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Abstract

In Kahn process network (KPN), the processes (nodes) communicate by unbounded unidirectional FIFO
channels (arcs), with the property of non-blocking writes and blocking reads on the channels. KPN provides
a semantic model of computation, where a computation can be expressed as a set of asynchronously commu-
nicating processes. However, the unbounded FIFO based asynchrony is not realizable in practice and hence
requires refinement in real hardware. In this work, we start with KPN as the model of computation for
GALS, and discuss how different GALS architectures can be realized. We borrow some ideas from existing
dataflow architectures for our GALS designs.

Keywords: Kahn process networks, globally asynchronous locally synchronous, unbounded FIFO
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1 Introduction

Globally asynchronous locally synchronous (GALS) designs are gaining importance

due to the fact that the synchrony assumption is failing in large synchronous de-

signs. This is because of the ever increasing clock frequencies, which causes the time

taken for a signal to propagate between different components to be longer than the

clock period [1]. In a GALS design, the communication between the synchronous

components occur asynchronously. The synchrony assumption holds within each

synchronous component. However, there are other challenges facing the design of

GALS systems. There is a lack of tools and design methodologies to facilitate GALS

designs. In most cases, GALS designs are constructed using ad hoc methods, where

synchronous components are encapsulated with some wrapper logic and communi-

cation is handshake driven. Furthermore, these ad hoc approaches are not easily

subject to formal reasoning about the correctness of a design. Hence, we need to

identify the basic ingredients for a successful GALS design methodology.

The objective of this paper is to facilitate a methodological approach to GALS

design borrowing models of computation (MoCs) [2], and architectural concepts

from dataflow computing [3,4], and principles employed in latency insensitive sys-

tems [5,6,7,8]. In this paper, we (i) use Kahn Process Network (KPN) as the MoC
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for specification of a computation, (ii) show refinements of KPN into various GALS

architectures, (iii) discuss tradeoffs for various architectures.

Design Methodology for GALS: The design methodology we propose for

GALS design can be summarized as follows: Given the description of a system,

the first step is to identify the behaviors of the system as a collection of concur-

rent processes communicating asynchronously with unbounded FIFOs according to

a KPN MoC. To ensure the correctness of the KPN model, the specification can

be validated for its decidable properties related to composition, determinacy, etc.

Architectural exploration can then be performed to identify the appropriate GALS

architecture based on the KPN model. Some of the constraints for choosing an

appropriate architecture that we identify include area (for example, number of ex-

tra interconnects, storage elements, etc), and latency for enabling communication.

Based on the result of architectural exploration, appropriate refinements are applied

to the KPN model.
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Fig. 1. Design Methodology for GALS

For this paper, our focus is a number of refinements of KPN into realizable

GALS architectures. We discuss four different possible architectures along with

their tradeoffs. Figure 1 illustrates this design methodology.

Model of Computation for GALS: Most of the design languages used in the

industry such as SystemC [9], SpecC [10], support synchronous specifications, and

use discrete event as their MoC. A GALS design can be modeled in these languages

using discrete event MoC, however, it is not very natural. KPN is a well known

simplistic model used for expressing behaviors involving dataflow such as streaming

audio, video, and other 3D multimedia applications as well as DSP applications.

The behaviors of the applications are modeled as a collection of concurrent processes

communicating data via first-in-first-out (FIFO) channels with unbounded capacity.

The processes in a KPN are sequential programs that consume data (referred as

tokens) from their input channels and produce data on their output channels. These

processes execute based on blocking read and non-blocking write schemes. A KPN

model closely relates to a GALS description, where the processes can be seen as

synchronous components, and their interaction as asynchronous.

We illustrate four different architectures in this paper: handshake-based, FIFO-

based, controller-based, and lookup-based architectures. For the FIFO-based archi-

tecture, we show two variants: (i) architecture based on handshake protocol with
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Fig. 2. Handshake Protocols

asynchronous FIFO, and (ii) architecture based on principles of LIP.

During discussions of these architectures, we dwell upon their tradeoffs, and

when these architectures should be selected.

2 Background

In this section, we discuss some background material for understanding of the ar-

chitectures illustrated in this paper.

The handshake in most asynchronous circuits use signaling involving requests

and acknowledgements. This computational model is used for dataflow comput-

ing [11,12], where the arrival of data triggers an operation. Of the many known

handshaking protocols are the four-phase handshake (Figure 2(a)) and two-phase

handshake (Figure 2(b)).

The latency insensitive protocols (LIPs) [5,6,7,8] have been applied on synchro-

nous systems, where all components are assumed to receive the same clock but some

interconnects are too long for signals to propagate within a single clock cycle. The

protocol involves encapsulation of all components of the design with a wrapper logic

that communicates with addition signals: valid and stall. Extra storage elements

are added along the long interconnects for segmenting longer signal delay paths

into shorter signal delay paths with propagation delay less than a clock period. We

focus our discussion on the role of valid and stall signals. A sender sends valid

data (validity of data denoted by valid signals) to its receiver on every clock, and

whenever the stall signal is not set. Once the stall is asserted, the sender does not

send valid data. In the case of request-acknowledge signals, the request signal will

always be followed by an acknowledge signal for passing new data.

3 A Running Example

For this paper, we discuss different architecture with a running example to compare

their pros and cons. We use the KPN diagram shown in Figure 3 that consists of four

processes: A,B, C,D which connect by channels s1, s2, s3, and s4 with unbounded

FIFOs. The processes A and B are source processes that produce tokens on channels

s1 and s2. The process C has an initial token on channel s4. A possible behavior

of the network is as follows: Processes A and B execute producing tokens on their

respective outputs. Process D cannot execute as there are no tokens from C, so C
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Fig. 3. Running Example

executes first, followed by D.

The components in GALS are associated with clocks, which are unknown to the

designer. The clocks for these components are assumed to be independent. These

clocks can either be generated locally by using gates such as inverters in a locked

loop fashion, or can be from an external source.

For our KPN example of Figure 3a, we consider sample clock ticks shown in

Table 3b. These ticks can be seen by an observer that is observing the design

synchronously and analyzing the clock realization for different components. A clock

tick represents a time stamp based on when the components are fired. The clock

ticks (X) signify when the clocks of the respective components are triggered. For

example, the component A is observed to trigger at t1, t2, t3, t4, and t6, and

component B triggers at t1, t3, t4, t5, and t6. From the clock table, it can be said

that components A and B execute in parallel at t1. Please note that the information

presented in Table 3b is a sample observation from an observer when the design

executes. We are using this table to illustrate our point. These clock relationships

are not known to the designers at design time. So, as far as the designer is concerned,

the components are completely asynchronous with respect to each other.

4 Handshake based GALS Architecture

In the handshake-based GALS architecture, the synchronous components communi-

cate directly via handshaking schemes. A receiver-transmitter unit (RTU) is added

to each component to ensure proper execution of the request-acknowledge based

handshake protocol. Each signal (carrying valid data) is augmented with two extra

signals for control purposes: request and acknowledge. The components follow the

signaling protocol discussed earlier.

Consider a source component and a destination component, where the source

component sends data to the destination component. The data can be sent or

received when it is triggered by its clock. Figure 4(a) shows a component with

two input and two output signals. D1, D2, D3, and D4 are the input/output data

signals, and req1, ack1, req2, ack2, req3, ack3, req4, and ack4 are its corresponding

request and acknowledgement signals.

In a network, a synchronous component executes when the following conditions
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Fig. 4. Handshake-based GALS Architecture

hold: (i) all its input request signals are requesting (req=1) , (ii) all its input ac-

knowledge signals are waiting for new request (ack=0). Once, both these conditions

hold, the component executes based on its clock. Until these conditions are true,

the synchronous component is disabled.

Figure 4(b) can be refined from Figure 3 where the RTU are added to each

process, and the communication between nodes handled by: data signal, request

signal (req) and acknowledge signal (ack).

��
���

� �

�
�� ��

��
���

� �

�
�� ��

��
���

� �

�
�� ��

��
���

� �

�
�� ��

�� ��
�

� �

�
�� ��

�� ��
�

� �

�
�� ��

�� ���� �� �� ��

 ¡¢£¤ ¥¦ ��§¨©ª«¬
 ¡¢£¤ ­¦ ��§¨©ª«¬

 ¡¢£¤ ¥¦ ®¯°�°±²
 ¡¢£¤  ¦ ��§̄ £¤«¬

��§¨©ª«¬
 ¡¢£¤ ³¦ ��§̄ £¤«¬

 ¡¢£¤ ¥¦ ��§¨©ª«´
 ¡¢£¤ ­¦ ��§¨©ª«´
 ¡¢£¤ ³¦ ��§̄ £¤«¬

��§¨©ª«¬

 ¡¢£¤ ¥¦ ®¯°�°±²
 ¡¢£¤ ­¦ ®¯°�°±²
 ¡¢£¤  ¦ ��§¯£¤«´

��§¨©ª«´
��§̄ £¤«¬

 ¡¢£¤ ­¦ ��§¨©ª«¬
 ¡¢£¤ ³¦ ��§̄ £¤«´

��§¯£¤«´
��§¨©ª«´

 ¡¢£¤ ¥¦ ��§¨©ª«¬
 ¡¢£¤ ­¦ ®¯°�°±²
 ¡¢£¤ ³¦ ®¯°�°±²

Fig. 5. Simulation Trace for Handshake-based Architecture

Given handshake based GALS in Figure 4(b) and its corresponding clocks in

Table 3b, we analyze its simulation trace based on four-phase handshaking protocol.

Figure 5 illustrates what signals are updated at different clock ticks. Now, based

on the clock table, components A and B trigger at t1, i.e. A’s s1.req=1 and B’s

s2.req=1. In t2, component C’s s2.ack=1 and D’s s1.ack=1, however, component A

keeps waiting as no acknowledgement has been received from component D. Note

that the data is transmitted when the request signal is set to ‘1’, and the sender

knows that the receiver is ready to receive a new value when acknowledge signal is

set to ‘0’.

Pros and Cons: The signaling protocol has been used for static dataflow ar-

chitectures [4]. At most one valid data value can be present on a communication

signals. This is one of the disadvantages of the architecture since the components
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would only execute if new data can be stored on the outputs. This also restricts

parallelism in the design. Multiple handshakes are required for transferring data

from one component to another which consumes more power and limits the per-

formance. Secondly, if there are n inter-component signals, then 2 ∗ n additional

signals are required for request and acknowledgements. For the example shown, a

total of 12 (4+2*(4)) signals are required.

5 FIFO-based GALS Architecture

We discuss two variants for implementing a FIFO-based GALS architecture. These

are based on (i) handshaking scheme, and (ii) principles of LIP.

In the handshaking scheme for FIFO-based GALS architecture, the components

are refined with the protocol discussed in Section 4, where RTUs are added to all

components. An asynchronous FIFO with a bounded size is placed between the

components. The component now handshakes with this bounded FIFO. We explain

this with an example shown in Figure 6 where two components A and B communicate

with an N-size FIFO in between.
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Fig. 6. Asynchronous FIFO with Handshake

The asynchronous FIFO placed in between two components (A and B) will require

RTUs on both its ends. Component A’s RTU will communicate with RTU of the

FIFO facing towards A. The RTU of the FIFO facing B will communicate with the

RTU of B. For the four-phase handshake protocol, four handshakes will be required

to communicate a single data from component A to FIFO, and the same from the

FIFO to component B. In other words, a total of 8 handshakes will be needed

to communicate a data from component A to component B. In the case of two-

phase handshake, the total handshakes for exchanging one data will 4. Such an

architecture will be very expensive with respect to the performance of the design.

We now propose a new GALS architecture based on the principles of LIPs. Recall

that the communication is handled by valid-stall signals which are generated on the

clocks of the components. Valid and stall signals are added for each inter-component

signal.

The protocol involves refinement of each component with: (1) Input interface

process (IIP), and (2) output interface process (OIP). Asynchronous FIFOs are

placed between two components for communication. These FIFOs are equipped with

interfaces that ensure correct communication between components with independent

clocks. Detail information about these FIFOs can be found in [13]. Figure 7(a)

illustrates the block diagram of a component in this architecture.

Input interface process with barrier synchronization (IIP): The IIP is

placed at the input of the synchronous component. The main idea of this process is

to barrier synchronize (align) all the valid inputs for the computational block. The

block can only execute once all the inputs have been realized. Each IIP contains

buffers for each input signal to store input data values. There are exactly two
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storage elements for each input. This is because when the computation block is

stopped by the IIP, the incoming inputs need to be stored, and the stall signals

for the appropriate source components have to be enabled. The need for the stall

signal is realized as soon as the first storage element is filled. By the time the stall

signal is enabled, the source component could have placed another valid value on

the signal. Therefore, the second storage is needed to store this value.

IIP takes input data signals with their corresponding valid signals from its source

components, and a stop signal from OIP to indicate that OIP is not ready to accept

new values. IIP provides data to the computation block, a dv signal (stands for

data-valid signals) to the OIP indicating it is sending a valid value, and stall signals

to its source components. The IIP works in two phases: In the first phase it reads

all inputs and stores the data values in its buffer. In the second phase it provides

the data values to the component based on its input valid signals which are written

to its output.
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(b) FIFO-based GALS

Fig. 7. FIFO-based GALS Architecture

There are three possible scenarios that can occur: (i) All input valid signals are

1. During the first phase, the IIP stores the data, and at the start of the second

phase, the values are provided to the computation block. The IIP outputs a 1 on

its dv signal, and 0 is placed on all output stall signals. (ii) All input valid signals

are not 1. In the first phase, the IIP reads all the valid values from its inputs, and

stores them in their respective storage elements. During the second phase, the IIP

sends 0 on its dv signal. For the inputs where valid value was not realized, the

IIP places 0 on their corresponding stall signals. (iii) The stop signal from OIP is

enabled. In the first phase, the IIP will read and store the inputs. In the second

phase, the IIP outputs a 0 on dv signal, and places 0 on all its output stall signals.

Output interface process (OIP): The OIP is placed at the output of the

synchronous component, and contains one buffer to store the result of the synchro-

nous block. The inputs of OIP are dv signal from IIP, data from the computation

block, and stall signals from its destination FIFOs. OIP reads and stores the value

from the computation block whenever a 1 is received on the dv signal. The OIP

places the valid value received from the computation block to its output when the

stall signal from the FIFO is disabled. In the case when the stall signal from the

7
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FIFO is enabled, the data from the computation block is stored in its buffer, and 1

is placed on the stop signal to the IIP.

FIFO process: The FIFO process provides the communication between two

synchronous components. At each end of the FIFO, there are interfaces that com-

municate with the synchronous component. Note that this FIFO stands as an

interface between the components running on different clocks. So, this FIFO has

an synchronous to asynchronous interface on its input end, and an asynchronous

to synchronous interface on its output end. Details about such interfaces can be

found in [13]. The FIFO enables a stall to its source component when the buffer

becomes full. Valid data is written on its output based on the clock of the destina-

tion component when valid value is present. Figure 7(b) illustrates a diagram of a

FIFO-based GALS architecture.

Now, consider the example of FIFO-based GALS in Figure 7(b) and the clocks

of its corresponding components in Table 3b, we analyze its simulation trace which

depends on the size of the FIFOs on the communication channels. Table 1 shows the

size on the channels along with the number of valid values present on the channels.

Note that the components execute on its clock when the data is present in the FIFOs

of its input channels and its output channel FIFOs are not full. The components

- FIFO size t0 t1 t2 t3 t4 t5 t6

s1 2 0 1 2* 1 2* 1 2

s2 3 0 1 0 1 1 2 3*

s3 3 0 0 1 0 1 0 0

s4 2 1 1 0 1 0 1 1

* denotes stall signal is enabled

Table 1
Count of Valid Values on Channels.

A and B trigger on t1, i.e. A and B will produce a valid value and store it in

its output FIFO channels s1 and s2. At t2, the clocks of components A, C, and

D arrive. Component C executes as it has valid values on both its input signals

s2 and s3 which are realized at t1, and the token is removed from their respective

FIFOs (recall that the input from D to C has an initial valid value as shown in t0).

Component D will not execute since no input is received from C at t1. The count

of valid value on s3 is ‘0’. Component A produces another value which is stored in

s1. Now, the maximum FIFO size of s1 is ‘2’, so at this point, the channel reaches

its maximum capacity. Therefore, a stall signal to component A is enabled to stop

it from producing newer values (denoted by a *). The stall signal is disabled when

the FIFO on s1 is ready to accept more values. Note that the stall signals to the

components are enabled/disabled by the FIFO.

Pros and Cons: The number of valid and stall signals added would increase

from the handshake based GALS architecture because of the FIFOs placed in-

between the components. However, the components in this architecture may not

necessarily stop after every execution. A component will only get stalled when no
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data is seen on any of its inputs, or if the FIFO buffers at its output channels

become full. The stall signals form a back pressure mechanism that ensure that

the data is not lost during communication [14]. This type of architecture is closely

related to the static dataflow architecture with the difference that more number

of tokens can be stored on the channels. The FIFO-based architecture will have a

better performance with respect to the handshake-based architecture, and increases

parallelism.

6 Controller-based GALS Architecture

The controller-based GALS architecture is realized by refining each process in a

KPN network into a synchronous component with a local control unit (LCU). The

LCUs of the components communicate asynchronously with a central control unit

(CCU) to request for a permission to execute. Figure 8(a) shows the block diagram

of a component with an LCU unit, and Figure 8(b) illustrates a controller-based

architecture.
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Fig. 8. Controller-based GALS Architecture

The execution of the computation block is controlled by its LCU. The LCU sends

a request message to the CCU. The format of the request message is as follows:

RequestMsg = { Component id: String; Component Status: boolean;

Execution Status: boolean; Input Signal list: String list; Output Signal list:

String list;}

The Component id contains a unique name of the component. The

Component Status can be true or false. A Component Status = true

means that the component is requesting for a grant status, whereas a

Component Status = false means that the component is requesting for the up-

date. The Execution Status contains information about the previous grant re-

quest. This information is used by the CCU for updating its local structure 1 . The

Input Signal list and Output Signal list contain the inputs and outputs of the

component.

The request signal passes the address of the RequestMsg structure to the CCU

with Component Status = true. The CCU upon receiving the address of the

1 We will discuss this later
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Algorithm 1. LCU execution steps on clock arrival

Step 1: Initialize the request message structure.

Step 2: Send request message to CCU with Component Status = true

Step 3: If grant=true

Enable computation block for execution.

Execution Status = true

else Execution Status = false

Step 4: Send request message to CCU with Component Status = false.

request message, retrieves the information and responds by giving a grant as true

or false. An enabled grant request has grant=true, otherwise vice versa. When

the LCU receives a grant=true from CCU, it enables the computation block for

execution. After execution, Execution Status is set to true and Component Status

is set to false, and the request signal is sent back to the CCU. If grant=false is

received from CCU, Execution Status as well as Component Status are set to

false, and the request signal is sent back to the CCU. The algorithm 1 defines the

steps of the LCU that occur on each clock of the component. This is because the

components in GALS only fire on the arrival of their clocks.

Next, we discuss the functionality of the CCU. The CCU is an asynchronous

component that receives the request messages from the LCUs of different com-

ponents, and based on the presence of values on the signals, grant the requests

accordingly. The CCU consists of a simple structure that stores the presence and

absence of values of different signals of the network. The storage structure for CCU

is as follows:

SignalStatus = { Signal Name: String; Value Status: Boolean; }

The SignalStatus structure is stored as a list of structures. An alternate imple-

mentation can be organizing the same data as a hash table. The Signal Name

is associated with the signal connecting two synchronous components, and its

V alue Status corresponds to a boolean value, which if high means that the sig-

nal has a valid value, and low means that the signal does not have a valid value.

Algorithm 2 shows the steps taken by the CCU when it receives a request.

If more than one request is received by the CCU, the grant status is computed

for all the requesting components. The update to the SignalStatus structure only

occurs if the message received from an LCU contains Component Status = false

and Execution Status = true. This update is done in an atomic step. Further-

more, when many requests are received by CCU, a case where two requests require

updating the same signal value will never exists. This is due to the fact that the

grant signals are always generated before the update is done, and the update occurs

only on those signals that are either inputs or outputs to the components receiving

true grant signals. So, if there are two components connecting each other, then they
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Algorithm 2. CCU execution steps on receiving request

If Component Status = true

Fetch the appropriate status values from the SignalStatus structure.

If SignalStatus values of all inputs are high, and all outputs are low

grant=true

else grant=false.

else if Component Status = false

If Execution Status = true (atomic step)

Set all inputs to low in Signal Status table.

Set all outputs to high in Signal Status table.

both will never be provided the grant request at the same time.

Now, consider the example of Controller-based GALS in Figure 8(b) and the

clocks of its corresponding components in Table 3b, we analyze its simulation trace

of the signal status table. Figure 9 shows the presence of values at each clock tick.

The signals between the components and the controller handles the exchange of

messages. Recall that we have initially assumed that signal s4 has an initial value.

The components that execute during the clock are shaded. For instance, at clock
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Fig. 9. Simulation Trace of Signal Status Table in Controller

tick t2, clocks of component A, C, and D arrive, however only C executes since s1

and s2 have valid values (realized at t1). Components A and B do not receive an

enabled grant signal from the CCU, as the values s1 and s2 are high in the signal

status table at t1. Secondly, if A and B were to be executed, then their previous

values would have been overridden.

Pros and Cons: In the controller-based GALS architecture, there is no back-

pressure [14] mechanism which is seen in the FIFO-based GALS architecture and

other existing GALS designs [15]. The synchronous components execute based

on the grant requests received by the CCU. Also, each component has a simple

communication model between the LCU and CCU for grant request. However, the

CCU can be a major bottleneck for the design. This is because the request for
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all the components of the network are handled by this one single unit. Secondly,

each component has back and forth (req/grant) signals to the CCU. The number

of additional signals depend on the number of components in the design. The

throughput of this architecture will be similar to the handshake-based architecture

because at most only one token (valid value) can exist on a single arc (i.e. inter-

component signal 2 ). Furthermore, some of the ideas such as the use of a centralized

controller have been borrowed from the tagged-token dataflow architectures [4].

7 Lookup-based GALS Architecture

A storage mapping unit (SMU) is added to each component in the lookup-based

GALS architecture. The communication between the components is based on read-

ing and writing from a lookup storage which is placed on the chip for fast access

to data. This lookup table acts as a shared storage between components which re-

moves the need for explicit signal exchanges. Such an architecture can be considered

specifically for GALS, since accessing to main memory would be very expensive and

time consuming. Figure 10a illustrates a diagram of a component where s1 and s2
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Fig. 10. Block Diagram of a Component in Lookup-based GALS Architecture

are inputs and, s3 and s4 are outputs.

Data Structure: The addresses of the inputs and outputs for a component are

stored internally within a component’s SMU. The storage structure in the SMU is

shown in Figure 11.

;<<=>??
@AB

CDEA<
@AB

;<<=>??
@AF

CDEA<
@AF

;<<=>??
GEHB

CDEA<
GEHB

Fig. 11. Storage Structure in SMU

The storage structure contains fields for the inputs and outputs. Each input

and output field is divided into two parts: address and bound. The address part

points to the location of the inputs/outputs in the lookup storage. Initially, the

address part for each input and output field contains its initial (starting) address.

The bound part represents the maximum number of valid data locations that can

be stored starting from the initial address location. In other words, the bound

represents the maximum valid values that can be saved at a given time.

2 A signal connecting two components

12
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Purpose of the structure: The organization of the fields clearly helps in

identifying the addresses of the inputs and outputs simultaneously. Once the address

is accessed, to either read or store another value, the address can be incremented by

1 until the bound is reached. In other words, to access the next location, the address

part is incremented as follows: (address + 1) % bound. Here, address and bound

represent the corresponding address and bound locations (of the input/output).

On-chip Lookup Storage: We consider that the lookup storage is placed on

the chip for fast access of data. We assume that the time required for accessing

data is faster than the clock of any component in the architecture. For an on-chip

storage, this can be a feasible assumption. The lookup storage size can be computed

based on the number of elements that can be stored. For the lookup storage, we

assume that it is split into different segments. We assume that a storage location

is 32-bits in length. The number of segments in the lookup storage depends on

the number of inter-component signals. Consider that there are n signals in the

GALS design, and each signal i has a bound szi associated with it. The datasize

corresponds to the size of data stored in the storage location. Therefore, the total

number of segments in the lookup storage is i, and the total size of the storage is

computed as follows:
n∑

i=1

szi ∗ datasize = (sz1 + sz2 + . . . + szn) ∗ datasize

We now look at how the data is organized in the lookup storage. We assume

that the data that is retrieved is 32 bits. From these 32 bits, the most significant

bit (MSB) represents the present bit. The present bit if set to 1 implies that the

data is valid, otherwise it is invalid. The actual data is 31 bits.

Functionality of a Storage Mapping Unit (SMU): The SMU maps the

addresses of each input/output to the correct lookup storage locations. The SMU

contains local storage elements to store the inputs/outputs that were retrieved ear-

lier. This is based on the number of input and output fields. We assume initially

that all storage is empty. The SMU also has the capability to extract the MSBs of

the data retrieved. This can be implemented as a simple function.

On each clock of the component, the functionality of SMU is defined in Algo-

rithm 3:

Now, consider the example of the lookup-based GALS (Figure 12) and the clocks

of its corresponding components (Table 3b). For comparison purposes, we consider

the bounds for each address to be the same as the corresponding size of the FI-

FOs considered in the FIFO-based architecture. The lookup-storage size can be

computed by

4∑

i=1

32 ∗ szi = 32 ∗ (2 + 3 + 3 + 2) = 3200bits = 400bytes.

Figure 12 shows how the addresses are maintained in each component’s SMU

and how they change based on the arrival of clocks. As discussed earlier, the data is

accessed (read for inputs and written for outputs) based on the local addresses. The

SMU knows the appropriate segment where the addressees reside. In the example

shown in Figure 12, we represent each address as *[signal name][location] for ease of
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Algorithm 3. Functionality of SMU

Step 1: Retrieve inputs whose present bits are ‘0’, and outputs whose present

bits are ‘1’ in the local storage.

Step 2: If the present bits of all the inputs are ‘1’ and that of all the outputs

are ‘0’, then the computational block is enabled for execution with data at input

location. Otherwise, jump to Step 8.

Step 3: The present bits of all inputs are set to 0 in the local storage locations.

Step 4: The outputs from computation block are stored in the local storage and

the corresponding present bits are set to ‘1’.

Step 5: The data for inputs and outputs is written back in an atomic step to

the same addresses from where these were read.

Step 6: The local address of all inputs are incremented by ‘1’ % bound to point

to the next read location.

Step 7: The local address of all outputs are incremented by ‘1’ % bound to point

to the next write location.

Step 8: For all inputs retrieved in the current cycle with present bits as ‘1’, and

all outputs retrieved in the current cycle with present bits as ‘0’, increment their

corresponding address fields.

readability. For instance, *s301 points to the appropriate location where the data of

signal s3 is stored along with its offset 01. After every read/write by a component,

the offset is incremented by 1 modulo bound of the signal. Also, for simplicity, the

lookup storage structure shown only illustrates the presence (1) and absence (0)

bits for the data. In actual storage, the data is read and written to these locations,

along with the appropriate assignment of presence and absence bit to the MSB.

Pros and Cons: One of the main advantages of this approach is that more than

one data values can be stored in lookup storage as compared to the previous archi-

tecture where only one valid value can be placed on the components output. The

second advantage of this approach is that the throughput of this architecture would

be high it ensure higher parallelism that the handshake based GALS architecture

and the controller based GALS architecture. Another advantage of this approach is

that there are no inter-component signals, hence keeping the design simple. Most

of the overhead is involved in accessing the lookup storage. There are various areas

where this overhead can be reduced. One such example is that when the data is

retrieved from the storage and it has the presence bit, but other conditions are not

satisfied for its computational block to execute, then this data can be stored in the

SMU’s local storage. Accessing the same storage location twice for the same data

is unnecessary. The same can be applied when accessing the location for reading

data from the output address. If the present is 0, then we know that no other

component will write to the same address, and hence this bit will not be set to 1 by

any other component. However, many other components can read from the same
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Fig. 12. Simulation of Lookup-based GALS Architecture

location. This type of architecture is similar to the dynamic dataflow architecture

where a token matching scheme is implemented and data is retrieved from memory.

8 Comparison of the four architectures

Table 2 illustrates the execution of the components of our example for the four differ-

ent architectures based on the clocks considered. Performance of the entire system

can be analyzed based on how the components execute, and how many times the

components execute. It can be realized that the handshake-based (using four-phase

handshake) architecture had the worst performance, as each component executed

twice in order to communicate one value across. Using a two-phase handshake for

the handshake-based architecture would have improved this performance, but com-

plicated the architecture. The drawback with the handshake based architecture is

that there are twice more signals for each signal in the network.

The performance of the controller based architecture was better than that of the

handshake based architecture but worse than the FIFO-based and lookup-based ar-

chitectures. Each component has signals going back and forth to the CCU, therefore

for such an architecture, two signals are added to communicate with the CCU.

Next, we compare the FIFO-based architecture and the lookup-based architec-

ture. In terms of performance, the lookup-based architecture is better, as each
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component does a fetch on its clock and stores the corresponding data in its local

storage. As a result, the data in the storage has already been read. However, the

main overhead for this approach is that there are many reads and writes to the

storage for each component. In the case of FIFO-based architecture, the FIFOs are

placed in-between the components. Similar to the handshake-based architecture,

each signal is associated with two additional signals (valid and stall). However,

the encapsulation of the computation block includes a barrier synchronizer, which

functions the same as a join. Table 3 illustrates the overhead associated with the

four architectures.

The handshake-based GALS architecture should be chosen as the target archi-

tecture when there is a constraint on adding additional elements such as commu-

nication media (Table 3). Here, the cost associated with additional signals such as

placement and routing is not an issue. FIFO-based architecture is a good choice

as the target architecture for GALS, if additional signals can be added easily with

FIFOs. Such an architecture would be best for performance driven applications.

The controller-based GALS architecture is better if there is a constraint on number

of signals can be added, and the ratio of the components in the design over the

number of inter-component signals is higher. Hence, less number of signals will

be added in this architecture than the handshake-based architecture. If addition

of extra storage elements on the chip is not an issue, and storage accessing time

is assumed to be little, then the lookup-based GALS architecture is best. It was

realized by the example that the Lookup-based GALS architecture had the best

performance if there are no constraints for additional elements/signals on the chip,

and the accessing time was assumed to be negligible.

9 Conclusion & Future Work

In this work, we promote the idea of using KPN as the model of computation for

designing GALS. We provide a design methodology for GALS with the focus of

this paper on architectural exploration. We borrow ideas from existing dataflow

architectures, and use them in our GALS architectures. We illustrate four differ-

ent architectures for implementing GALS with a running example. We show the

overhead complexity involved in these architectures. We do not discuss on issues

involving meta-stability, and cross domain synchronization, as the focus of this pa-

per is on exploration of different GALS architectures. The underlying formalism of

our framework and identifying the formal properties associated with the proposed

Architecture t1 t2 t3 t4 t5 t6

Handshake (4-phase) A,B C D - B A

FIFO-based A,B A,C B,D A,B,C B,D A,B

Controller-based A,B C B,D A,C B,D A

Lookup-based A,B A,C A,B,D A,B,C B,D A,B

Table 2
Execution of Components in Different Architectures
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Computation

Complexity

Signal Overhead

(n signals & m

components)

Communication

Media

Handshake-based RTU 2*n -

FIFO-based IIP and OIP 4*n FIFOs

Controller-based LCU 2*m CCU

Lookup-based SMU 0 Lookup Storage

Table 3
Overhead Associated with GALS Architectures

refinements are part of our on-going work. Furthermore, the proof obligations for

the proposed refinement schemes in terms of their correctness will be established in

our future work.
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