
FMGALS 2007

Performance Evaluation of Elastic GALS
Interfaces and Network Fabric

Junbok You Yang Xu Hosuk Han Kenneth S. Stevens

Electrical and Computer Engineering
University of Utah

Salt Lake City, U.S.A
junbok.you@utah.edu yang.xu@utah.edu hosuk.han@utah.edu kstevens@ece.utah.edu

Abstract

This paper reports on the design of a test chip built to test a) a new latency insensitive network fabric
protocol and circuits, b) a new synchronizer design, and c) how efficiently one can synchronize into a clocked
domain when elastic interfaces are utilized. Simulations show that the latency insensitive network allows
excellent characterization of network performance in terms of the cost of routing, amount of blocking due
to congestion, and message buffering. The network routers show that peak performance near 100% link
utilization is achieved under congestion and combining. This enables accurate high-level modeling of the
behavior of the network fabric so that optimized network design, including placement and routing, can
occur through high-level network synthesis tools. The chip also shows that when elastic interfaces are used
at the boundary of clock synchronization points then efficient domain crossings can occur. Buffering at
the synchronization points are required to allow for variability in clocking frequencies and correct data
transmission. The asynchronous buffering and synchronization scheme is shown to perform over four times
faster than the clocked interface.

Keywords: System on chip, network on chip, synchronizer, interface architecture, asynchronous FIFO

1 Introduction

Power and time to market requirements dictate the need to operate many of the
independent blocks on our chip at a frequency and power optimal for the particular
design and work load. This results in designs that contain many unrelated frequency
islands [10]. Unfortunately, designing a communication fabric that interfaces and
synchronizes to these frequency islands has been challenging and costly in terms of
power and delay [5]. The cost of communication across an elastic network fabric
with various interface designs is evaluated. We report on simulations carried out
on the layout of a test chip fabricated in the AMIS 500nm three metal process
technology. The simulations will be validated against the silicon when it returns
from the foundry. The design measures two main components: the efficiency of a
new elastic protocol applied to a network fabric, and the overheads of synchronizing

1 This work was supported in part by Semiconductor Research Corporation under Contract No. 2006-TJ-
1424.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:junbok.you@utah.edu
mailto:Yang.xu@utah.edu
mailto:hosuk.han@utah.edu
mailto:kstevens@ece.utah.edu


You

into a clocked domain using a GALS protocol. The new network fabric shows near
100% link utilization can be achieved, and that real time constraints can be achieved
even under full network saturation. A comparison between three synchronization
interfaces shows that asynchronous interface logic can be nearly as efficient as a
fully synchronous system, and that clocked synchronization protocols can show
substantial overhead.

1.1 Latency Insensitive Protocols

The potential design space of a Network-on-Chip (NoC) is very large, and includes
topology choice (mesh, torus, star, etc.), circuit switched or packet switched, and
other parameters (link widths, frequency, etc.). The design space is further enhanced
when we add a globally asynchronous and locally synchronous (GALS) methodology
[11,1]. Given this design diversity, perhaps one the most important design choice is
the protocol for the communication fabric and the interface protocol between the
network and the intellectual property (IP) cores. Design performance, complexity,
and the application space are determined by the channel protocol employed. A
new class of protocols has recently emerged from a wealth of GALS designs called
latency insensitive protocols (LIP), pioneered by Carloni [2,3]. There are various
classes of such protocols but all use a handshaking protocol similar to traditional
asynchronous design to implement flow control and data buffering. LIP protocols
are traditionally applied to clocked systems.

Latency insensitive protocols have some potential advantages in GALS systems
over other designs due to two main factors. First, since these protocols have been
applied to clocked design, there is the potential of implementing efficient interfaces
to the clocked IP that doesn’t require stoppable clocks and allows the IP cores to
stall under network congestion. This could be particularly advantageous if both
the IP cores and the network fabric use identical or compatible protocols. Second,
the efficient buffering of LIP protocols under stall conditions has a potential of
creating a very low overhead, high throughput dynamic network fabric. We test
this hypothesis by implementing the network fabric, synchronizing interfaces, and
IP interface with a latency insensitive, or elastic protocol.

Elastic systems are just like clocked systems in that they consist of a collec-
tion of modules and channels. However, the elastic communication channels have
two control wires, valid and stall that implement a handshake between the sender
and receiver. The data and valid signals propagate down the pipeline, and stall
propagates backwards up the pipeline. We have chosen a protocol similar to the
Synchronous Elastic Flow (SELF) channel protocol [4].

The synchronization between source and destination channels in SELF are very
similar to the Synchronous Interlocked Pipelines [8]. Interlocked pipelines imple-
ment independent control for each of the two latches that comprise a flip-flop. When
a stall occurs during data transfer, the independent latch control permits the second
data arriving at the flop to be stored in the second latch, allowing a flop to store two
data items. The stall signal is concurrently propagated up the pipeline. The stall
now arrives at the previous stage just in time to ensure that a second data arriving
in that flop will be stored in the second latch, and so forth. These protocols allow
stalling a pipeline to occur with zero overhead to the clock frequency in an elastic

2



You

��
��

I
0-

zv·s

��
��

S
11

9 v·s

:
v·s

��
��

X
10

y
v

z
v·s

Fig. 1. Elastic Channel Protocol,
state: {v s}

��
��

I
00 ��

��
X
10 ��

��
S
11

- -

��

v·s
v·s

v·s
v·s

Fig. 2. Phased Elastic Channel Protocol,
state: {v s}

clocked system.
The SELF channel protocol is shown in Figure 1. We have completed the initial

development of a complementary new phase channel protocol (pSELF) shown in
Figure 2. Both protocols are idle in the ‘I’ state, actively transfer data each cycle
in the ‘X’ state, are stalled in the ‘S’ state. Each of these states are labeled with
the values of the valid (v) and stall (s) signals. In the SELF protocol both valid and
stall signals change on the same edge of the clock, in the phase protocol they change
mutually exclusively on different clock phases. This avoids the redundant idle state
that is both stalled and not valid.

Both of these protocols allow the two latches in a clocked design to be split and
separated by long communication lines with the associated wire delay. The SELF
protocol has the advantage of permitting a nearly full cycle of latency between
any two latches, whereas the pSELF protocol only tolerates one phase of latency.
However, the pSELF protocol has the advantage that it can directly communicate
with an asynchronous channel where the request and acknowledge signals switch in
alternating phases. The pSELF elastic protocol now supports direct communication
with clocked or asynchronous logic, and can be directly mapped and synthesized
into either a clocked or asynchronous network fabrics [6]. This will allow us to
make good apples-to-apples comparisons between GALS systems using a clocked or
asynchronous network fabric (or a clocked network and asynchronous IP).

1.2 Synchronizing Interfaces

The second main focus of the chip is the synchronizing interface into clocked do-
mains. These synchronizing interfaces are very challenging to design and have
significant performance implications [7].

Our GALS network interface is based on the fundamental assumption that the
synchronous islands contain an elastic channel interface protocol. Given such a
protocol the main cost of interfacing to an asynchronously operating network envi-
ronment is the cost of synchronization and buffering.

To this end we have implemented three simple interfaces between the network
and our clocked processing elements: 1) a fully synchronous interface where the
network and processing elements must all operate on the same low skew clock,
2) a clocked synchronizer and synchronous handshake protocol with synchronous
buffering, and 3) a novel fast synchronizer with asynchronous buffering. We have
built all of the buffers as simple linear flow-through FIFOs, where the interfaces
contain four data words of buffering. The fully synchronous interface has no need
for buffers so they are not included.

3



You

2 Network Fabric

The network fabric in this work uses design targets that differ significantly from
other Network on Chip (NoC) designs, including: a) A non-redundant network
topology. b) No multi-word packets - each transmission is a single data word
containing all necessary routing information. c) Simple high throughput network
routers and buffers. d) Both clocked and fully asynchronous realizations of the NoC
fabric. This produces a fabric that has ultra low latency, high throughput, and a
static worst case latency for all transmissions (assuming sufficient buffering exists
in the network interfaces).

2.1 Network Components

All of the links in our network are bidirectional. Bidirectional network links consist
of two independent elastic channels that can concurrently transmit data in opposite
directions. The network fabric is implemented using two components: a phase
elastic half buffer (pEHB) and a binary routing buffer, or > element. The pEHB,
shown in Figure 3, contains one of the two latches in a flip-flop pipeline stage with
its associated logic implementing the phase based SELF control protocol.

��

�
�L

L

L
en

sl �
srr

c
r

vl r r
vr-

dl dr-

Fig. 3. Phase Elastic Half Buffer Logic

The router elements behave like binary switch sending an input token out one
of two output paths. Their configuration looks like a >. Complicated network
topologies are composed out of these simple binary routing switches. The router
consists of three switch blocks and three data merge components shown in Figure 4.
The switch blocks steer data on incoming channels to one of the other two outgoing
channels. The merge elements allow each outgoing channel to be shared by the two
incoming arms in the >. Note that two requests can arrive at a join module in the
same clock cycle. Therefore the join module requires arbitration and buffering. Fair
arbitration protocols are used between the incoming channels for both the clocked
and asynchronous designs. The merge blocks contain an elastic half buffer. The
pEHBs provide buffering on the three outgoing channels. This results in a > router
where all ports are bidirectional.

4



You

Fig. 4. Architecture of Router

2.2 Network Topology

The first key tenant for our network topology is the assumption that the the routing
algorithm is simple. We choose the simplest algorithm possible: a binary decision at
each router node. The data is now routed through the equivalent of a simple binary
mux, and the next address calculation takes no logic – it is merely the rotation or
swizzling of the data bits illustrated in Figure 5 for three pipeline stages. Routing
now results with such low latency that it is beneficial to use single data word packets.
There is now no need to have extra logic to calculate packet lengths, no need to
set up routes beforehand, packet buffer reservation requirements are fully covered
by the elastic protocol, and if a packet is blocked it doesn’t have a tail that blocks
other traffic, and there is no wasted traffic due to void packet filler words. This
format does have the overhead of requiring address bits with every data word.

Fig. 5. Data Sequence Swizzling Scheme

The second key tenant is that the network is irredundant and cycle-free. Since
there are no cycles, the network is deadlock-free and packets between a sender and
receiver are guaranteed to arrive in order. Such topologies trade off additional
routing nodes for simplified network routing overhead. One of the most efficient
binary cycle-free topologies is a tree. For a balanced binary tree the maximum
distance between any two hops is O(log2 n), giving a longest path of 2(n − 1)
routers for 2n PEs. This number is important as it dictates the address overhead
for each data word.

An addressing scheme is used that requires one address bit per router. This
results in a sparse addressing scheme where 2n − 2 bits are needed to address 2n

locally synchronous islands. One additional advantage to this topology is that the
the source address is the “mirror” of the destination address. Hence, in any 2n

PE system where return addresses are required, this addressing scheme saves two
data bits over a dense binary encoded address scheme. Therefore The additional
cost in wires is offset by the simplicity of the routing algorithm and the equally
important characteristic of obviating the need to include a source address or iden-

5



You

tifier in the packet. Note that this does not result in unique addresses for all IP
in a system. For instance, the addresses for an 8 node system will require four
address bits, where the leftmost node in the tree addresses the other nodes with
bits 1xxx, 011x, 010x, 0011, 0010, 0001, and 0000. This can be inferred from Table 1
which shows the method of calculating the return address from the received address
by rotating and inverting the bits.

IP1 IP2 IP3 IP4 IP5 IP6 IP7

Target Addr. 0xxx 100x 101x 1100 1101 1110 1111

Rec’d Value xxx0 x100 x101 1100 1101 1110 1111

Reverse bits 0xxx 001x 101x 0011 1011 0111 1111

Return Addr. 1xxx 110x 010x 1100 0100 1000 0000

Table 1
Return Address Calculation to IP0 from IP1–7

3 Synchronizing Interface

We have designed two simple synchronizing interfaces, a clocked version and an
asynchronous version, to allow us to compare relative efficiencies of the different
approaches. We have also developed a low latency synchronizer that we employ
with the asynchronous FIFOs.

3.1 Interface Circuit

The synchronizing interface in a GALS system is one of the primary areas of inef-
ficiency in this design style. Since each PE can run at an independent frequency,
data transmitted across the clock boundary must be synchronized. The overhead
for synchronization can be substantial. These interfaces also require some sort of
buffering to decouple the processing elements and network so that they can operate
concurrently. Figure 6 shows the synchronizing interfaces between the network and
a processing element (PE), with an independent buffering.

Fig. 6. Interface Circuit

6



You

3.2 Buffering FIFOs

Two FIFO designs are employed, a clocked design and asynchronous design. Both
designs are simple four-deep linear shift FIFOs. The asynchronous FIFO has a
significant advantage since data propagates very quickly from the tail to the head
of the FIFO, whereas in the simple clocked domain it takes four full clock cycles.
The clocked FIFO is implemented as four elastic half buffers.

The asynchronous FIFO is implemented using domino gates. This protocol is
compatible with the synchronous phase based channel protocol we have used in this
design, but some protocol conversion is necessary to convert from async handshake
to a clocked interface.

3.3 Synchronizer and Channel Interfaces

The clocked synchronizer is implemented with two flops plus some additional logic
to handshake between the domains to ensure correct data transfer. The full imple-
mentation, including the elastic buffers on each side of the synchronizer, is shown
in Figure 7.

We have designed a novel “fast synchronizer” that uses mutual exclusion ele-
ments [9] rather than flops for synchronization. Additional logic is added to allow
the fast synchronizer to communicate with pSELF modules, as shown in Figure 8.
When coupled with the asynchronous FIFO, this circuit is able to send data and a
valid signal into a clocked domain and receive an acknowledge signal in one clock
cycle. Therefore this fast synchronizer has no synchronization penalty while the
two-flop synchronizer generally consumes two clock cycles in each direction in the
worst case.

Fig. 7. Clocked Synchronizer

Synchronizations must occur when crossing into a clocked domain. The clocked
FIFOs use the same timing domain as their input port. Therefore, only one syn-
chronizing interface is needed per clocked FIFO. The asynchronous FIFOs require
synchronization on both ends of the FIFO since the valid or stall signals will be
crossing into a clocked domain. This is a worst-case for the async FIFO. If an asyn-
chronous network fabric were used, then only a single synchronizing interface into
the PE clock domain would be needed. In figure 6, A-SYNC1 is a synchronizer for
data and valid signal and A-SYNC2 is for the stall signal.

7



You

Fig. 8. Async synchronizer for valid and data

4 Chip Design

This paper reports simulation results from the chip design shown in Figures 9 and 10.
The chip consists of a single processing element (PE), three synchronizing interfaces
which are selected through muxes, a pSELF router, a pEHB, and three configurable
ports. With this design we can simulate our SoC by interconnecting several chips.
The network circuits and synchronizing interfaces on the chip share a clock, and
the PE contains its own clock pin. This allows us to test the design with the PEs
having an independent frequency island.

The chip design has four main components: 1) Processing Elements (or PEs)
are designed to generate traffic, analyze the results, and store traffic data in local
memory arrays as histograms. 2) Network Interfaces for synchronizing and buffer-
ing into the clock frequency of the PEs. 3) A Network Fabric that contains our
pSELF channel protocols and logic, and consist of routers and phase elastic half
buffers (pEHB). 4) Scan Interface allows us to configure the PEs and scan out the
results of a network traffic evaluation. The PE’s, network interfaces, and fabric all

Fig. 9. Physical Design of Chip

8



You

Fig. 10. One Chip Block Diagram

communicate via the pSELF protocols.
Space limitations on the chip prevented the design of a full SoC design, so

multiple chips will be used to emulate such a network. We will only receive five chips
from the foundry, so we have chosen a five node network as shown in Figure 11. This
design will emulate a System on Chip (SoC) design with five independent frequency
islands, and a network topology optimized for the statistical traffic patterns between
the PEs. Routing through this topology is a binary decision in the network based
on the value of the high order bit. A one value steers the packet to the left fork
of the > and a zero value steers the packet to the right. These are indicated by 1
and 0 values in Figure 11 coming into the router node. The five PE design will be
mapped to five chips as shown in Figure 12.

Fig. 11. Network Fabric Structure

A PE acts as one intellectual property (IP) core. It can send or receive data to
or from the network fabric. Sending and receiving can happen in the same clock
cycle because we have concurrent bidirectional pSELF interfaces.

The PE implements three main functions: traffic generation, network data col-
lection, and result scan out. This custom processor is necessary for us to run real-
time network and interface patterns, and store the results from these runs. The PE
works under three modes : scan in, run, and scan out. The PE must be configured
to run a traffic simulation. This information is loaded through a scan chain. The
PE is then reset and the traffic is driven on the network, while the PE’s collect data
on packet latency. The PE is then put into scan out mode to retrieve data collected
from the network traffic simulation.

9



You

Fig. 12. Network Chip Architecture

The data words for each communication in the test chip contain a payload
that allows us to calculate the network latency. The data word consists of 9 bits
containing a 3-bit address, 6-bit time stamp, and valid and stall bits. These small
values are due to pin and area limitations on the chip.

As a sender, the PE can send up to one data word per clock cycle to the network
interface. The Elastic protocol is maintained across the PE to network interface.
Therefore, if the network fabric is congested or synchronization requires more than
one cycle, the network asserts a stall signal to ask PE to stop sending data. When
sufficient space is available in the buffers, then the stall is retracted. The PE can be
configured to transmit any programmable traffic pattern. The current timestamp
is recorded whenever a packet is ready to be sent to the network. If the network
has asserted a stall signal, the packet cannot be sent but the latency of the packet
increases. The PE generates traffic to destination PEs in one of the following three
modes:

(i) Pseudo Random Generator: A 3-bit linear feedback shift register (LFSR) is
used to generate random 3-bit PE addresses. Each of these LFSRs can be
loaded with an initial seed value. For simplicity, the initial value of pseudo
random registers are reset to one.

(ii) Shift Register Array: An eight-deep three-wide shift register is loaded with an
address sequence to generate a data transmission pattern and destination.

(iii) Echo Mode: In this mode, PE will respond to all incoming packets by sending
an “echo” packet back to the sender. Destination address and time stamp are
updated in this mode.

The PE can also receive one data word per clock cycle from the network interface.
The PE can be programmed to have a particular stall pattern to mimic an IP core
that cannot receive data every cycle. The PE maintains an independent results table
for each of the four PEs with which it communicates. Upon receiving a data word
from the network, the PE calculates the latency of the message across the network,
by subtracting the send timestamp from the current timestamp. The packet latency
is calculated by subtracting the six-bit timestamp in the packet from the current
timestamp. The value is normalized by adding 64 to the result when negative.

The latency is stored in a user programmable histogram. This allows the ef-

10



You

ficiency of the network fabric and synchronizing interfaces to be measured and
evaluated. The six-bit timestamp values allow delay variations of up to 64 cycles
to be measured. The histograms contain up to 64 hits per bin, with eight total
histogram bins. The partitioning of the histogram bins is programmable. There
are seven six-bit registers that define the boundaries between the histogram slots.
The latency value of the packet is compared against the seven boundary values to
determine which bin to increment. To save time and space, each bin is a linear
feedback shift register that is initialized to value 3F hex. The LFSR is shifted once
to increment the bin. The pseudo random sequence is decoded into the binary result
upon scan out.

5 Results

The circuit was built using a simple digital University of Utah static library. Some
additional custom cells were designed as part of this project including domino gates
for the asynchronous FIFOs and a mutual exclusion element for the fast synchro-
nizer. The results reported in this section are ModelSim simulations of the extracted
netlist of the circuit sent to fabrication. The simulations were made using a unit
delay model since the custom gates were not characterized for timing.

The design contained 61K transistors, of which 33K were part of the data col-
lection storage and 13K were associated with the network fabric. The maximum
latency path consisted of 26 gate delays. At a FO4 delay of 200ps for this technol-
ogy this will result in an expected performance of approximately 192MHz. The die
area is 2400µm2. For the simulation results reported here, the PE’s were clocked at
50MHz and the network at 66MHz.

Two sets of results are of primary interest in designing this IC. A characterization
of our elastic network controllers is necessary to automatically synthesize a network
fabric. Secondly, a comparison between clocked and asynchronous interfaces is
desired.

5.1 Characterization of Network Fabric

The chip was designed with an operational mode that completely bypasses the
interface FIFOs. This permits the network to be characterized independent of the
FIFO and nondeterministic delays of the synchronizers. In this mode the network
and PEs are clocked with the exact same frequency. The results in this section all
use the synchronous interface bypass mode.

The result in this section are all reported with the PE’s configured to run under
the same operational mode. Each run consisted of 500 messages. The PE’s are con-
figured to deliver and receive one packet every clock cycle. They are also configured
to send packets to the same PE for the entire run. Hence for all of the tests in this
section the links under test are operating at a 100% utilization factor. When the
network is congested a stall is asserted and the PE must delay the delivery of the
packet. In this case the latency is of the packet incremented for each stalled cycle.

The PEs in the chip cannot communicate directly with the IO pins, but must
first pass through either an elastic buffer or router. The network topology is config-

11



You

ured as shown in Figure 12. This gives six distinct classes of network paths between
processing elements based on the type and number of elastic network nodes tra-
versed. The buffering network nodes will be either an elastic buffer (E) or router
(R).

Table 2 shows the latency result when applying network traffic between pairs of
processors with all other PEs idle. Each class of paths had nearly identical results
independent of the source and destination PEs. The table contains an example path
for that network class. The latency through the network is effectively equal to the
number of buffering elements, either routers or elastic buffers. This is as expected
because the network is clocked. In an asynchronous version the delays will be much
more dependent upon topology and the complexity of the buffering element.

Path Type # of Routers Ntwk Elements Path Latency

Class 1 1 Router E-R PE1 → PE0 2.96

Class 2 2 Routers R-R PE0 → PE4 2.96

Class 3 2 Routers E-R-R PE1 → PE4 3.94

Class 5 3 Routers R-R-R PE0 → PE2 3.94

Class 4 3 Routers E-R-R-R PE1 → PE2 4.93

Class 6 3 Routers E-R-R-R-E PE1 → PE3 5.91

Table 2
Network Fabric Latency

The next set of tests shown in Table 3 were designed to exercise the elasticity of
the network operating under conditions of extreme congestion. Two or more PEs all
delivered traffic to the same destination PE. Most of the network links are stalled
due to the congestion in these conditions. The latency between the source and
destination PE will be due to the percentage of bandwidth available to that PE.
However, even in these extreme circumstances the worst-case end-to-end latency
was reduced by only a factor of approximately 3.5 times the nominal delay. This
worst case condition occurred on the longest path containing five buffering network
elements. These results show that the elastic network contains a bounded worst-
case latency. (This assumes that the receiving PE is always receptive in the high
congestion mode.)

5.2 Comparison of Synchronization Style

In this section the PE and network fabric are clocked at different frequencies. All
the PE’s are operated at the same frequency, and the network fabric is operating at
a different frequency than the processing elements. This requires synchronization
between the network fabric and the PEs. For the results reported in this paper, the
network was operating at a frequency 1.33× the PE frequency.

Three of the five PEs are configured to send traffic out onto the network. Each
of these PE is configured to send packets out every other clock cycle, giving a 50%
activity factor. Two of the PEs send packets to a single destination node, and the

12



You

Concurrency Orientation Aver. Total Aver.

2 Senders PE0 → PE4 4.90 6.38

PE2 → PE4 7.86

3 Senders PE0 → PE4 7.86 9.17

PE1 → PE4 12.80

PE2 → PE4 6.86

4 Senders PE0 → PE4 11.78 15.23

PE1 → PE4 18.68

PE2 → PE4 11.78

PE3 → PE4 18.68

4 Senders PE0 → PE3 13.75 12.23

PE1 → PE3 20.90

PE2 → PE3 4.93

PE4 → PE3 9.35

Table 3
Congestion of Signal

third PE is configured to send data out to all PEs in a pseudo-random sequence.
The PE’s will receive packets each cycle without blocking.

Figure 13 shows the distribution of latencies when the PEs are configured to
use the clocked or asynchronous FIFOs and synchronizing interface protocols. The
asynchronous interface results in a substantially reduced latency compared to the
clocked design. The increased performance is due to two factors: the FIFO and
synchronizer latencies. The asynchronous FIFO is a simple four-deep flow-through
FIFO. This simple efficient design allows data to propagate through the FIFO in
approximately eight gate delays, which is much less than the clock cycle. The
similar clocked implementation requires four cycles. We have also coupled a novel
synchronizer we are developing with our asynchronous FIFOs. This new design can

Fig. 13. Latency when using asynchronous versus clocked synchronizing interfaces

13



You

synchronize and handshake between the PE and asynchronous FIFO in a single
clock cycle. In our simulations this results in nearly no cost for synchronization.
The clocked protocol uses a typical two-flop synchronizer and associated protocol
that requires three to four clock cycles of latency to synchronize and handshake
between the two clock domains.

Figure 14 reports the average latency when the data is compiled based on three
different network traffic patterns. In these three cases the two PEs communicating
with the fixed destination will send the messages through one, two, or three router
nodes. The third PE continues to send data to a pseudorandom destination. This
table indicates that the increased overhead between the clocked and asynchronous
network interfaces can mostly be attributed to the synchronization delays with some
associated congestion produced by the stalling.

Fig. 14. Average Latency

These result motivate a more detailed study of synchronizing interfaces. While
the clocked interface can be substantially improved, these results indicate that there
may always be a substantial advantage to some form of asynchronous synchronizing
interface.

6 Conclusion

This paper reports on a test chip that implements a new latency insensitive proto-
col. The chip implements the new pSELF protocol applied to network applications
and interfacing to clocked processing elements. The chip also contains the design of
a novel synchronizer that is coupled with asynchronous FIFO. Results are presented
from simulations of the extracted netlist. The network elements consist of buffers
and routers. Both these elements show predictable performance, which enables a
synthesized network flow. Further, these lightweight network components behave
extremely well under congestion with predictable worst-case latency. A comparison
is made between a simple traditional synchronizing FIFO and our new fast synchro-
nizer and asynchronous FIFO. Total network latency in this example is reduced by
a factor of four or more with the new synchronizing interface. This chip has been
taped out the results reported here will be performed on silicon when the chips
return.

14



You

References

[1] Campobello, G., M. Castano, C. Ciofi and D. Mangano, GALS Networks on Chip: A New Solution for
Asynchronous Delay-Insensitive Links, in: Design, Automation and Test in Europe, 2006, pp. 1–6.

[2] Carloni, L. P., K. L. McMillan and A. L. Sangiovanni-Vincentelli, Theory of latency-insensitive design,
IEEE Transactions on Computer-Aided Design 20 (2001), pp. 1059–1076.

[3] Carloni, L. P. and A. L. Sangiovanni-Vincentelli, Coping with latency in SOC design, IEEE Micro 22
(2002), pp. 24–35.

[4] Cortadella, J., M. Kishinevsky and B. Grundmann, Synthesis of synchronous elastic architectures, in:
Proceedings of the Digital Automation Conference (DAC06), IEEE, 2006, pp. 657–662.

[5] Dobkin, R., R. Gionsar and C. P. Sotiriou, Data synchronization issues in GALS SoCs, in: International
Symposium on Asynchronous Circuits and Systems, 2004, pp. 170–179.

[6] Gebhardt, D. and K. S. Stevens, Elastic Flow in an Application Specific Network-on-Chip, in: Third
International Workshop on Formal Methods in Globally Asynchronous Locally Synchronous Design
(FMGALS 07), Elsevier Electronic Notes in Theoretical Computer Scinece, 2007.

[7] Ginosar, R., Fourteen ways to fool your synchronizer, in: International Symposium on Asynchronous
Circuits and Systems, 2003, pp. 89–96.

[8] Jacobson, H. M., P. N. Kudva, P. Bose, P. W. Cook, S. E. Schuster, E. G. Mercer and C. J.
Myers, Synchronous interlocked pipelines, in: International Symposium on Asynchronous Circuits and
Systems, 2002, pp. 3–12.

[9] Seitz, C. L., Ideas about arbiters, Lambda 1 (1980), pp. 10–14.

[10] Semeraro, G., G. Magklis, R. Balasubramonian, D. H. Albonesi, S. Dwarkadas and M. L. Scott, Energy-
efficient processor design using multiple clock domains with dynamic voltage and frequency scaling, in:
Symposium on High Performance Computer Architecture, 2002, pp. 29–42.

[11] Singh, M. and M. Theobald, Generalized Latency-Insensitive Systems for GALS Architectures, in:
Formal Methods in Globally Asynchronous Locally Synchronous Design (FMGALS 03), 2003.

15


	Introduction
	Latency Insensitive Protocols
	Synchronizing Interfaces

	Network Fabric
	Network Components
	Network Topology

	Synchronizing Interface
	Interface Circuit
	Buffering FIFOs
	Synchronizer and Channel Interfaces

	Chip Design
	Results
	Characterization of Network Fabric
	Comparison of Synchronization Style

	Conclusion
	References

