
FMGALS 2007

Compositionality of Statically Scheduled IP

Julien Boucaron
1 ,2

Aoste Team, INRIA, Sophia Antipolis, France

Jean-Vivien Millo
1 ,3

Aoste Team, INRIA, Sophia Antipolis, France

Abstract

Timing Closure in presence of long global wire interconnects is one of the main current issues in System-on-
Chip design. One proposed solution to the Timing Closure problem is Latency-Insensitive Design (LID) [5,7].

It was noticed in [7] that, in many cases, the dynamically scheduled synchronisations introduced by
latency-insensitive protocols could be computed off-line as a static periodic schedule. We showed in [2,3]
how this schedule could then be used to further optimize the protocol resources when they are found
redundant.

The purpose of the present paper is to study how the larger blocks, obtained as synchronous components
interconnected by LID protocols optimized by static schedule informations, can be again made to operate
with an environment that provides also I/O connections at its own (synchronous or GALS) rate.

We also consider the case of multirate SoC, using results from SDF (Synchronous DataFlow) theory [12].

Keywords: Timing Closure, SoC, Latency Insensitive Design, Static Scheduling, Equalization,
N-Synchronous, Synchronous, Globally Asynchronous Locally Synchronous (GALS), Synchronization,
Asynchronous logic circuits, Digital integrated circuits, Interconnected circuits, Interconnected systems,
Multiport circuits, Very-large-scale integration, Delay estimation, Delay effects

1 Thanks to Texas Instrument, Villeneuve-Loubet and ST Microelectronics, Rousset through the French
regional CIMPACA initiative
2 Email:Julien.Boucaron@inria.fr
3 Email:Jean-Vivien.Millo@inria.fr

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:Julien.Boucaron@inria.fr
mailto:Jean-Vivien.Millo@inria.fr

Boucaron and Millo

1 Introduction

Global wire delays are one the most critical issue in designing Systems-on-Chips

(SoC). With recent nanometer technology processes, global wire delays do not scale

anymore. Most industrial CAD flows are all based on the synchronous hypothesis,

that imposes strict unitary delays for communication (and explicit lines of repeaters

to divide long wires). This may incur that designers need to take these delays into

account when designing the local Intellectual Property (IP) blocks themselves (those

that will be interconnected by the long global wires), or else run the risk of missing

timing-closure. In any case it forces a lot of iterations to re-design, verify correctness

and meet all constraints of the specification.

A new methodology, called Latency-Insensitive Design (LID), has been intro-

duced few years ago to cope with such issue. The idea is rather simple: lines

of repeaters are replaced with slightly more sophisticated elements called Relay-

Stations. These implement a straightforward back-pressure algorithm and provide

the local buffering resources needed to stall those data/signals which cannot be pro-

cessed, while waiting for others still in travel on the long latency wires. The speed

of each IP block is then subject to the slower throughput rate inside the system.

Of course each IP block must now be able to operate on a dynamic clock gating

scheme (whenever data are available), a property known as “patience” in LID the-

ory. Again ad-hoc elements called Shell wrappers are then inserted to provide the

corresponding clock gating scheme.

It has been shown previously [7,2] that, in a lot of cases, the dynamic scheduling

scheme enforced by the LID protocol produced in fact static (k-periodic) rates. It

can then also be computed off-line (“at compile time”). Elementary IP functions

are junctioned by LID-style interconnects, comprising ad-hoc buffering elements

optimized with a static schedule information. This network of elementary IP called

Statically Scheduled IP (SSIP) become our new elementary block.

Goal

Assuming that a number of such LID systems have now been (independently)

statically scheduled, we now want to study how to compose them back in an even

larger system of systems (or system of large components), and this without undoing

the former static schedules if possible. Of course the global system will operate at

the “worst” (slowest) throughput amongst components, but not worse.

Outline

The paper is organized as follows: in the next Section, we recalls some notions

about the internal behaviour of the Static Scheduled IP (SSIP). In Section 3 we

introduce a model that abstracts away internal behavior of a SSIP, while providing a

parameterized interface indicating allowed throughput. In Section 4 we consider the

correctness requirements to interconnect an SSIP with a Synchronous environment,

while in Section 5 we extend this to the case of a GALS environment. Section 6 deals

with another extension, this time to Multirate case (inspired from SDF models).

We end with a conclusion evoking furher topics in Section 7.

2

Boucaron and Millo

2 Preliminaries

A SSIP has an internal net of (strongly connected or not) components forming a

functional block. This network is statically scheduled using the method detailed in

[2,3]. In the Figure 1, IP1, IP2, IP3 and small black arrows are the internal net of

components of the SSIP1; IP4, IP5 and small black arrows are the internal net of

components of the SSIP2. The goal of this paper is to interconnect SSIPs without

changing the structure and the behaviour of the internal network of SSIPs.

Clock

Reset

Flush

SSIP IP1

IP3

IP2

Clock

Reset

Flush

SSIP IP4

IP5

1

2

GALS
Component

Fig. 1. Two levels of net: Inside each Static Scheduled IP and between SSIPs and GALS components.

Before talking about this issue, we have to define some notions concerning the

network of components of an SSIP.

2.1 Computation nets

We start from a very general model.

Definition 2.1 [Computation Network Scheme] We call Computation Network

Scheme (CNS) a graph whose vertices are called Computation Nodes, and whose

arcs are called links. We also allow arcs without a source vertex, called input links,

or without target vertex, called output links.

The CNS abstracting network of SSIP1 is depicted on Figure 2 (a).

The intention is that Computation Nodes perform computations by consuming

a data on each of its incoming links, and producing as a result a new

data on each of its outgoing links.

The occurrence of a computation thus only depends on data presence and not

their actual values, so that data can be safely abstracted as tokens. A CNS is choice

free.

3

Boucaron and Millo

(a) (b)

1

1

1

3

(c)

001101(01101)*

110011(01011)* 011100(11010)*

111001(10101)*

110011(01011)*

100110(10110)*

IP3

IP2

IP1

IP3

IP2

IP1

IP3

IP2

IP1

IP3

IP2

IP1

(d)

Fig. 2. (a) The CNS of SSIP1 (with rectangular Computation Nodes), (b) a corresponding WMG with
latency features and token information, (c) a SMG/LID with explicit (rectangular) Transportation Nodes
and (oval) places, dividing arcs according to latencies, (d) a Statically scheduled LID with explicit schedules

In the sequel we shall often consider the special case where the CNS forms a

strongly connected graph, unless specified explicitly.

This simple model leaves out the most important features, that are mandatory

to define its operational semantics under the form of behavioral firing rules. Such

features are:

• the initialization setting (where do tokens reside initially),

• the nature of links (combinatorial wires, simple registers, bounded or unbounded

place, ...),

• and the nature of time (synchronous, with computations firing simultaneously as

soon as they can, or asynchronous, with distinct computations firing indepen-

dently).

Setting up choices in these features provides distinct Models of Computation.

2.2 Synchronous/asynchronous versions

Definition 2.2 A Marked Graph is a CNS where time is asynchronous: com-

putations are performed independently, provided they find enough tokens in their

incoming links; links have a place holding a number of tokens; in other words,

Marked Graphs form a subclass of Petri Nets. The initial marking of the graph is

the number of tokens held in each place. In addition a Marked Graph is said to be

of capacity k if each place can hold no more than k tokens.

There is a simple way to encode Marked Graphs with capacity as Marked Graphs

with unbounded capacity: this requires to add a reverse link for each existing one,

which contains initially a number of tokens equal to the difference between the

capacity and the initial marking of the original link.

Definition 2.3 A Synchronous Marked Graph (SMG) is a Marked Graph with an

ASAP (As Soon As Possible) semantics: each Computation Node (transition) that

may fire due to the availability of its input tokens immediately does so (for the

current instant).

4

Boucaron and Millo

SMGs and the ASAP firing rule are underlying the works of [4,1], even though

they are not explicitly given name there.

Figure 2 (c) shows a Synchronous Marked Graph. Note that SMGs depart from

S/R models: here all tokens are not always available.

2.3 Adding latencies and time durations

We now add latency information to indicate transportation or computation dura-

tions. These latencies shall be all along constant integers (provided from “outside”).

Definition 2.4 A Weighted Marked Graph (WMG) is a CNS with (constant inte-

ger) latency labels on links. This number indicates the time spent while performing

the corresponding token transportation along the link.

We avoid computation latencies on CNs, which can be encoded as transportation

latencies on links by splitting the actual CN into a begin/end CN. Since latencies

are global time durations, the relevant semantics which take same into account is

necessarily ASAP. The system dynamics also imposes that one should record at

any instant “how far” each token is currently in its travel. This can be modeled by

an age stamp on token, or by expanding the WMG links with new Transportation

Nodes (TN) to divide them into as many sections of unit latency. TNs are akin

to CNs, with the particularity that they have unique source and target links. This

expansion amounts to reducing WMGs to (much larger) plain SMGs. Depending

on the concern, the compact or the expanded form may be preferred.

Figure 2 (b) displays a Weighted Marked Graph obtained by adding latencies to

figure (a), which can be expanded into the SMG of figure (c).

Definition 2.5 A Latency-Insensitive Design (LID) is a SMG using places of ca-

pacity 2 in between CNs and TNs.

The Shell Wrapper in LID leads the pearl to work as soon as all input datas are

present. The interconnection element of Latency-Insensitive Design is a 2-places

capacity buffer named Relay-Station. Moreover, the back pressure protocol ensures

this capacity is never overflow. These two features of a LID are both present in a

SMG with place of capacity 2.

2.4 Periodic behaviors, throughput and explicit schedules

We now provide the definitions and classical results needed to justify the existence

of static scheduling.

Definition 2.6 [Rate, throughput and critical cycles]

Let G be a WMG graph, and C a cycle in this graph.

The rate R of the cycle C is equal to T
L
, where T is the number of tokens in the

cycle, and L is the sum of latencies of the arcs of this given cycle.

The throughput of the graph is defined as the minimum rate among all cycles of the

graph.

A cycle is called critical if its rate is equal to the throughput of the graph.

5

Boucaron and Millo

A classical result states that, provided simple structural correctness condi-

tions, a strongly-connected WMG runs under a ultimately k-periodic schedule,

with the throughput of the graph [4,1]. We borrow notation from the theory of

N -synchronous processes [9] to represent these notions formally, as explicit analysis

and design objects.

Definition 2.7 [Schedules, periodic words, k-periodic schedules] A pre-schedule for

a CNS is a function Sched : N → wN assigning an infinite binary word wN ∈ {0, 1}ω

to every Computation Node and Transportation Node N of the graph. Node N is

activated (or triggered, or fired, or run) at global instant i iff wN (i) = 1, where w(i)

is the ith letter of word w.

A pre-schedule is a schedule if the allocated activity instants are in accordance

with the token distribution (the lengthy but straightforward definition is left to the

reader). Furthermore, the schedule is called ASAP if it activates a node N whenever

all its input tokens are arrived (according to the global timing).

An infinite binary word w ∈ {0, 1}ω is called ultimately periodic: if it is of the

form u.(v)ω where u and v ∈ {0, 1}?, u represents the initialization phase, and v

the periodic one.

The length of v is noted |v| and called its period. The number of occurrences of 1s

in v is denoted |v|1 and called its periodicity. The rate R of an ultimately periodic

word w is defined as |v|1
|v| .

A schedule is called k-periodic whenever for all N , wN is a periodic word.

Thus a schedule is constructed by simulating the CNS according to its (deter-

ministic) ASAP firing rule.

Furthermore, it has been shown in [1] that the length of the stationary periodic

phase (called period) can be computed based on the structure of the graph and the

(static) latencies of cycles. But the details of this calculation is not the topic of

this paper. Figure 2(d) shows the schedules obtained on our example.

Definition 2.8 A statically scheduled LID is a LID where the expanded SMG ob-

tained as above uses places of capacity either 1 or 2 in between CNs and TNs.

This reduction of capacity is possible because the static schedule of the LID ensures

places do not overflow. The graph throughput and explicit schedule of each CN is

known.

Figure 2(d) is an example of a statically scheduled LID.

The internal net of component of an SSIP is a statically scheduled

LID.

6

Boucaron and Millo

3 Model

We introduce an abstract model of Statically Scheduled IP (SSIP). It attempts to

abstract the internal net of the components that we have statically scheduled using

the methods [2,3]. Figure 3 illustrates this abstraction by an example. On [left], the

internal network of SSIP1. On [right], the block diagram of SSIP1. Most of details

about the internal network of the SSIP is useless concerning its interconnection.

Period, periodicity and input/output schedules are extracted from the internal be-

haviour. All other information from internal behaviour are not needed. Now, to

deal with compositionality, we need other information about the SSIP independent

from its Statically scheduled structure as its Pipeline depth, initialization time and

its pipeline flush time.

A SSIP is defined by its interface represented by the Block Diagram of Figure 3

[right] and by the set of behavioural parameters:

abstraction

in�ternal network of
SSIP

IP1

IP3

IP2

1

0(01101)*

10(01101)*

110(01101)*

SSIP

INPUT

Clock

Reset

Flush

OUTPUT

1

Fig. 3. Static Scheduled IP - Abstraction from internal network to a Block Diagram

The interface consists of:

• Its clock port: To receive a clock signal.

• Its Reset port: To (re)initialize the SSIP.

• Its Flush port: To flush the pipeline of the SSIP.

• Its Input and Output Port: Because of exact static schedule of the internal

network of the SSIP, we precisely know when each input and each output of

the system consumes/produces a value. Consequently, we fix for each input and

output port a schedule.

It indicates when consumption/production of data is performed on the con-

cerned port. The schedule provide a k-periodic pattern which undersamples the

clock of the clock port

We denote this information using an infinite binary word. It is composed of

two parts, the finite initial part describing the initialization of the SSIP and the

periodic part describing the stationary phase of the SSIP.

We note that the periodic part of the schedule of each IP of an SSIP have

the same length, and contains the same amount of consumption/production

instant (represented by 1) and consequently, the same amout of inactive instant

7

Boucaron and Millo

(represented by 0).

The behavioural parameters consists of:

• Its Period p and its Periodicity k: A SSIP has an ultimate periodic

behaviour. It consumes and produces k values in p instants. The through-

put of the SSIP is k
p
. k and p are computed from the internal network of the SSIP.

• Its longest Pipeline Depth: The time span taken by a value passing through

the SSIP is called the Pipeline Depth. This time is not necessary the same for

each couple (input,output). This is not a problem concerning interconnection

with a GALS environment. We just define LPD ∈ N as the Longest Pipeline

Depth for all couple (input, output). In the case of interconnection with a

synchronous component, all input should be consume and produce together. we

normalize the pipeline depth by adding latencies on earliest inputs/outputs. The

result is that all jth outputs are produced together LPD instants after all the

jth input are consumed simultaneously.

• Its Initialization Time: To initialize, the SSIP load some buffers of it’s internal

network and the ith first clock cycle will drive a specific behaviour leading to the

periodic behaviour (i ∈ N). This initialization phase consumes and produces a

different number of values than the periodic one. The length of the initialization

phase i, the number and the timing of data produced and consumed is known.

It is the same for any initialization starting from the same initial state (Initial

values loaded in the same buffer). The initialization phase is activated through

a firing of the Reset signal.

• Its Pipeline flush Time: From the instant when the SSIP consumes the last

input value, it has to work during LPD instants without new input to produce the

last values which remain in the SSIP. The consequence is, after pipeline flushing,

the internal state of the system becomes inconsistent. The system have to be

re-initialized before restarting. The pipeline flush phase is activated by rising the

F lush signal. Note that the behaviour of the output of the SSIP is the same than

during the stationary phase.

3.1 Infinite stream and finite transaction modes

Infinite stream and finite transaction are two different modes of use of the SSIP. We

present these two modes to illustrate the use of the Pipeline F lush signal.

Infinite stream mode

In infinite stream mode, the system is supposed to remain active for ever: if the

system is accidentally turned off, we do not take care about data still present in

the SSIP as it will not be restarted in the current operative mode. In this case, the

F lush signal is needless, the flush of the pipeline will never happen.

8

Boucaron and Millo

Finite transaction mode

In finite transaction mode, the system receives a finite or infinite amount of

packets of data, but each packet is finite and the SSIP receive the next packet only

when the current is over. In this mode, the SSIP is initialized and finalized for each

packet, unlike continuous mode, all output values are produced. As the notion of

size of packet exists. We can consequently synthesize a control block aware of the

size of current packet which generates the F lush signal when the last input data of

the current packet is consumed and re-initialize the SSIP when the finalization step

is over.

3.2 Interconnection of SSIP

From the point each SSIP are independantly designed, the rate (k
p
) of each SSIP

is different. The composition of these SSIPs with other one, GALS components or

synchronous components works at the rate of the worst. All other SSIP have to

be slow down without changing there internal behaviour. This can be easily done

using clock gating managed by the state of input and output buffers. If input buffer

is empty or if output buffer is full, this means the SSIP work too fast for respectly

input component(s) and output component(s); in these two last case, neither valid

inputs nor place to stock valid output are present.

The Figure 4 shows how the clock gating is done.

SSIP

INPUT

Clock_SSIP

Reset

Flush

OUTPUT

FIFO
Full

Empty

FIFO
Full

Empty

Clock_gated

Fig. 4. Clock gating component of Static Scheduled IP

Other conditions which have to be validated to interconnect SSIP are detailed

in Section 4 for Synchronous Circuits and Section 5 for GALS SoC. These condi-

tions claim the size of interconnection buffer is bounded and ensure input buffer is

never full (and output buffer is never empty in the case of compositionality with

synchronous circuit).

9

Boucaron and Millo

4 Composition with Synchronous Circuits

In this Section we introduce how we can compose a SSIP with a given throughput

with Synchronous Circuits. The composition should ensure the preservation of the

behaviour of Synchronous Circuits and also of the SSIP. We suppose that we are

using a “pure” synchronous model, that is to say that we cannot “clock-gate” any

component of any Synchronous Circuit: we suppose that clock-gating changes its

behaviour. Converserly, the SSIP has the property of being “patient” by hypothesis,

that is to say that applying clock-gating does not alter its behaviour. This means

that the SSIP cannot slow down any Synchronous Circuit. The SSIP is at least

as fast as the Synchronous Circuit, we need from time to time to clock-gate the

SSIP to avoid to loose or overwrite any data sent to the Synchronous Circuit that

will produce an unexpected behaviour. Now we are giving details of under which

conditions the static scheduled IP works within a synchronous environment:

• Preservation of the behaviour of the Synchronous Circuit and the SSIP.

• There is not any data overflow or starvation on the input and output interfaces

of the SSIP.

• SSIP never looses or overwrites any data on the input/output interfaces.

SSIP
Reset

Flush

FIFO
Full

Empty

FIFO

Full

Empty

Synchronous
clock

Clock
Gating

Synchronous
Component

Synchronous
Component

Clock_SSIPClock_gated

Clock_gated

Clock_gated

Fig. 5. Synchronous case interconnection

Basic clock signal requirement

The main trivial correctness condition needed is that rateSynchronousclock ≤

ThroughputSSIP ∗ rateClock SSIP . Otherwise we will have strong starvation on

the input of at least a Synchronous Circuit, and strong overflow on inputs of the

SSIP. Since rateSynchronousclock 6= ThroughputSSIP ∗rateClock SSIP in general, then

10

Boucaron and Millo

we will need synchronizers on the input and output side, those synchronizers can

be implemented directly into the FIFOs (such as [8]) shown in Figure 5. This basic

requirement enforces that the Synchronous Circuit on the input side of the SSIP

will never be clock-gated (the behaviour of this Synchronous Circuit is preserved),

in other words that FIFOs on the input side of the SSIP is never full due to the

Synchronous Circuit; on the output side of the SSIP this property enforces “glob-

ally” the fact that the FIFOs are never empty when the Synchronous Circuit is

requesting a data.

Size of input and output FIFOs

Now the issue is how to size up FIFOs on input/output of the SSIP in order

that the Synchronous Circuit on the output of the SSIP has enough tokens to avoid

starvation that would alterate its behaviour; tokens should not be lost on the input

interface of the SSIP. Due to the previous clock signal requirements, consumption

demand of the SSIP is greater than production. Since the SSIP is patient, it can

be clock-gated without any modification of its behaviour. The worst k-periodic

schedule for sizing the FIFOs is the following: if all active instants of the input

schedule are at the end of the period, at most k values can be awaiting before the

first data consumption; Concerning the output of the SSIP, it can produce the k

values of the period in a burst like fashion before the first one is consumed. The

number of buffering elements needed on both the input/output side is bounded by

k if we just know the global throughput of the SSIP. k is an upper bound for the

size of FIFOs.

Initialization

However, the SSIP despites being as fast as the Synchronous Circuit in stationary

regime can be faster/slower during initialization. It means that there is a risk of

starvation on at least a Synchronous Circuit that leads to an unexpected behaviour,

or an overflow of the FIFO. It is necessary to add further buffering on input/output

of the SSIP until it reaches its stationary regime. As we know the number of

occurences of firing of the SSIP during its initialization, then the size of FIFO on

both ends of the SSIP is the maximum between this previous value and k. Moreover,

we have to “delay” Synchronous Circuits chains on the output side of the SSIP until

there is enough tokens without any risk of starvation. However, we can have on the

input of a Synchronous Circuit both a Synchronous Circuit and a SSIP. There is a

full synchronous path and another path with an arbitrary latency due to FIFOs on

both input/output of the SSIP: since a Synchronous Circuit consumes all its inputs

and produces all its outputs at each clock cycle, then this will lead to unexpected

behaviour. It is thus necessary to add a FIFO also at the output of such Synchronous

Circuit to cope with this arbitrary latency.

11

Boucaron and Millo

5 Composition with GALS Components

In this Section we deal with the composition of a SSIP (Static Scheduled IP) with

GALS (Globally Asynchronous Locally Synchronous) components. This compo-

sition must guarantee conservation of the behaviour of both the SSIP considered

and GALS components. We suppose that GALS components and the SSIP are

“patient”: their behaviours are not affected by clock-gating.

5.1 Interconnection with chaotic components

Generally, we are just inserting a GALS interface on the input/output side of the

SSIP. This interface is able to handle a specific synchronization protocol certifying

correctness of the behaviour, providing necessary buffering ressources and needed

clock synchronizers. That is to say we do not know anything about such com-

ponents, there is no no assumption about the periodicity, the throughput of the

component. We assume the worst case: its chaotic behaviour is propagated to

other components through the synchronization protocol. Then, a control-flow pro-

tocol such as Latency Insensitive Protocol [6] is needed between all components of

the GALS to ensure correctness of the behaviour. This protocol is also used to

prevent the input component production to attain the maximal buffering capacity

in input of the concerned component. In this case, the system works without more

buffers than needed by the protocol.

5.2 Interconnection with regular components

Now, if every component of the system has a repetitive behaviour: a periodic be-

haviour as a synchronous circuit or a k-periodic behaviour as a SSIP component,

every component is said regular (concerning its behaviour). In this case, under the

following assumption, global control flow protocol is not needed any more and can

be replaced by usual interconnection buffers as in [8].

The interconnection of a SSIP with other regular components through a GALS

system needs to validate some properties between this SSIP and each connected

components one by one. The functional constraints of the interconnection between

a SSIP and GALS component(s) are more flexible than in the case of the intercon-

nection between a SSIP and Synchronous Circuits. All input values do not have to

be present at an exact and “freezed” instant. Figure 6 shows the connection with

regular components in a GALS environment.

Basic clock signal requirement

The main requirement is that the production of data by a component in in-

put must not be greater than the consumption of data by the SSIP. Formally,

ratecomp1clock ∗ ThroughputGALSComponent1 ≤ rateClock SSIP ∗ ThroughputSSIP .

This condition ensures that it exists a finite bound on the size of the FIFO needed

in input of the SSIP, and that it is not necessary to send any back-pressure to the

upward GALS component.

The second needed requirement is that the consumption of data by a com-

ponent in output must not be smaller than the production of data by the

12

Boucaron and Millo

Backpressure

SSIP

Clock_SSIP

Reset

Flush

FIFO
Full

Empty

FIFO

Full

Empty

comp1
clock

Clock
Gating

GALS
Component 1

GALS
Component 2

comp2
clock

Clock_gated

Clock_gated

Clock_gated

Fig. 6. GALS case interconnection

SSIP. Formally, ratecomp2clock ∗ ThroughputGALSComponent2 ≥ ratecomp1clock ∗

ThroughputGALSComponent1. This condition also ensures that it exists a finite bound

for the size of the FIFO in output of the SSIP. Moreover this condition guarantees

that there is no need to backtrack a “stop” signal due to a lack of throughput of

any component downward the SSIP.

Size of input and output FIFOs

The size of the interconnection FIFO is bounded by the maximal value between

the periodicity of the connected component and the periodicity of the SSIP (k). In

worst case, the element with the biggest periodicity(k) produces/consumes all its

data in k instants and stay inactive during the rest of its period. The two previous

conditions about clock rate ensure that the connected element consume/produce

enough data before the next period.

13

Boucaron and Millo

6 Multirate

In previous Sections, we limited our study to IPs which consume and produce the

same amount of data on each input and output.

Now, we assume that each IP can produce and consume a different amount of

data, which is also equivalent for instance to specify the relative sample rates of each

IP. This model is known as Synchronous Data Flow (SDF) which is a special case

of Petri nets including the Marked/Event Graph sub-class that we have introduced

in Section 2. Marked/Event Graph is also called Homogenous SDF graph because

exactly producing/consuming one token on each output/input respectively.

Previous works achieved by E. Lee et al. about SDF [12,11] shown that this

model can be statically scheduled. But most of the results found was targetting

implementations on single or multiple processors with hard real-time constraints,

while minimizing different metrics such as for example buffering requirement

between each IP, size of the schedule. We attempt in this Section to show how this

model can be used on the SoC.

The SoC in this Section is abstracted as an SDF Graph: each IP becomes a

node, each datapath becomes a directed link. IP are annotated in input with the

number of data consumed and in output with the number of data produced during

the same time span. Figure 7 depicts such a SDF graph.

input output

1

2

2
1

1

1

Fig. 7. SDF Graph with consistent sample rates

E. Lee gives a mathematical formula to validate the “consistency of samples

rate”: which says intuitively that it exists a schedule for each node such that the

sum of produced data is equal to the sum of consumed data on each directed cycle

of the graph. Such SDF graph is called safe: there is no strong acccumulation nor

starvation of data. The system is thus seen as “synchronous” on a global period

(k-periodic fashion).

There is also another interesting strong result that says globally how much times

a node is fired during a global period.

Figure 7 shows an example of a SDF graph with consistent sample rates, the

next Figure 8 depicts the same graph with the global amount of firing each node is

activated during the global period.

However, in the case of strongly connected SDF graph there is no strong theo-

14

Boucaron and Millo

input output

1

2

2
1

1

12
1

1

Fig. 8. SDF Graph with its schedule

ritical result that ensures liveness just like in the case of Event/Marked Graph. We

known the minimum amount each node should fire during a whole period but not

the explicit schedule for each node taking care of the initial marking. Moreover, we

do not known the size of the buffering places needed between each IP.

To solve those issues we have to simulate in a kind of model-checking fashion,

starting with an initial placement of tokens (called delays in SDF terminology) until

reaching the same global state, that ensures that we are reaching a periodic regime:

while simulating we can compute the schedule of each node using the ASAP firing

rule and also find the size of each buffering place between each IP. The schedule of

each node is denoted as an ultimately k-periodic word.

The SDF model can be seen as a “bread” like model while WMG can be consid-

ered as a “depth” oriented one: to introduce the latency metric in the SDF model,

we can also use the same kind of Transportation Nodes and additional places as

described in Section 2. Just like the WMG model, due to the ASAP firing rule,

schedules of nodes will be shifted by a given amount because lengths of different

reconverving pathes are not strictly equal in general.

In this Section, we wanted to recall the SDF model because while being a general-

ization of the Event/Marked Graph, this model leads to the same kind of k-periodic

behaviour provided safety and liveness are shown. It is known that a safe SDF

graph can be “expanded” in a Event/Marked Graph. Then we can also link such

expanded SDF graph within a synchronous or GALS framework provided that all

correctness criterions described before in Sections 4, 5 respectively are ensured.

15

Boucaron and Millo

7 Conclusion

Our previous works [2,3] explain how starting from a synchronous Latency Insen-

sitive Design derived from a synchronous specification, we can then create a Static

Scheduled IP (SSIP) having the same behaviour and the same throughput than the

Latency Insensitive one.

This paper introduces what conditions are needed such that we compose such

Static Scheduled IP with Synchronous Circuit, in a Globally Asynchronous Locally

Synchronous framework and also in the case of Multi-Rate components à la SDF.

Those conditions are defined, enumerated using external “public” properties of the

SSIP. The goal of this paper is to show SSIP are compositional without changing

its internal net.

The most easy composition is the one with the GALS framework, because by

hypothesis a SSIP is patient: clock-gating does not affect its behaviour. Since a

GALS is also sharing the patience property, it is easy through the usual hand-shake

protocols to ensure the correct behaviour: we are just stretching time on time due

to clock rate and throughput of each GALS component; we can use such hand-shake

protocol while limiting the number of ressources required for buffering.

The composition in the case of a fully-synchronous framework is more complex,

because a Synchronous Circuit is not patient. We need a lot of buffering in order to

absorb advance/retard of the SSIP versus the synchronous environment, we found an

upper bound of such buffering which is dependent on k (is the number of occurences

of firing of the SSIP during a period of length p). The initialization of the global

system is more difficult, we have to delay the startup of downward Synchronous

Circuits until the SSIP is reaching its stationary regime: because the SSIP can

be slower or faster than the Synchronous Circuit during initialization, we may add

some buffering in the FIFOs on both ends of the SSIP to absorb the local lack/burst

of throughput.

Note that original Latency-Insensitive Design (LID) presented in [5] is composi-

tional with synchronous or GALS components under the same condition than SSIP

concerning clock signal requirement. If these conditions are not present, LID can

be used on the whole system for its composition.

Further Topics

During initialization throughput can be slightly faster/slower and buffer re-

sources may be used in initialization only, and not in the periodic phase of the

SSIP. Shorter initialization and/or more evenly “balanced” from the throughput

point of view are needed to minimize buffer resources. It is also possible to use

more evenly “balanced” schedules, to minimize the number of buffer resources used

below the periodicity bound.

In this modeling framework there is no alternative choice behaviours. It should

be interesting to introduce modes as limited control structures.

16

Boucaron and Millo

References

[1] François Baccelli, Guy Cohen, Geert Jan Olsder, and Jean-Pierre Quadrat. Synchronization and
Linearity: an algebra for discrete event systems. John Wiley & Sons, 1992.

[2] Julien Boucaron, Jean-Vivien Millo, and Robert De Simone. Latency-insensitive design and central
repetitive scheduling. In Formal Methods and Models for Co-Design, 2006. MEMOCODE ’06.
Proceedings. Fourth ACM and IEEE International Conference on, pages 175– 183, Piscataway, NJ,
USA, 2006. IEEE Press.

[3] Julien Boucaron, Jean-Vivien Millo, and Robert De Simone. Formal methods of scheduling for latency-
insensitive designs. EURASIP journal on embedded system, 2007 (not yet published).

[4] Jacques Carlier and Philippe Chrétienne. Problème d’ordonnancement: modélisation, complexité,
algorithmes. Masson, Paris, 1988.

[5] Luca Carloni, Kenneth McMillan, and Alberto Sangiovanni-Vincentelli. Theory of latency-insensitive
design. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 20(no.
9):pp. 1059–1076, 2001.

[6] Luca .P Carloni, Keneth L. McMillan, and Alberto .L. Sangiovanni-Vincentelli. Latency insensitive
protocols. In N. Halbwachs and LNCS 1633 D. Peled, editors, Proc. of the 11th Intl. Conf. on Computer-
Aided Verification (CAV), pages 123–133. UC Berkeley, Cadence Design Laboratories, July 1999.

[7] Mario R. Casu and Luca Macchiarulo. A new approach to latency insensitive design. In DAC ’04:
Proceedings of the 41st annual conference on Design automation, pages 576–581, New York, NY, USA,
2004. ACM Press.

[8] Tiberiu Chelcea and Steven M. Nowick. Robust interfaces for mixed-timing systems with application
to latency-insensitive protocols. In Design Automation Conference, pages 21–26, 2001.

[9] Albert Cohen, Marc Duranton, Christine Eisenbeis, Claire Pagetti, Florence Plateau, and Marc Pouzet.
N-synchronous kahn networks: a relaxed model of synchrony for real-time systems. In POPL ’06:
Conference record of the 33rd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 180–193, New York, NY, USA, 2006. ACM Press.

[10] Edward A. Lee and David G. Messerschmitt. Static scheduling of synchronous data flow programs for
digital signal processing. IEEE transactions on computers, C-36(1):24–35, 1987.

[11] Edward A. Lee and David G. Messerschmitt. Synchronous data flow. Proceeding of the IEEE, vol.
75(no. 9):pp. 1235–1245, 1987.

17

	Introduction
	Preliminaries
	Computation nets
	Synchronous/asynchronous versions
	Adding latencies and time durations
	Periodic behaviors, throughput and explicit schedules

	Model
	Infinite stream and finite transaction modes
	Interconnection of SSIP

	Composition with Synchronous Circuits
	Composition with GALS Components
	Interconnection with chaotic components
	Interconnection with regular components

	Multirate
	Conclusion
	References

