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Abstract

A Network-on-Chip (NoC) is increasingly needed to interconnect the large number and variety of Intellectual
Property (IP) cells that make up a System-on-Chip (SoC). The network must be able to communicate
between cells in different clock domains, and do so with minimal space, power, and latency overhead. In
this paper, we describe an asynchronous NoC using an elastic-flow protocol, and methods of automatically
generating a topology and router placement. We use the communication profile of the SoC design to drive
the binary-tree topology creation and the physical placement of routers, and a force-directed approach to
determine router locations. The nature of elastic-flow removes the need for large router buffers, and thus
we gain a significant power and space advantage compared to traditional NoCs. Additionally, our network
is deadlock-free, and paths have bounded worst-case communication latencies.
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1 Introduction

As process scaling continues, more complex designs can be fit on a System-on-Chip

(SoC). The design difficulty of SoCs is increasing with multiple clock domains and

intellectual property (IP) components integrated in one design. A Network-on-Chip

(NoC) is a solution for the increasing communication complexity, which has made

traditional point-to-point and bus interconnects less feasible [2,5].

Globally asynchronous, locally synchronous (GALS) communication is an answer

to the problem of maintaining a low-skew global clock signal across a large SoC.
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In GALS, communication is asynchronous between isolated synchronous domains.

The overarching NoC communication structure is a natural design space in which

to include GALS principles, with recent implementations showing promise [3,13].

The design space of a NoC is very large, and includes topology choice (mesh,

torus, star, etc.), circuit switched or packet switched, and other parameters (link

widths, frequency, etc.). Because the traffic patterns of most SoCs can be known,

a custom generated network topology and physical placement of components yields

better performance and power than a regular-pattern network [10]. A NoC’s buffers

and links can consume near 75% of the total NoC power [15], thus there is significant

benefit to optimizing buffer size, link length and bandwidth of a NoC design.

In this work, we present an asynchronous NoC using an elastic channel protocol,

which offers a number of advantages over traditional NoC elements. We then present

a workflow for automatic network topology generation and router placement. We

use heuristic algorithms, but an optimal mixed integer linear programming method

can be used [17], at the sacrifice of scalability. We use the communication charac-

terization of a design to drive the topology generation, router placement and link

bandwidth matching.

We use an example design to illustrate our methods throughout this paper. The

example design consists of six soft-IP blocks and specified communication paths. We

assume a characterization of these paths can be derived from the expected traffic

patterns.

Our paper is organized as follows. Section 2 describes our novel network com-

ponents and our elastic-channel protocol. Section 3 specifies the analysis needed to

synthesize an efficient network. Sections 4 and 5 explain our algorithms for de-

termining routing topology and network component placement. Finally, Section 6

presents our conclusion.
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Fig. 1. Sender and receiver connected by Elastic Channel

2 Network Components

Our network fabric is based on latency insensitive protocols. Latency Insensitive or

elastic system design are an adaption of asynchronous handshake protocols to the

clocked domain. These protocols allow extra pipeline delays to be inserted into a

datapath without changing the results of the computation. Elastic systems are just

like clocked systems in that they consist of a collection of modules and channels.

However, the elastic communication channels have two control wires, valid and

stall, analogous to request and acknowledge, that implement a handshake between

the sender and receiver. Figure 1 shows a clocked sender and receiver module

communicating across an elastic channel. valid propagates in the same direction as
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Fig. 2. Elastic Channel Protocol, state: {v s}
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Fig. 3. Interleaved Elastic Channel Protocol,
state: {v s}

the data, and stall travels in the opposite direction.

Design performance, complexity, and applications are determined by the channel

protocol employed. We have chosen a protocol similar to the Synchronous Elastic

Flow (SELF) channel protocol [4] shown in Figure 2. This synchronous protocol was

targeted to add elasticity to the design with zero overhead to the clock frequency.

We have completed the initial development of a complementary new phase channel

protocol (pSELF) shown in Figure 3. Both protocols are idle in the ‘I’ state, actively

transfer data each cycle in the ‘X’ state, are stalled in the ‘S’ state. Each of these

states are labeled with the values of the valid and stall signals. This new protocol

has similar performance and design benefits of the original protocol but better

interoperability since it is compatible with both asynchronous handshake protocols

and cycle based clocked designs. We have also targeted our phase based design to

network topologies where logic repipelining is not needed. Therefore the two latches

in the flop-flops of a traditional clocked design can be broken into two independent

latches in the network topology separated by long communication links.

The network fabric in this work uses design targets that differ significantly from

other Network on Chip (NoC) designs, including: a) A non-redundant network

topology. b) No multi-segment packets – each transmission is a single data word

containing all necessary routing information. c) Simple high throughput network

routers and buffers. d) Both clocked and fully asynchronous realizations of the NoC

fabric. This produces a fabric that has ultra low latency, high throughput, and a

static worst case latency for all transmissions (assuming sufficient buffering exists in

the network interfaces). Bidirectional network links consist of two elastic channels

transmitting data in opposite directions.

Latency insensitive network fabrics can be implemented using two components:

a phase elastic half buffer (pEHB) shown in Figure 4, and a binary routing buffer,

or ⊤ element. The router consists of three pEHB’s, three data muxes, and three

data merge components. The pEHB’s provide buffering on the three outgoing chan-

nels. The muxes steer data on incoming channels to one of the other two outgoing

channels. The merge elements allow each of the outgoing channels to be shared the

other two incoming arms in the ⊤. Fair arbitration protocols are used between the

incoming channels for both the clocked and asynchronous designs. See [18] for more

details on the design of the network hardware and a characterization of the network

fabric performance.

The most important properties of the network fabric are bandwidth, latency, and

power. These are all directly proportional to the topology and placement chosen for

the fabric. Latency in a clocked network will be equivalent in cycles to the number

of buffers on a path between the sender and receiver - be they routers or elastic half
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Fig. 4. A phase Elastic Half Buffer (pEHB)

buffers. Since buffers must all be evenly spaced on the network fabric in a clocked

design the total wire distance will determine the number of hops in the network -

not number of routing decisions required. Bandwidth is independent of the number

of cycles when passing through elastic buffers, but becomes restricted when two high

traffic paths share the same communication link through a router. Thus bandwidth

is primarily improved by limiting the number of routers high bandwidth data passes

through, and latency is improved by reducing the length of the wires. Power is a

combination of latency and bandwidth: it is proportional to the quantity of traffic

multiplied by the distance traveled. The network fabric synthesis algorithms in

this work minimize the number of shared links, or routers, that high bandwidth

data traverses, and reduce the total distance between low latency networks. There

is of course some competition between latency, power, and bandwidth since high

bandwidth links will also increase the latency of signals sharing the link.

3 System Characterization

System characterization is the process of discovering the communication properties

of paths between blocks of an SoC design. Unlike chip multiprocessors which run

arbitrary applications, SoCs typically have a well-known traffic model of commu-

nication between blocks. Such SoCs include small designs (MP3 decoder) to large

designs (Philips Nexperia [6]). Other research has developed methods to perform

this characterization [9,11], and it has been used in related automatic NoC synthe-

sis [10,17].

Our algorithms require the system characterization to generate a number of

weighted-edge graphs, called communication trace graphs (CTG). A CTG consists

of vertices which are the IP blocks in the design, edges showing communication

between IP blocks, and edge weights representing the relative criticality of the

paths between IP blocks. This criticality is determined by the bandwidth and

latency requirements of a path, and is explained further below. A CTG for our

example is shown in Figure 5.

Our methodology uses two CTGs, one for topology generation and one for router
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placement. Note that in our example design, we reference Figure 5 as an example

for both. The CTG weights used for topology generation are a function mostly

of the bandwidth requirements between blocks. A path requiring high bandwidth

should receive a large weight to minimize network congestion. The topology gen-

eration process tries to minimize the number of routers on highly weighted paths

to reduce the number of paths contending for high-traffic routers. Additionally,

high bandwidth paths should have few routers to reduce power [14]. The latency

requirement for a path may also play a role in topology generation, but to a lesser

degree. However, a path requiring low latency could also receive a high weight.

Although the physical distance of a path will dictate latency more than its number

of routers, the more routers a path has, the greater the probablility of congestion

at one of those routers which creates excess delay.

The CTG used in router placement might be weighted differently than that used

in topology generation. The actual weighting factors are determined by the target

application and design goals, most notably, performance or power consumption.

Performance is best optimized by factoring in only latency requirements. A high-

bandwidth link with a lax latency requirement should not be heavily weighted, as

the available bandwidth of a link is not affected by its total length. However, when

optimizing power, high bandwidth links should be a first-priority [14], because long,

heavily trafficked paths use significant power.

The system characterization process must also build a table of required band-

widths for each path, and derive an ideal packet width in bits. This information is

used for specifying link widths and repeater locations.

Fig. 5. CTG of example design.

Floorplanning

Floorplanning determines the location on the chip of each IP block based on block

geometry and some minimization function (such as wire length). Our methodology

at this point does not integrate a custom floorplanner, but we can use an exist-

ing floorplanner modified to incorporate our characterized communication require-

ments, as provided in a CTG. Other work using this method is in [10], which uses

the Parquet floorplanner [1]. Custom SoC/NoC floorplanning and router placement

algorithms are used in [16].

4 Routing Topology Generation

The topology generation algorithm uses a CTG of a design, as specified by the

system characterization process, to determine which IP blocks connect to which
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routers of the binary-tree. The process is iterative, where each iteration connects

two unconnected groups with a new router, forming a new group. Each group

consists of one or more IP block(s) and their previously connected routers. The end

result is a binary tree, with the maximum number of routers in a path on the order

of O(log2 n), where n is the number of IP blocks. Others have proposed a similar

method [8] that may yield shorter paths from some CTG graphs, but its worst case

path distance is O(n), and thus can require more address bits transmitted with each

packet.

The following items define datastructures and terminology used in our algo-

rithms.

• Group: a single IP block, or two groups joined by a router. We use this recursive

concept to hierarchically explain our method.

• Topology Graph T (Vt, Et), where each vi ∈ Vt is a group and each ek = {vi, vj} ∈

Et is a physical network link between groups. Note that as this graph is being

built, it may not be a connected graph.

• CTG Graph C(Vc, Ec), where each vi ∈ Vc is initially an IP block and each

ek = {vi, vj} ∈ Ec is a communication trace between vi and vj . As the algorithm

progresses, two vertices combine to form a new vertex in C and a corresponding

group in T containing the same IP blocks.

• Map of edge weights, W [e → w]. For every ek ∈ Ec, wk is the path criticality

weight.

Algorithm 1: Connects IP blocks and routers to generate a routing graph.
TopoGen()

Initialize T with vertices of Vc and no edges.

while Vc contains two or more vertices (groups)

Unmark all vi ∈ Vc to indicate ungrouped.

while two or more vi ∈ Vc marked grouped

Find (vi, vj) ∈ Vc connected with the highest weighted edge, emax,

that are not marked. An edge of weight 0 is implied between a

vertex pair with no incident edge.

Create a new router vtnew in T . Connect vtnew to vertices in Vt

corresponding to vi and vj in Vc.

Group vi and vj of emax to form new vc.

Mark vc to grouped.

Combine edges incident to both vc and any one vi ∈ Vc by making

a single edge from vc to vi with weight equal to the sum of the

separate edge weights.

Remove unneeded “root” router from T , connecting its children groups

directly.

T contains the generated topology.

return

Algorithm 1 generates the topology for our example as shown in Figure 6, using

the CTG in Figure 5. The first iteration groups blocks 1 and 6 through router A,

blocks 3 and 5 through router B, and blocks 2 and 4 through router C. The next
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iteration groups router A and C through router D because the total wieght of CTG

paths between A and C is 40 compared to 2 between B and C. Finally, D and B

are paired. This final pairing does not require a new router, but the figure shows a

“virtual root” node to keep the familiar binary-tree form.

Fig. 6. Generated routing topology.

5 Network Component Placement

This section describes our methodology for placing routers, link repeaters, and

specifying other network parameters.

Router Placement

The physical placement of network routers is an important step to minimize la-

tency on critical communication paths. This is especially true when the network is

asynchronous because physical distance between endpoints (routers or cells) directly

determines latency. In a synchronous network this is also true, but the number of

routers through which a message must travel has a greater effect.

We use a force-directed method [12,7] modified for our router placement problem

to determine router locations. The underlying theory has been in literature for

decades, but the details of this implementation and its application are novel. The

input to this algorithm is a CTG, network topology, and IP block layout. The CTG

is generated during system characterization, the network topology is the binary

routing tree built in Section 4, and the block layout is generated by the floorplanner.

The key concept is that each path in the CTG may assert a force on a router along

the path to attempt to move it such that the physical path length is shortened. A

force is only asserted on a router by a particular path if that router is considered

critical. A router that is not critical for a given path and axis simply means that

moving it along that axis does not yield a shorter path. This is explained in depth

in Definition 5.1.

The algorithm starts by placing all routers in their initial positions. A reasonable

initial placement is as follows. For each pair of IP blocks, place their shared router

at the midpoint between their centers. This procedure is repeated for the next level

of routers, using the midpoint between the previously placed routers, and continues

until all routers are placed. The initial router placement of our example is shown
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in Figure 7. The routers are shown as black circles, IP blocks as grey rectagles, and

cell centerpoints as Xs.

Fig. 7. Initial router placement.

We next iterate the force-directed algorithm by repeated calls to the iteration

step described in Algorithm 2, which moves the routers until a stopping condition

is met. A simple stopping condition is when no router moves more than ∆d. ∆d,

and the constant c in Algorithm 2, are dependent on the desired convergence time

and accuracy as set by the algorithm implementation.

Algorithm 2: The procedure steps repeated during router placement.
IterationStep()

foreach edge ek = (vi, vj) in the CTG, C(Vc, Ec)

foreach router R along the path vi to vj in the topologic graph T (Vt, Et)

AssignForce(R,ek)

foreach router

Sum all force vectors on router, yielding FR. Move router in the direction

of FR, and distance proportional to the length of FR and a constant c.

End placement if no router moves more than ∆d.

return

Definition 5.1 A critical router for an edge in Ec on either the x or y axis is a

router on the path from vci to vcj in the topology graph that has the following

property: its incident edges lead to two vertices on the path with distance vectors

pointing in the same direction. In other words, given a router R with coordinates

(xR, yR), edges to vertices vt1 = (xv1, yv1) and vt2 = (xv2, yv2) on the path, and

axis a (either x or y): R is a critical router if d1 and d2 do not have opposite signs,

where: d1 = aR − av1 and d2 = aR − av2.

The force equation in Algorithm 3 determines the length of a router’s force

vector and is proportional to two factors: the path CTG weight and the ratio of its

shortest path distance on axis a to the total distance on both axes. Highly weighted

paths obviously will get proportionally higher forces. We include the distance factor

as a ratio in order to reduce forces on highly weighted paths that would not greatly

benefit from a decreased length along a, or to increase the force on a lesser weighted

path if it will greatly benefit.
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Algorithm 3: Calculates a force on a router based on communication path needs.
AssignForce(R,ec)

foreach axis a in {x, y}

if R is a critical router

Assign a force vector FR to R on axis a as follows:

Find the least path distance, da, on a between:

R to incident vt1 added to vt1 to vc1 and

R to incident vt2 added to vt2 to vc2

where vc1 and vc2 are endpoints of ec and vt1 and vt2 in Vt are incident

to R along paths to vc1 and vc2.

FRlength =
da

da + da
′

∗ wij

where wij is the weight of the CTG edge eij = (vc1, vc1), and da
′ is the

distance between vc1 and vc2 along the opposite axis a′.

FRdir is positive if the location of vt1 or vt2 is greater on a than R.

Otherwise, FRdir is negative.

return

We have a choice of what specific location on a block to use to represent a

connection to that block during router placement calculations. Possible locations

include the geometric center of the block, the specified location of the network

adapter in hard IP blocks, or the nearest point on a block to some target point.

This target point can be the block’s parent router, or a path destination block. For

soft IP or fully custom blocks, the nearest border point should be used because that

is where the block’s network adapter should ideally be placed. The center of a block

can also be used effectively when the area of the block is small compared to the

total floorplan area.

We now use the example in Figure 8 to explain the router force-assignment

process. For this example, we assume a soft-IP design and thus use the block edge

rather than the block center coordinates for force calculations (d1 and d2). Consider

the communication path of block 1 to 2. From the topology in Figure 6, we see that

a packet must go through routers A, D, and C. This example shows the algorithm

in the state of assigning force in the x-direction to node A with respect to the

aforementioned path. A is a critical router because both its link-distance vectors,

d1 and d2, point in the same direction. The endpoint of d1 is the right edge of block

1 because it is the closest x-coordinate of block 1 to the path destination (block

2). The endpoint of d2 is the left edge of block 2 because it is block 2’s closest

x-coordinate to the path destination. Force F is calculated based on the shorter of

these two distances, d1. We use the shortest distance because the path length does

not decrease by moving A more than d1. Note, if the centers of blocks were used,

no force would be applied because A lies between the centers of 1 and 2 and hence

would not be critical.

The router placement may locate routers within the border of a block. This is

very likely on a dense floorplan with minimum space between blocks. If hard-IP

block are used, these overlapping routers must be moved outside the block in order

to form a valid placement. Finding an optimal solution requires calculating the

equilibrium of the system for every combination of side for every overlapping router,
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Fig. 8. Force on router A in the x-direction due to path 1-2.

which is computationally infeasible. Thus, we use an approximation method as

described in Algorithm 4, containing the following datastructures and terminology.

• A router placement R

R = {r1, r2, ..., rn}, rk = (x, y)k

R is sorted in descending order by block’s area of the block that ri overlaps. A

large block has the potential to move the overlapping router more than a small

block, and thus we want to consider the effect that re-placement of this router

will have on the other routers overlapping a block.

• Block coodinates (lower right corner) and dimentions of overlapping routers for

each ri:

B = {b1, b2, ..., bn}, bk = (x, y, dx, dy)k

Note, that a bi is null if ri is not within a block.

Algorithm 4: Moves routers that overlap IP blocks.
De-Overlap()

foreach ri

if bi is not NULL

foreach Side of bi

Make new router placement rnewi by changing one coordinate of ri such

that rnewi falls on the Side of bi.

Run the IterationStep algorithm with only Ri moveable, allowing only

movement parallel to Side.

Set ri to the rnewi. This results in the minimum force placed on Ri among

each Side evaluation.

while IterationStep has not converged

Run IterationStep. A router is not allowed to enter a block’s area, and instead

stop at the edge.

return

If the design uses soft-IP or custom blocks, we need to place the network adapters

for each block. We simply use the point on the block nearest to its attached router.

The final router placement for our example is shown in Figure 9. The dashed

arcs show the logical connectivity of the network topology for convenience. We see

from the CTG and topology in Figures 5 and 6 that blocks 1 and 3 communicate
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to block 4 through router C. Router C has forces excerted on it due to the path

from node 3 to 4 (P34) and path P14. Since the weight on P14 is so much larger

than P34, it has much more effect over the placement of router C (and D). Also

notice that even though blocks 2 and 4 are connected by a single router, they do

not communicate and thus there is no force on router C bringing it closer to the

midpoint of its connected blocks, unlike routers A and B and their connected blocks.

Fig. 9. Final router placement.

We have two choices for routing network wires: channel space using lower metal

layers, or entire reserved upper layers. In future work we will investigate the trade-

offs involved with each of these methods, including wire routing difficulty, repeater

placement, and scalability issues.

Guaranteed Link Bandwidth

A well designed network will have the bandwidth capacity to prevent network con-

gestion under normal operating conditions. Our elastic NoC framework allows us

to specify the bandwidth capacity of any particular link by varying the physical

spacing of the asynchronous pEHBs placed on a link between endpoints. This spac-

ing effectively controls the link’s “pipeline” depth. We can also have differing link

widths on those paths that require them. Finally, we note that bandwidth into and

out of a block can be asymmetric. This would be a common case for memory block

transfers, with one address packet in one direction, and many data packets in the

other direction.

We find the total capacity requirement for a link by summing the individual

available bandwidth needs for each path using that link. The system characteriza-

tion process determines each path requirement, and the topology graph describes

the set of links each path uses.
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6 Conclusion

In this paper we have presented a novel asychronous NoC that operates using a new

elastic-channel protocol, capable of operating with both clocked and asychronous

IP blocks. We explained the benefits of moving the elastic components into the

NoC domain, including a reduction in buffer sizes and boundable worst-case path

latency and bandwidth. We then described a series of algorithms that automatically

generate the topology and router placement based on a characterization of the

system’s communication requirements.
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