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Abstract

In Kahn process network (KPN), the processes (nodes) communicate by unbounded unidirectional FIFO
channels (arcs), with the property of non-blocking writes and blocking reads on the channels. KPN provides
a semantic model of computation, where a computation can be expressed as a set of asynchronously commu-
nicating processes. However, the unbounded FIFO based asynchrony is not realizable in practice and hence
requires refinement in real hardware. In this work, we start with KPN as the model of computation for
GALS, and discuss how different GALS architectures can be realized. We borrow some ideas from existing
dataflow architectures for our GALS designs.

Keywords: Kahn process networks, globally asynchronous locally synchronous, unbounded FIFO
channels.

1 Introduction

Globally asynchronous locally synchronous (GALS) designs are gaining importance
due to the fact that the synchrony assumption is failing in large synchronous de-
signs. This is because of the ever increasing clock frequencies, which causes the time
taken for a signal to propagate between different components to be longer than the
clock period [1]. In a GALS design, the communication between the synchronous
components occur asynchronously. The synchrony assumption holds within each
synchronous component. However, there are other challenges facing the design of
GALS systems. There is a lack of tools and design methodologies to facilitate GALS
designs. In most cases, GALS designs are constructed using ad hoc methods, where
synchronous components are encapsulated with some wrapper logic and communi-
cation is handshake driven. Furthermore, these ad hoc approaches are not easily
subject to formal reasoning about the correctness of a design. Hence, we need to
identify the basic ingredients for a successful GALS design methodology.

The objective of this paper is to facilitate a methodological approach to GALS
design borrowing models of computation (MoCs) [2], and architectural concepts
from dataflow computing [3,4], and principles employed in latency insensitive sys-
tems [5,6,7,8]. In this paper, we (i) use Kahn Process Network (KPN) as the MoC
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for specification of a computation, (ii) show refinements of KPN into various GALS
architectures, (iii) discuss tradeoffs for various architectures.

Design Methodology for GALS: The design methodology we propose for
GALS design can be summarized as follows: Given the description of a system,
the first step is to identify the behaviors of the system as a collection of concur-
rent processes communicating asynchronously with unbounded FIFOs according to
a KPN MoC. To ensure the correctness of the KPN model, the specification can
be validated for its decidable properties related to composition, determinacy, etc.
Architectural exploration can then be performed to identify the appropriate GALS
architecture based on the KPN model. Some of the constraints for choosing an
appropriate architecture that we identify include area (for example, number of ex-
tra interconnects, storage elements, etc), and latency for enabling communication.
Based on the result of architectural exploration, appropriate refinements are applied
to the KPN model.
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constraints, etc)

Simulation-based
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Y

KPN Model

~
Refinement Our Focus// N\
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Refinement to GALS

Fig. 1. Design Methodology for GALS

For this paper, our focus is a number of refinements of KPN into realizable
GALS architectures. We discuss four different possible architectures along with
their tradeoffs. Figure 1 illustrates this design methodology.

Model of Computation for GALS: Most of the design languages used in the
industry such as SystemC [9], SpecC [10], support synchronous specifications, and
use discrete event as their MoC. A GALS design can be modeled in these languages
using discrete event MoC, however, it is not very natural. KPN is a well known
simplistic model used for expressing behaviors involving dataflow such as streaming
audio, video, and other 3D multimedia applications as well as DSP applications.
The behaviors of the applications are modeled as a collection of concurrent processes
communicating data via first-in-first-out (FIFO) channels with unbounded capacity.
The processes in a KPN are sequential programs that consume data (referred as
tokens) from their input channels and produce data on their output channels. These
processes execute based on blocking read and non-blocking write schemes. A KPN
model closely relates to a GALS description, where the processes can be seen as
synchronous components, and their interaction as asynchronous.

We illustrate four different architectures in this paper: handshake-based, FIFO-
based, controller-based, and lookup-based architectures. For the FIFO-based archi-
tecture, we show two variants: (i) architecture based on handshake protocol with

2



SUHAIB ET AL

Request

Request
i+1 i

Request
i i+2

Reset
Request request Request ..
i | i1

Sender Sender
req=1 a/‘:k=1 req=0 ack=0 req=1 re\q=1 ack=1 r>qf0 ack:/o req=1
X \ /

Receiver .
Receiver
Acknu\ifvledge ackr?:;zdge A':k"'mbdge - | Acknoyv\edge | Acknowledge | Ackngwledge
i i i+1 i+2

(a) Four-phase handshake (b) Two-phase handshake

Fig. 2. Handshake Protocols

asynchronous FIFO, and (ii) architecture based on principles of LIP.
During discussions of these architectures, we dwell upon their tradeoffs, and
when these architectures should be selected.

2 Background

In this section, we discuss some background material for understanding of the ar-
chitectures illustrated in this paper.

The handshake in most asynchronous circuits use signaling involving requests
and acknowledgements. This computational model is used for dataflow comput-
ing [11,12], where the arrival of data triggers an operation. Of the many known
handshaking protocols are the four-phase handshake (Figure 2(a)) and two-phase
handshake (Figure 2(b)).

The latency insensitive protocols (LIPs) [5,6,7,8] have been applied on synchro-
nous systems, where all components are assumed to receive the same clock but some
interconnects are too long for signals to propagate within a single clock cycle. The
protocol involves encapsulation of all components of the design with a wrapper logic
that communicates with addition signals: wvalid and stall. Extra storage elements
are added along the long interconnects for segmenting longer signal delay paths
into shorter signal delay paths with propagation delay less than a clock period. We
focus our discussion on the role of valid and stall signals. A sender sends valid
data (validity of data denoted by valid signals) to its receiver on every clock, and
whenever the stall signal is not set. Once the stall is asserted, the sender does not
send valid data. In the case of request-acknowledge signals, the request signal will
always be followed by an acknowledge signal for passing new data.

3 A Running Example

For this paper, we discuss different architecture with a running example to compare
their pros and cons. We use the KPN diagram shown in Figure 3 that consists of four
processes: A, B,C, D which connect by channels s1, s9, s3, and s4 with unbounded
FIFOs. The processes A and B are source processes that produce tokens on channels
s1 and sg. The process C has an initial token on channel s4. A possible behavior
of the network is as follows: Processes A and B execute producing tokens on their
respective outputs. Process D cannot execute as there are no tokens from C, so C
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Fig. 3. Running Example

executes first, followed by D.

The components in GALS are associated with clocks, which are unknown to the
designer. The clocks for these components are assumed to be independent. These
clocks can either be generated locally by using gates such as inverters in a locked
loop fashion, or can be from an external source.

For our KPN example of Figure 3a, we consider sample clock ticks shown in
Table 3b. These ticks can be seen by an observer that is observing the design
synchronously and analyzing the clock realization for different components. A clock
tick represents a time stamp based on when the components are fired. The clock
ticks (v') signify when the clocks of the respective components are triggered. For
example, the component A is observed to trigger at ti, ts, t3, t4, and tg, and
component B triggers at t1, ts, t4, t5, and tg. From the clock table, it can be said
that components A and B execute in parallel at ¢1. Please note that the information
presented in Table 3b is a sample observation from an observer when the design
executes. We are using this table to illustrate our point. These clock relationships
are not known to the designers at design time. So, as far as the designer is concerned,
the components are completely asynchronous with respect to each other.

4 Handshake based GALS Architecture

In the handshake-based GALS architecture, the synchronous components communi-
cate directly via handshaking schemes. A receiver-transmitter unit (RTU) is added
to each component to ensure proper execution of the request-acknowledge based
handshake protocol. Each signal (carrying valid data) is augmented with two extra
signals for control purposes: request and acknowledge. The components follow the
signaling protocol discussed earlier.

Consider a source component and a destination component, where the source
component sends data to the destination component. The data can be sent or
received when it is triggered by its clock. Figure 4(a) shows a component with
two input and two output signals. D1, D2, D3, and D4 are the input/output data
signals, and reql, ackl, req2, ack2, req3, ack3, req4, and ack4 are its corresponding
request and acknowledgement signals.

In a network, a synchronous component executes when the following conditions
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hold: (i) all its input request signals are requesting (req=1) , (ii) all its input ac-
knowledge signals are waiting for new request (ack=0). Once, both these conditions
hold, the component executes based on its clock. Until these conditions are true,
the synchronous component is disabled.

Figure 4(b) can be refined from Figure 3 where the RTU are added to each
process, and the communication between nodes handled by: data signal, request
signal (req) and acknowledge signal (ack).

Clock A: s,.req=1 Clock A: waiting Clock A: s,.req=0 | Clock A: waiting Clock B: s,.req=1 Clock A: s,.req=1
Clock B: s,.req=1 Clock C: s,.ack=1 Clock B: s,.req=0 | Clock B: waiting Clock D: s,.ack=0 Clock B: waiting
s, req=1 Clock D: s;.ack=1 | Clock C: s,.ack=0 s,.ack=0 Clock D: waiting
Clock D: s,.ack=1 s,req=1 s,.req=0 s,req=0
s, ack=1

Fig. 5. Simulation Trace for Handshake-based Architecture

Given handshake based GALS in Figure 4(b) and its corresponding clocks in
Table 3b, we analyze its simulation trace based on four-phase handshaking protocol.
Figure 5 illustrates what signals are updated at different clock ticks. Now, based
on the clock table, components A and B trigger at t1, i.e. A’s sj.req=1 and B’s
s9.req=1. In t3, component C’s sy.ack=1 and D’s s1.ack=1, however, component A
keeps waiting as no acknowledgement has been received from component D. Note
that the data is transmitted when the request signal is set to ‘1’, and the sender
knows that the receiver is ready to receive a new value when acknowledge signal is
set to ‘0.

Pros and Cons: The signaling protocol has been used for static dataflow ar-
chitectures [4]. At most one valid data value can be present on a communication
signals. This is one of the disadvantages of the architecture since the components
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would only execute if new data can be stored on the outputs. This also restricts
parallelism in the design. Multiple handshakes are required for transferring data
from one component to another which consumes more power and limits the per-
formance. Secondly, if there are n inter-component signals, then 2 % n additional
signals are required for request and acknowledgements. For the example shown, a
total of 12 (442%*(4)) signals are required.

5 FIFO-based GALS Architecture

We discuss two variants for implementing a FIFO-based GALS architecture. These
are based on (i) handshaking scheme, and (ii) principles of LIP.

In the handshaking scheme for FIFO-based GALS architecture, the components
are refined with the protocol discussed in Section 4, where RTUs are added to all
components. An asynchronous FIFO with a bounded size is placed between the
components. The component now handshakes with this bounded FIFO. We explain
this with an example shown in Figure 6 where two components A and B communicate
with an N-size FIFO in between.

DA DB

A N-size reqB
A e — L -— B
ackA FIFO ackB

Fig. 6. Asynchronous FIFO with Handshake

The asynchronous FIFO placed in between two components (A and B) will require
RTUs on both its ends. Component A’s RTU will communicate with RTU of the
FIFO facing towards A. The RTU of the FIFO facing B will communicate with the
RTU of B. For the four-phase handshake protocol, four handshakes will be required
to communicate a single data from component A to FIFO, and the same from the
FIFO to component B. In other words, a total of 8 handshakes will be needed
to communicate a data from component A to component B. In the case of two-
phase handshake, the total handshakes for exchanging one data will 4. Such an
architecture will be very expensive with respect to the performance of the design.

We now propose a new GALS architecture based on the principles of LIPs. Recall
that the communication is handled by valid-stall signals which are generated on the
clocks of the components. Valid and stall signals are added for each inter-component
signal.

The protocol involves refinement of each component with: (1) Input interface
process (IIP), and (2) output interface process (OIP). Asynchronous FIFOs are
placed between two components for communication. These FIFOs are equipped with
interfaces that ensure correct communication between components with independent
clocks. Detail information about these FIFOs can be found in [13]. Figure 7(a)
illustrates the block diagram of a component in this architecture.

Input interface process with barrier synchronization (IIP): The IIP is
placed at the input of the synchronous component. The main idea of this process is
to barrier synchronize (align) all the valid inputs for the computational block. The
block can only execute once all the inputs have been realized. Each ITP contains
buffers for each input signal to store input data values. There are exactly two
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storage elements for each input. This is because when the computation block is
stopped by the IIP, the incoming inputs need to be stored, and the stall signals
for the appropriate source components have to be enabled. The need for the stall
signal is realized as soon as the first storage element is filled. By the time the stall
signal is enabled, the source component could have placed another valid value on
the signal. Therefore, the second storage is needed to store this value.

ITP takes input data signals with their corresponding valid signals from its source
components, and a stop signal from OIP to indicate that OIP is not ready to accept
new values. IIP provides data to the computation block, a dv signal (stands for
data-valid signals) to the OIP indicating it is sending a valid value, and stall signals
to its source components. The IIP works in two phases: In the first phase it reads
all inputs and stores the data values in its buffer. In the second phase it provides
the data values to the component based on its input valid signals which are written
to its output.

FIFO Process } | —
" nput Computation Output 3

!- llll [t [ BlOCk pronoce

' : Process Process [V ]~ vl

=

AN N

§
Glock E 1 stop signal
—— Data Signal | ——— Vaiid Signal ‘ ———-» stall Signal
(a) Block Diagram of Component (b) FIFO-based GALS

Fig. 7. FIFO-based GALS Architecture

There are three possible scenarios that can occur: (i) All input valid signals are
1. During the first phase, the IIP stores the data, and at the start of the second
phase, the values are provided to the computation block. The IIP outputs a 1 on
its dv signal, and 0 is placed on all output stall signals. (ii) All input valid signals
are not 1. In the first phase, the IIP reads all the valid values from its inputs, and
stores them in their respective storage elements. During the second phase, the ITP
sends 0 on its dv signal. For the inputs where valid value was not realized, the
ITP places 0 on their corresponding stall signals. (iii) The stop signal from OIP is
enabled. In the first phase, the ITP will read and store the inputs. In the second
phase, the IIP outputs a 0 on dv signal, and places 0 on all its output stall signals.

Output interface process (OIP): The OIP is placed at the output of the
synchronous component, and contains one buffer to store the result of the synchro-
nous block. The inputs of OIP are dv signal from IIP, data from the computation
block, and stall signals from its destination FIFOs. OIP reads and stores the value
from the computation block whenever a 1 is received on the dv signal. The OIP
places the valid value received from the computation block to its output when the
stall signal from the FIFO is disabled. In the case when the stall signal from the
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FIFO is enabled, the data from the computation block is stored in its buffer, and 1
is placed on the stop signal to the IIP.

FIFO process: The FIFO process provides the communication between two
synchronous components. At each end of the FIFO, there are interfaces that com-
municate with the synchronous component. Note that this FIFO stands as an
interface between the components running on different clocks. So, this FIFO has
an synchronous to asynchronous interface on its input end, and an asynchronous
to synchronous interface on its output end. Details about such interfaces can be
found in [13]. The FIFO enables a stall to its source component when the buffer
becomes full. Valid data is written on its output based on the clock of the destina-
tion component when valid value is present. Figure 7(b) illustrates a diagram of a
FIFO-based GALS architecture.

Now, consider the example of FIFO-based GALS in Figure 7(b) and the clocks
of its corresponding components in Table 3b, we analyze its simulation trace which
depends on the size of the FIFOs on the communication channels. Table 1 shows the
size on the channels along with the number of valid values present on the channels.
Note that the components execute on its clock when the data is present in the FIFOs
of its input channels and its output channel FIFOs are not full. The components

- | FIFO size | to | t1 | to | ts | ta | ts5 | t6
s1 2 01 ]2¥|1|2¥|1]2
S9 3 0|1 /0|1 ]1]2]3*
s3 3 ojlofj1/0]1]0]o0
S4 2 1{1]o0f1]l0|1]1

* denotes stall signal is enabled

Table 1
Count of Valid Values on Channels.

A and B trigger on t1, i.e. A and B will produce a valid value and store it in
its output FIFO channels s; and ss. At t9, the clocks of components A, C, and
D arrive. Component C executes as it has valid values on both its input signals
so and s3 which are realized at t1, and the token is removed from their respective
FIFOs (recall that the input from D to C has an initial valid value as shown in ¢g).
Component D will not execute since no input is received from C at t;. The count
of valid value on s3 is ‘0’. Component A produces another value which is stored in
s1. Now, the maximum FIFO size of s; is ‘2’, so at this point, the channel reaches
its maximum capacity. Therefore, a stall signal to component A is enabled to stop
it from producing newer values (denoted by a *). The stall signal is disabled when
the FIFO on s; is ready to accept more values. Note that the stall signals to the
components are enabled/disabled by the FIFO.

Pros and Cons: The number of valid and stall signals added would increase
from the handshake based GALS architecture because of the FIFOs placed in-
between the components. However, the components in this architecture may not
necessarily stop after every execution. A component will only get stalled when no
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data is seen on any of its inputs, or if the FIFO buffers at its output channels
become full. The stall signals form a back pressure mechanism that ensure that
the data is not lost during communication [14]. This type of architecture is closely
related to the static dataflow architecture with the difference that more number
of tokens can be stored on the channels. The FIFO-based architecture will have a
better performance with respect to the handshake-based architecture, and increases
parallelism.

6 Controller-based GALS Architecture

The controller-based GALS architecture is realized by refining each process in a
KPN network into a synchronous component with a local control unit (LCU). The
LCUs of the components communicate asynchronously with a central control unit
(CCU) to request for a permission to execute. Figure 8(a) shows the block diagram
of a component with an LCU unit, and Figure 8(b) illustrates a controller-based

architecture.
3
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Fig. 8. Controller-based GALS Architecture

The execution of the computation block is controlled by its LCU. The LCU sends
a request message to the CCU. The format of the request message is as follows:

RequestMsg = { Component_id: String; Component_Status: boolean;
Execution_Status: boolean; Input_Signal list: String list; Output_Signal list:
String list;}

The Component_id contains a unique name of the component. The
Component_Status can be true or false. A Component_Status = true
means that the component is requesting for a grant status, whereas a
Component_Status = false means that the component is requesting for the up-
date. The Ezecution_Status contains information about the previous grant re-
quest. This information is used by the CCU for updating its local structure!. The
Input_Signal_list and Output_Signal_list contain the inputs and outputs of the
component.

The request signal passes the address of the RequestM sg structure to the CCU
with Component_Status = true. The CCU upon receiving the address of the

L We will discuss this later
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Algorithm 1. LCU execution steps on clock arrival

Step 1: Initialize the request message structure.
Step 2: Send request message to CCU with Component_Status = true
Step 3: If grant=true
Enable computation block for execution.
FEzxecution_Status = true
else FExecution_Status = false
Step 4: Send request message to CCU with Component_Status = false.

request message, retrieves the information and responds by giving a grant as true
or false. An enabled grant request has grant=true, otherwise vice versa. When
the LCU receives a grant=true from CCU, it enables the computation block for
execution. After execution, Execution_Status is set to true and Component_Status
is set to false, and the request signal is sent back to the CCU. If grant=false is
received from CCU, FExecution_Status as well as Component_Status are set to
false, and the request signal is sent back to the CCU. The algorithm 1 defines the
steps of the LCU that occur on each clock of the component. This is because the
components in GALS only fire on the arrival of their clocks.

Next, we discuss the functionality of the CCU. The CCU is an asynchronous
component that receives the request messages from the LCUs of different com-
ponents, and based on the presence of values on the signals, grant the requests
accordingly. The CCU consists of a simple structure that stores the presence and
absence of values of different signals of the network. The storage structure for CCU
is as follows:

SignalStatus = { Signal Name: String; Value_Status: Boolean; }

The SignalStatus structure is stored as a list of structures. An alternate imple-
mentation can be organizing the same data as a hash table. The Signal_Name
is associated with the signal connecting two synchronous components, and its
Value_Status corresponds to a boolean value, which if high means that the sig-
nal has a valid value, and low means that the signal does not have a valid value.
Algorithm 2 shows the steps taken by the CCU when it receives a request.

If more than one request is received by the CCU, the grant status is computed
for all the requesting components. The update to the SignalStatus structure only
occurs if the message received from an LCU contains Component_Status = false
and Fxecution_Status = true. This update is done in an atomic step. Further-
more, when many requests are received by CCU, a case where two requests require
updating the same signal value will never exists. This is due to the fact that the
grant signals are always generated before the update is done, and the update occurs
only on those signals that are either inputs or outputs to the components receiving
true grant signals. So, if there are two components connecting each other, then they

10



SUHAIB ET AL

Algorithm 2. CCU execution steps on receiving request

If Component_Status = true
Fetch the appropriate status values from the SignalStatus structure.
If SignalStatus values of all inputs are high, and all outputs are low
grant=true
else grant={false.
else if Component_Status = false
If Execution_Status = true (atomic step)
Set all inputs to low in Signal_Status table.
Set all outputs to high in Signal Status table.

both will never be provided the grant request at the same time.

Now, consider the example of Controller-based GALS in Figure 8(b) and the
clocks of its corresponding components in Table 3b, we analyze its simulation trace
of the signal status table. Figure 9 shows the presence of values at each clock tick.
The signals between the components and the controller handles the exchange of
messages. Recall that we have initially assumed that signal s4 has an initial value.
The components that execute during the clock are shaded. For instance, at clock

Fig. 9. Simulation Trace of Signal Status Table in Controller

tick ts, clocks of component A, C, and D arrive, however only C executes since s1
and sp have valid values (realized at ¢1). Components A and B do not receive an
enabled grant signal from the CCU, as the values s; and sy are high in the signal
status table at ¢;. Secondly, if A and B were to be executed, then their previous
values would have been overridden.

Pros and Cons: In the controller-based GALS architecture, there is no back-
pressure [14] mechanism which is seen in the FIFO-based GALS architecture and
other existing GALS designs [15]. The synchronous components execute based
on the grant requests received by the CCU. Also, each component has a simple
communication model between the LCU and CCU for grant request. However, the
CCU can be a major bottleneck for the design. This is because the request for
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all the components of the network are handled by this one single unit. Secondly,
each component has back and forth (req/grant) signals to the CCU. The number
of additional signals depend on the number of components in the design. The
throughput of this architecture will be similar to the handshake-based architecture
because at most only one token (valid value) can exist on a single arc (i.e. inter-
component signal ? ). Furthermore, some of the ideas such as the use of a centralized
controller have been borrowed from the tagged-token dataflow architectures [4].

7 Lookup-based GALS Architecture

A storage mapping unit (SMU) is added to each component in the lookup-based
GALS architecture. The communication between the components is based on read-
ing and writing from a lookup storage which is placed on the chip for fast access
to data. This lookup table acts as a shared storage between components which re-
moves the need for explicit signal exchanges. Such an architecture can be considered
specifically for GALS, since accessing to main memory would be very expensive and
time consuming. Figure 10a illustrates a diagram of a component where s; and s

Computation
block I Lookup |
LStorage |
SElRTE o
Clock
SMU @

a
Sy Il B4

Fig. 10. Block Diagram of a Component in Lookup-based GALS Architecture

are inputs and, s3 and s4 are outputs.

Data Structure: The addresses of the inputs and outputs for a component are
stored internally within a component’s SMU. The storage structure in the SMU is
shown in Figure 11.

Address | Bound | Address | Bound Address | Bound

in1 It In2 n2 | **°® outt | outt |TT==°

Fig. 11. Storage Structure in SMU

The storage structure contains fields for the inputs and outputs. Each input
and output field is divided into two parts: address and bound. The address part
points to the location of the inputs/outputs in the lookup storage. Initially, the
address part for each input and output field contains its initial (starting) address.
The bound part represents the maximum number of valid data locations that can
be stored starting from the initial address location. In other words, the bound
represents the maximum valid values that can be saved at a given time.

2 A signal connecting two components
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Purpose of the structure: The organization of the fields clearly helps in
identifying the addresses of the inputs and outputs simultaneously. Once the address
is accessed, to either read or store another value, the address can be incremented by
1 until the bound is reached. In other words, to access the next location, the address
part is incremented as follows: (address + 1) % bound. Here, address and bound
represent the corresponding address and bound locations (of the input/output).

On-chip Lookup Storage: We consider that the lookup storage is placed on
the chip for fast access of data. We assume that the time required for accessing
data is faster than the clock of any component in the architecture. For an on-chip
storage, this can be a feasible assumption. The lookup storage size can be computed
based on the number of elements that can be stored. For the lookup storage, we
assume that it is split into different segments. We assume that a storage location
is 32-bits in length. The number of segments in the lookup storage depends on
the number of inter-component signals. Consider that there are n signals in the
GALS design, and each signal ¢ has a bound sz; associated with it. The datasize
corresponds to the size of data stored in the storage location. Therefore, the total
number of segments in the lookup storage is i, and the total size of the storage is
computed as follows:

n
Z sz x datasize = (sz1 + sz2 + ... + Sz,) * datasize
i=1

We now look at how the data is organized in the lookup storage. We assume
that the data that is retrieved is 32 bits. From these 32 bits, the most significant
bit (MSB) represents the present bit. The present bit if set to 1 implies that the
data is valid, otherwise it is invalid. The actual data is 31 bits.

Functionality of a Storage Mapping Unit (SMU): The SMU maps the
addresses of each input/output to the correct lookup storage locations. The SMU
contains local storage elements to store the inputs/outputs that were retrieved ear-
lier. This is based on the number of input and output fields. We assume initially
that all storage is empty. The SMU also has the capability to extract the MSBs of
the data retrieved. This can be implemented as a simple function.

On each clock of the component, the functionality of SMU is defined in Algo-
rithm 3:

Now, consider the example of the lookup-based GALS (Figure 12) and the clocks
of its corresponding components (Table 3b). For comparison purposes, we consider
the bounds for each address to be the same as the corresponding size of the FI-
FOs considered in the FIFO-based architecture. The lookup-storage size can be
computed by

4
> 3252 =32 (24 3 + 3 + 2) = 3200bits = 400bytes.
i=1
Figure 12 shows how the addresses are maintained in each component’s SMU
and how they change based on the arrival of clocks. As discussed earlier, the data is
accessed (read for inputs and written for outputs) based on the local addresses. The
SMU knows the appropriate segment where the addressees reside. In the example
shown in Figure 12, we represent each address as *[signal name][location] for ease of
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Algorithm 3. Functionality of SMU

Step 1: Retrieve inputs whose present bits are ‘0’, and outputs whose present
bits are ‘1’ in the local storage.

Step 2: If the present bits of all the inputs are ‘1’ and that of all the outputs
are ‘0’, then the computational block is enabled for execution with data at input
location. Otherwise, jump to Step 8.

Step 3: The present bits of all inputs are set to 0 in the local storage locations.
Step 4: The outputs from computation block are stored in the local storage and
the corresponding present bits are set to ‘1’.

Step 5: The data for inputs and outputs is written back in an atomic step to
the same addresses from where these were read.

Step 6: The local address of all inputs are incremented by ‘1’ % bound to point
to the next read location.

Step 7: The local address of all outputs are incremented by ‘1’ % bound to point
to the next write location.

Step 8: For all inputs retrieved in the current cycle with present bits as ‘1’, and
all outputs retrieved in the current cycle with present bits as ‘0’, increment their
corresponding address fields.

readability. For instance, *s301 points to the appropriate location where the data of
signal s3 is stored along with its offset 01. After every read/write by a component,
the offset is incremented by 1 modulo bound of the signal. Also, for simplicity, the
lookup storage structure shown only illustrates the presence (1) and absence (0)
bits for the data. In actual storage, the data is read and written to these locations,
along with the appropriate assignment of presence and absence bit to the MSB.
Pros and Cons: One of the main advantages of this approach is that more than
one data values can be stored in lookup storage as compared to the previous archi-
tecture where only one valid value can be placed on the components output. The
second advantage of this approach is that the throughput of this architecture would
be high it ensure higher parallelism that the handshake based GALS architecture
and the controller based GALS architecture. Another advantage of this approach is
that there are no inter-component signals, hence keeping the design simple. Most
of the overhead is involved in accessing the lookup storage. There are various areas
where this overhead can be reduced. One such example is that when the data is
retrieved from the storage and it has the presence bit, but other conditions are not
satisfied for its computational block to execute, then this data can be stored in the
SMU’s local storage. Accessing the same storage location twice for the same data
is unnecessary. The same can be applied when accessing the location for reading
data from the output address. If the present is 0, then we know that no other
component will write to the same address, and hence this bit will not be set to 1 by
any other component. However, many other components can read from the same
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Fig. 12. Simulation of Lookup-based GALS Architecture

location. This type of architecture is similar to the dynamic dataflow architecture
where a token matching scheme is implemented and data is retrieved from memory.

8 Comparison of the four architectures

Table 2 illustrates the execution of the components of our example for the four differ-
ent architectures based on the clocks considered. Performance of the entire system
can be analyzed based on how the components execute, and how many times the
components execute. It can be realized that the handshake-based (using four-phase
handshake) architecture had the worst performance, as each component executed
twice in order to communicate one value across. Using a two-phase handshake for
the handshake-based architecture would have improved this performance, but com-
plicated the architecture. The drawback with the handshake based architecture is
that there are twice more signals for each signal in the network.

The performance of the controller based architecture was better than that of the
handshake based architecture but worse than the FIFO-based and lookup-based ar-
chitectures. Each component has signals going back and forth to the CCU, therefore
for such an architecture, two signals are added to communicate with the CCU.

Next, we compare the FIFO-based architecture and the lookup-based architec-
ture. In terms of performance, the lookup-based architecture is better, as each
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component does a fetch on its clock and stores the corresponding data in its local
storage. As a result, the data in the storage has already been read. However, the
main overhead for this approach is that there are many reads and writes to the
storage for each component. In the case of FIFO-based architecture, the FIFOs are
placed in-between the components. Similar to the handshake-based architecture,
each signal is associated with two additional signals (valid and stall). However,
the encapsulation of the computation block includes a barrier synchronizer, which
functions the same as a join. Table 3 illustrates the overhead associated with the
four architectures.

The handshake-based GALS architecture should be chosen as the target archi-
tecture when there is a constraint on adding additional elements such as commu-
nication media (Table 3). Here, the cost associated with additional signals such as
placement and routing is not an issue. FIFO-based architecture is a good choice
as the target architecture for GALS, if additional signals can be added easily with
FIFOs. Such an architecture would be best for performance driven applications.
The controller-based GALS architecture is better if there is a constraint on number
of signals can be added, and the ratio of the components in the design over the
number of inter-component signals is higher. Hence, less number of signals will
be added in this architecture than the handshake-based architecture. If addition
of extra storage elements on the chip is not an issue, and storage accessing time
is assumed to be little, then the lookup-based GALS architecture is best. It was
realized by the example that the Lookup-based GALS architecture had the best
performance if there are no constraints for additional elements/signals on the chip,
and the accessing time was assumed to be negligible.

9 Conclusion & Future Work

In this work, we promote the idea of using KPN as the model of computation for
designing GALS. We provide a design methodology for GALS with the focus of
this paper on architectural exploration. We borrow ideas from existing dataflow
architectures, and use them in our GALS architectures. We illustrate four differ-
ent architectures for implementing GALS with a running example. We show the
overhead complexity involved in these architectures. We do not discuss on issues
involving meta-stability, and cross domain synchronization, as the focus of this pa-
per is on exploration of different GALS architectures. The underlying formalism of
our framework and identifying the formal properties associated with the proposed

Architecture t1 to t3 t4 ts tg
Handshake (4-phase) | A B| C D - B A
FIFO-based AB|AC| BD |ABC |BD|AB

Controller-based AB| C B.,D AC |BD| A
Lookup-based AB|AC|ABD|ABC |BD]|AB

Table 2
Execution of Components in Different Architectures
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Computation Signal Overhead | Communication
Complexity (n signals & m | Media
components)
Handshake-based | RTU 2*n -
FIFO-based ITP and OIP 4*n FIFOs
Controller-based | LCU 2*m CCU
Lookup-based SMU 0 Lookup Storage
Table 3

Overhead Associated with GALS Architectures

refinements are part of our on-going work. Furthermore, the proof obligations for
the proposed refinement schemes in terms of their correctness will be established in
our future work.
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