a

6

Then assuming (at least) two instances of F (whose type is different from
the other elements of the multiset) F will duplicate itself when it reacts.
Let X be a molecule such that match(p/X) = φ then:

(F, F, X) → (F, F, φa)

A classic way of extending a kernel language is to apply the so-called
abstraction principle: Every syntactic expression can be named. This
principle, that amounts to introducing declarations in the language, can
be used to define recursive molecules. The syntax of molecules is extended
with a let construct.

M ::= . . .
| let m = M1 in M2 ; definition
| m with m ∈ Identifiers ; invocation

The recursive γ-abstraction inc above can now be written

let inc = γ〈x〉.inc, 〈x + 1〉 in (inc, 〈1〉)

Declarations are just convenient syntactic sugar. It is easy to translate
them into pure γ-expressions.

Yet other ways of computing the Maximum

There are several ways to compute the maximum of a multiset of integers:

• Each integer i can be represented by two elements : the integer and
a function selecting the maximum out of two integers:

i and max = γ(x : Int, y : Int)bx ≥ yc.x

Let M a multiset of such pairs, the maximum is:

parsup = (γ〈f, x : Int〉.x), 〈M〉

The remaining function is extracted when the stable solution con-
taining the maximum has been reached.

• We may also define the maximum using a recursive γ-abstraction.
Let M a multiset of integers, the maximum is:

let recmax = γ(x : Int, y : Int)bx ≥ yc.recmax, x in
(γ〈f, x : int〉.x), 〈recmax, M〉

This definition does not impose any specific order but is not explicitly
parallel. However, it can be implemented in parallel. It can be
shown that such replicating γ-abstractions are inherently parallel.
They can be applied to any number of matching molecules at each
reduction step.

• Sequences can be represented by nested solutions e.g. 〈1, 〈2, . . .〉〉.
The maximum of such a sequence M can be implemented by a re-
cursive definition

let itmax = γ〈x, 〈s〉〉.itmax, 〈max, x, s〉 in (γ〈f, 〈x〉〉.x), 〈itmax, M〉

7

These various solutions illustrate the flexibility and the power of expres-
sion of the proposed model. It is possible to express solutions without
introducing any artificial constraints; however, if required, it is always
possible to constrain the execution flow by introducing a hierarchy of so-
lutions.

5 Conclusion

The presented approach provides a new “vision” of Gamma programs
which can be considered as pure multiset rewriting. There is no more dis-
tinction between the set of rewriting rules describing the computation and
the data multiset. They are combined within a unique multiset contain-
ing only molecules which can be traditional data as well as computations
(γ-abstractions). Control on the computation can be expressed by appro-
priate nesting of solutions.

References

[1] Jean-Pierre Banâtre, Pascal Fradet, and Daniel Le Métayer. Gamma
and the chemical reaction model: Fifteen years after. In Multiset
Processing, LNCS 2235, pp. 17–44. Springer-Verlag, 2001.

[2] Jean-Pierre Banâtre and Daniel Le Métayer, Programming by
multiset transformation. Communications of the ACM (CACM),
36(1):98–111, 1993.

[3] Jean-Pierre Banâtre and Daniel Le Métayer, Gamma and the chem-
ical reaction model: ten years after. In Coordination programming:
mechanisms, models and semantics, pp. 1–9, 1996.

[4] G. Berry and G. Boudol, The chemical abstract machine, Theoreti-
cal Computer Science, Vol. 96, pp. 217–248, 1992.

[5] G. Boudol, Some chemical abstract machines, in Proc. of the work-
shop on A decade of concurrency, 1994, Springer Verlag, LNCS 803,
pp. 92–123.

[6] D. Cohen and J. Muylaert-Filho, Introducing a calculus for higher-
order multiset programming, in Proc. Coordination’96 Conference,
LNCS 1061, pp. 124–141, 1996.

[7] D. Le Métayer, Higher-order multiset programming, in Proc. of the
DIMACS workshop on specifications of parallel algorithms, Ameri-
can Mathematical Society, Dimacs series in Discrete Mathematics,
Vol. 18, 1994.

[8] R. Milner, Communication and concurrency, International Series in
Computer Science, Prentice Hall, Englewood Cliffs, NJ, 1989.

8

