
www .vlsilab .polito . it www .polito . it

Latency Insensitiveness in Adaptive
Communication Channels:

A Physical Design Perspective

FMGALS’07
Mario R. Casu

M.R. Casu, FMGALS’07

Before to start…

Thanks to the FMGALS organizers!
The research whose results are presented

in this talk was a joint work with Prof. Luca
Macchiarulo, formerly at Politecnico di
Torino and now with the University of
Hawaii.

M.R. Casu, FMGALS’07

Outline

 ITRS roadmap calls for innovative design
 Static vs. Adaptive Latency Insensitive

Protocols
 Practical issues
 Latency & throughput-aware floorplanning
 Results and discussion
 Future directions and conclusions

M.R. Casu, FMGALS’07

Outline

 ITRS roadmap calls for innovative design
 Static vs. Adaptive Latency Insensitive

Protocols
 Practical issues
 Latency & throughput-aware floorplanning
 Results and discussion
 Future directions and conclusions

M.R. Casu, FMGALS’07

It all started with a prophecy…

Prophet Isaiah
1509, Sistine Chapel, Michelangelo

Transistors in IC will
double every year!
[G. Moore, 1965]

M.R. Casu, FMGALS’07

’75 prophecy a.k.a. Moore’s Law

Prophet Zechariah
1509, Sistine Chapel, Michelangelo

Transistors in IC will
double every 2 years!

[G. Moore, 1975]

Source: INTEL

M.R. Casu, FMGALS’07

Performance implication
Scaled transistors get faster and faster

− ~ 17% / year
Processor performance (fck x IPC) roughly

doubled every 1.5-2 years (so far…)
It seems we are now at an inflection point due to

a combination of issues. Among the others:
− distributing a low skew centralized clock is a nightmare
− antinomy between faster transistors and slower wires
− process parameters uncertainty
− power management (dynamic + leakage)
− …

M.R. Casu, FMGALS’07

The wise guy

 “If I make wires
narrower and
more crammed,
resistance grows
and capacitance
remains
constant…”

 RC delay grows
 Buffered RC

delay almost
constant Pithagoras

1509-1511, The School of Athens, Raffaello

Metal i+1

Metal i-1

Metal i+1

Metal i-1

Scaling

M.R. Casu, FMGALS’07

ITRS forecasts
 FO4 gate delays still follow historical -17%/year
 Starting 2007 Tck min flattens at 12 FO4

− Diminishing returns of deep pipelines
 Bad news for wire delays…

 Constant die area:
− “[…] power, cost and
interconnect cycle latency are
strong limiters of die size.”

 No global wires in critical
paths
−“[...] buffered global
interconnect does not
contribute to the minimum
clock period since long global
interconnects are pipelined”2005 2006 2007 2008 2009 2010 2011 2012 2013

0

1

2

3

4

5

6

7

Year of Production

R
el

at
iv

e
D

el
ay

FO4 gate delay
Unbuffered wire delay
Buffered wire delay

M.R. Casu, FMGALS’07

65 nm technology

 65 nm shipping today
 Max chip size ~ 300 mm2

 High performance process
− FO4 delay 16 ps

 Tck 25 FO4 (min)
 42 ps delay (2.6 FO4) of

1mm unbuffered global wire
(min pitch)

17 mm

 unbuffered wire delay
− 2.6 FO4 (L/1 mm)2

 L(1 Tck) = 3 mm

M.R. Casu, FMGALS’07

65 nm technology

 65 nm shipping today
 Max chip size ~ 300 mm2

 High performance process
− FO4 delay 16 ps

 Tck 25 FO4 (min)
 42 ps delay (2.6 FO4) of

1mm unbuffered global wire
(min pitch)

 26 ps/mm delay of buffered
global wire

17 mm

 Buffered wire delay
− 1.6 FO4 (L/1 mm)

 L(1 Tck) = 15 mm
− ~ 24 repeaters

M.R. Casu, FMGALS’07

65 nm technology

 65 nm shipping today
 Max chip size ~ 300 mm2

 High performance process
− FO4 delay 16 ps

 Tck 25 FO4 (min)
 42 ps delay (2.6 FO4) of

1mm unbuffered global wire
(min pitch)

 26 ps/mm delay of buffered
global wire

17 mm

 Buffered wire delay
− 1.6 FO4 (L/1 mm)

 L(1 Tck) = 15 mm
− Corner to corner: 2 ck latency

M.R. Casu, FMGALS’07

Near term roadmap

 Year of production: 2007
 Max chip size ~ 300 mm2

 High performance process
− FO4 delay 9 ps

 Tck 12 FO4 (min)
 170 ps delay (19 FO4) of

1mm unbuffered global wire
(min pitch)

17 mm

 Unbuffered wire delay
− 19 FO4 (L/1 mm)2

 L(1 Tck) ~ 0.8 mm

M.R. Casu, FMGALS’07

Near term roadmap

 Year of production: 2007
 Max chip size ~ 300 mm2

 High performance process
− FO4 delay 9 ps

 Tck 12 FO4 (min)
 170 ps delay (19 FO4) of

1mm unbuffered global wire
(min pitch)

 40 ps/mm delay of buffered
global wire

17 mm

 Buffered wire delay
− 4.5 FO4 (L/1 mm)

 L(1 Tck) ~ 3 mm

M.R. Casu, FMGALS’07

Near term roadmap

 Year of production: 2007
 Max chip size ~ 300 mm2

 High performance process
− FO4 delay 9 ps

 Tck 12 FO4 (min)
 170 ps delay (19 FO4) of

1mm unbuffered global wire
(min pitch)

 40 ps/mm delay of buffered
global wire

17 mm

 Buffered wire delay
− 4.5 FO4 (L/1 mm)

 L(1 Tck) ~ 3 mm
− corner to corner: 13 ck latency

M.R. Casu, FMGALS’07

End of near term roadmap

 Year of production: 2013
 Max chip size ~ 300 mm2

 High performance process
− FO4 delay 3.5 ps

 Tck 12 FO4 (min)
 600 ps delay (170 FO4) of

1mm unbuffered global wire
(min pitch)

 45 ps/mm delay of buffered
global wire

17 mm

 Buffered wire delay
− 13 FO4 (L/1 mm)

 L(1 Tck) ~ 1 mm
− corner to corner: 34 ck latency

M.R. Casu, FMGALS’07

Interconnect summary

Wire delay with repeaters: δFO4 · L
Clock period: Tck = nFO4

Critical length: Lcrit = nFO4 / δFO4
− Lcrit is getting shorter and shorter

Tck can be expressed in terms of critical length:
− Tck = nFO4 = δFO4 · Lcrit

For a given technology, we can normalize the
proportionality coefficient:
− Tck = Lcrit, fck = 1 / Lcrit

M.R. Casu, FMGALS’07

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

2005 2006 2007 2008 2009 2010 2011 2012 2013

design %

GALS to the rescue
 Again from ITRS:

− “One of the main challenges of modern IC is to
distribute a centralized clock signal throughout the chip
with an acceptable low skew.”

 Asynchronous global signaling
− % of a design driven by handshake clocking

M.R. Casu, FMGALS’07

Outline

 ITRS roadmap calls for innovative design
 Static vs. Adaptive Latency Insensitive

Protocols
 Practical issues
 Latency & throughput-aware floorplanning
 Results and discussion
 Future directions and conclusions

M.R. Casu, FMGALS’07

Latency Insensitive Design
 Synchronous computational logic

− No leap to fully asynchronous approach in mainstream design
 (A)synchronous global communication through “multi-

cycle” channels
− syn/meso/plesio/asyn-chronous

 Basic idea of Latency Insensitive Design
− Gate/trigger local clock when data are absent/present
− Use wire pipelines to sustain data rate (no global wires in critical

paths) adding relay stations
− Use a latency insensitive protocol (LIP) to enforce handshake

(e.g. valid/stop)
 Two variants

− Static LIP vs. Adaptive LIP

M.R. Casu, FMGALS’07

Static LIPs

L. Carloni et al. [Carloni99]
Original idea was fully synchronous
Example: system prior to LIP modification

M
U
X

0,1,2,3,

0,1,2,3,

0,1(0),2(1),3(2), 0,1,2,3,

M.R. Casu, FMGALS’07

Static LIPs

L. Carloni et al. [Carloni99]
Original idea was fully synchronous
Example: system prior to LIP modification

M
U
X

4,5,…

4,5,…

4(3),5(4),… 4,5,…

0,1,2,3,

0,1,2,3,

0,1(0),2(1),3(2), 0,1,2,3,

M.R. Casu, FMGALS’07

Static LIPs

L. Carloni et al. [Carloni99]
Original idea was fully synchronous
Example: system after static LIP modification

M
U
X

0

0

0 0

RS

RS

τ

τ

wrapper
Relay Stations
initialized with
void data (τ)

M.R. Casu, FMGALS’07

Static LIPs

L. Carloni et al. [Carloni99]
Original idea was fully synchronous
Example: system after static LIP modification

M
U
X

0,1

0,1

0,τ 0

RS

RS

τ,0

τ,0

STALL! void
output data

M.R. Casu, FMGALS’07

Static LIPs

L. Carloni et al. [Carloni99]
Original idea was fully synchronous
Example: system after static LIP modification

M
U
X

0,1,2,3,4

0,1,2,3,4

0,τ,1(0),2(1),3(2) 0,1,τ,2,3

RS

RS

τ,0,1,2,3

τ,0,1,2,3

void data move
toward leaves

M.R. Casu, FMGALS’07

Static LIPs

Feed-forward topology
Void data removed after a transient
Throughput: 1 data/1 ck (synch hypothesis)

M
U
X

5,6,7,8

5,6,7,8

4(3),5(4),6(5),7(6) 4,5,6,7

RS

RS

4,5,6,7

4,5,6,7

M.R. Casu, FMGALS’07

RS

Loops in static LIPs

M
U
X

0

0

0 0

RS

RS

τ

τ

Feed-back (loop) topology
Void data circulate

τ

M.R. Casu, FMGALS’07

RS

Loops in static LIPs

M
U
X

0,1

0,τ

0,τ 0,1

RS

RS

τ,0

τ,0

τ,0

Feed-back (loop) topology
Void data circulate

M.R. Casu, FMGALS’07

RS

Loops in static LIPs

M
U
X

0,1,2

0,τ,1

0,τ,1(0) 0,1,τ

RS

RS

τ,0,1

τ,0,τ

τ,0,1

Feed-back (loop) topology
Void data circulate
Back-pressure exerted by wrappers on fast links

Incoherent labels
clock gating enabled

M.R. Casu, FMGALS’07

RS

Loops in static LIPs

M
U
X

0,1,2

0,τ,1

0,τ,1(0) 0,1,τ

RS

RS

τ,0,1

τ,0,τ

τ,0,1

stop

Feed-back (loop) topology
Void data circulate
Back-pressure exerted by wrappers on fast links

M.R. Casu, FMGALS’07

RS

Loops in static LIPs

Feed-back (loop) topology
Void data circulate
Back-pressure propagated upward by RSs

M
U
X

0,1,2,3

0,τ,1,2

0,τ,1(0),τ 0,1,τ,2

RS

RS

τ,0,1,1

τ,0,τ,1

τ,0,1,τ

stop

2

M.R. Casu, FMGALS’07

RS

Loops in static LIPs

Feed-back (loop) topology
Void data circulate
Back-pressure propagated upward by RSs

M
U
X

0,1,2,3

0,τ,1,2

0,τ,1(0),τ 0,1,τ,2

RS

RS

τ,0,1,1

τ,0,τ,1

τ,0,1,τ

stop

2
Incoming data stored in
RS (avoid overrun)

M.R. Casu, FMGALS’07

RS

Loops in static LIPs

Feed-back (loop) topology
Void data circulate
Back-pressure propagated upward by RSs

M
U
X

0,1,2,3

0,τ,1,2

0,τ,1(0),τ 0,1,τ,2

RS

RS

τ,0,1,1

τ,0,τ,1

τ,0,1,τ

stop

2
Coherent labels
clock gating disabled

M.R. Casu, FMGALS’07

RS

Loops in static LIPs

Moving two clock ticks forward…
Yet another stall for the mux
Back-pressure again on fast link

M
U
X

0,1,2,3,3,4

0,τ,1,2,τ,3

0,τ,1(0),τ, 2(1), 3(2) 0,1,τ,2,τ,3

RS

RS

τ,0,1,1,2,3

τ,0,τ,1,2,τ

τ,0,1,τ,2, τ

stop

M.R. Casu, FMGALS’07

RS

Loops in static LIPs

Another clock tick forward…
Back-pressure propagated upward
Valid and void data alternate periodically

M
U
X

5

τ

τ, 4

RS

RS

τ,0,1,1,2,3,

3

3

stop

4
3

τ,0,τ,1,2,τ,

0,1,2,3,3,4

0,τ,1,2,τ,3,

0,τ,1(0),τ, 2(1), 3(2)

τ,0,1,τ,2, τ,

0,1,τ,2,τ,3,

M.R. Casu, FMGALS’07

RS

Loops in static LIPs

Looking at the valid/void sequence
|v,v,τ,v,τ| modulus repeats indefinitely
3 valid data out of 5 “tokens”

M
U
X

5,5,6.6,7

τ,4,5,τ,6

τ,4(3),τ,5(4),6(5) 4,τ,5,τ,6

RS

RS

τ,0,1,1,2,3,

3,τ,4,5,τ

3,4,τ,5,τ

3,4,4,5,6

τ,0,τ,1,2,τ,

0,1,2,3,3,4

0,τ,1,2,τ,3,

0,τ,1(0),τ, 2(1), 3(2)

τ,0,1,τ,2, τ,

0,1,τ,2,τ,3,

5

M.R. Casu, FMGALS’07

RS

Loops in static LIPs

Looking at the valid/void sequence
|v,v,τ,v,τ| modulus repeats indefinitely
3 valid data out of 5 “tokens”

M
U
X

5,5,6.6,7

τ,4,5,τ,6

τ,4(3),τ,5(4),6(5) 4,τ,5,τ,6

RS

RS

τ,0,1,1,2,3,

3,τ,4,5,τ

3,4,τ,5,τ

3,4,4,5,6

τ,0,τ,1,2,τ,

0,1,2,3,3,4

0,τ,1,2,τ,3,

0,τ,1(0),τ, 2(1), 3(2)

τ,0,1,τ,2, τ,

0,1,τ,2,τ,3,

5

Throughput at steady state
Th = 3/5

M.R. Casu, FMGALS’07

RS

Loops in static LIPs

Cycle time [Carloni00]:

Critical cycle

M
U
X

RS

RS
Throughput at
steady state
Th = 3/5=3/(3+2)

1
2

3 1

2

Th(C)

1

|C|

|C|w(C)
ë(C) =

+
=

M.R. Casu, FMGALS’07

Static LIPs: PROS/CONS
 PROS
− Complete orthogonalization of
computation and communication
− Simple wrapper
− Performance known upfront
from netlist only: no need to know
the exact behavior of the system
− Simpler protocol allowed
[DAC04]
− Can be adapted to GALS
systems (e.g. modifying valid/stop
protocol to account for FIFO
empty/full semantics and using
mixed-clock FIFOs [Nowick01])

 CONS
−Area overhead (wrappers & RS)
−Routing overhead (extra signals)
−No guarantee of better data rate
(DR) than clock frequency slow-
down due to wire delay:
− DRno LIP= fno LIP · 1
− DRLIP= fLIP · Th where Th is the
throughput of the worst loop
− Th always ≤ 1

M.R. Casu, FMGALS’07

Generalized LIPs [Singh03]

 Static LIPs:
− unavailability of input forces stall

 Basic idea of Generalized LIPs (Singh and
Theobald, FMGALS’03):
− Stalls can be avoided if unavailable inputs aren’t

needed for next computation (see previous MUX)
 Throughput is no more statically determined by

the worst loop. Throughput behavior is adaptive
− Need for synchronization? Overrun avoidance?

 In the following “Adaptive LIPs”

M.R. Casu, FMGALS’07

RS

Adaptive LIPs

Previous example: void data ignored on lower
input because not needed for next computation

Back-pressure and stall avoided

M
U
X

0,1,2

0,τ,1

0,τ,1(0) 0,1,τ

RS

RS

τ,0,1

τ,0,τ

τ,0,1

stop

M.R. Casu, FMGALS’07

RS

Adaptive LIPs

Moving 2 ticks ahead. Lower input now needed…
Problem: old data (label 2) w.r.t. local time (3)
Need to stall ≥ 1 ck

M
U
X0,τ,1,2,τ

0,τ,1(0),2(1), 3(2) 0,1,τ,2,3

RS

RS τ,0,τ,1,2

τ,0,1,τ,2,

Unavailable data
labeled 3 needed
on lower channel!0,1,2,3,4 τ,0,1,2,3

M.R. Casu, FMGALS’07

RS

Adaptive LIPs

Moving 2 ticks ahead. Lower input now needed…
Problem: old data (label 2) w.r.t. local time (3)
Need to stall ≥ 1 ck

M
U
X0,τ,1,2,τ

0,τ,1(0),2(1), 3(2) 0,1,τ,2,3

RS

RS τ,0,τ,1,2

τ,0,1,τ,2,

0,1,2,3,4 τ,0,1,2,3

Unneeded upper data
can be discarded

M.R. Casu, FMGALS’07

RS

Adaptive LIPs

Upper input at risk of overrun. Stop or not?
Avoid back-pressure if you have a crystal ball…
Predictive behavior?

M
U
X

5

3

τ, 4

RS

RS

4

τ

3

0,1,2,3,4, τ,0,1,2,3,

0,τ,1(0),2(1), 3(2), 0,1,τ,2,3,

τ,0,1,τ,2,

0,τ,1,2,τ, τ,0,τ,1,2,

data labeled 4 is too
fresh…I’d better stop it

stop

M.R. Casu, FMGALS’07

RS

Adaptive LIPs

Two cycles stall (ττ) due to late data number 3
Data 4 on upper input still stopped

M
U
X

5,6

3,4

τ,τ, 4,τ,

RS

RS

4,4

τ,3,

3,4

0,1,2,3,4, τ,0,1,2,3,

0,τ,1(0),2(1), 3(2), 0,1,τ,2,3,

τ,0,1,τ,2,

0,τ,1,2,τ, τ,0,τ,1,2,

data labeled
3 available

stop

5

stop

M.R. Casu, FMGALS’07

RS

Adaptive LIPs

One computation step later…
Data 4 on upper input can now be discarded

M
U
X

5,6,6

3,4,5

τ,τ,4(3) 4,τ,τ

RS

RS

4,4,4

τ,3,4

3,4,τ

0,1,2,3,4, τ,0,1,2,3,

0,τ,1(0),2(1), 3(2), 0,1,τ,2,3,

τ,0,1,τ,2,

0,τ,1,2,τ, τ,0,τ,1,2,

5

stop

M.R. Casu, FMGALS’07

RS

Adaptive LIPs

Two steps later, the MUX switches on upper input
Data label 6 already available
Void data on lower channel ignored. Go ahead!

M
U
X

5,6,6,7,8

3,4,5,τ,τ

τ,τ,4(3),5(4),6(5) 4,τ,τ,5,6

RS

RS

4,4,4,5,6

τ,3,4,5,τ

3,4,τ,τ,5

0,1,2,3,4, τ,0,1,2,3,

0,τ,1(0),2(1), 3(2), 0,1,τ,2,3,

τ,0,1,τ,2,

0,τ,1,2,τ, τ,0,τ,1,2,

M.R. Casu, FMGALS’07

RS

Adaptive LIPs

Loops open from time to time
Chance for higher throughput
Critical loop? Behavior dependent

M
U
X

RS

RS
Throughput at
steady state?

M.R. Casu, FMGALS’07

Adaptive LIPs: PROS/CONS

 PROS
− Less restrictive conditions of
applications will hopefully lead to
higher average throughput than
static LIPs
− As a consequence, higher Data
Rate at the same clock frequency
− If input channel usage is
unknown (for a part or even for
the entire system) adaptive LIPs
behavior converges to static LIPs
− Can be adapted to GALS
systems [Singh05]

 CONS
− No pure orthogonalization of
computation and communication
− Adaptive wrapper more
complex than static
− Performance predictable only
from statistics of channel access
or from in-depth knowledge of
computational behavior and not in
closed form
− Worst loop approach fails in
capturing performance behavior

M.R. Casu, FMGALS’07

Outline

 ITRS roadmap calls for innovative design
 Static vs. Adaptive Latency Insensitive

Protocols
 Practical issues
 Latency & throughput-aware floorplanning
 Results and discussion
 Future directions and conclusions

M.R. Casu, FMGALS’07

Practical issues

[Singh03] and [Singh05]: companion FSM

M.R. Casu, FMGALS’07

Practical issues

 [Bomel05]: synchronization processor

M.R. Casu, FMGALS’07

YAW: Yet Another Wrapper!
 INC on invalid or “old” valid on

non-processed inputs
 DEC if input is valid, block is

gated, and either counter is
positive (waiting for old discarded
signals) or non-processed input
has a zero count (input can be
discarded, but not next one)

 Min value = -1: in case of early
non processed inputs we cannot
predict if will be used in future…

 Max value? Back-pressure signal
emitted to avoid overflow

 How about the oracle?

 Counters keep track of “virtual
tags”…[DATE05]

M.R. Casu, FMGALS’07

The oracle

The Delphic Sybil (Pythia),
1509, Sistine Chapel, Michelangelo

M.R. Casu, FMGALS’07

The oracle
Which damn

inputs are
needed for next
computation…

block

M.R. Casu, FMGALS’07

The oracle
Which damn

inputs are
needed for next
computation…

block

In our approach the
logic block itself tells
the oracle which
inputs it needs for
next computation

M.R. Casu, FMGALS’07

The oracle

The logic block tells the oracle which inputs it
needs for next computation (no black magic…)

Instead of being precharacterized (e.g. through
simulations), some blocks can be slightly
modified to emit a “processing signal” for all or a
subset of inputs
− Modifications are not strictly needed to make the

wrapper works. If the block does not use processing
signals, the wrapper behaves in a static fashion

− Modifications are not always necessary, example:
cpu/memory interaction through explicit wr/rd requests

M.R. Casu, FMGALS’07

Outline

 ITRS roadmap calls for innovative design
 Static vs. Adaptive Latency Insensitive

Protocols
 Practical issues
 Latency & throughput-aware floorplanning
 Results and discussion
 Future directions and conclusions

M.R. Casu, FMGALS’07

RS

How to get real speedup

A B A B
RS

 Static LIPs really endangered. Example
− Data rate of 2 tightly interacting blocks. DR = f · Th

DRno LIP= fno LIP · 1 DRLIP= f LIP · 1/2

 Hard to get fLIP > 2 · fno LIP. Better avoid RS in tight loops
through proper physical design

 Adaptive LIP may help increase DR (no guarantee!)

M.R. Casu, FMGALS’07

Floorplanning for Throughput

Standard floorplan problem:
− find a placement of blocks that minimizes whitespace,

overall wirelength, critical path, or a combination
Static LIP case:

− floorplan maximizes throughput
(possibly multi-objective)

− Maximum throughput equivalent
to worst cost-to-time ratio loop

− No need to enumerate loops
(exponential): cost evaluation
algorithm O(EV2) [TCAD05]

M.R. Casu, FMGALS’07

Floorplanning for Throughput
 Simulated annealing main features

− System is cooled from a high initial temperature T0
− If cooling is slow enough a minimum of energy is reached
− Moves accepted with probability exp(- δ/T) if reduce energy of δ

 Our work builds on Parquet [Markov03]
− Energy becomes a cost function (Th, WL, A, HPWL, or a combo)

 Problems with exact cost evaluation
− CPU time too high inside the optimization loop:
− Avg/Max CPU time: 0.2/1.1 s on MCNC and GSRC benchmarks
− Exact cost function not that smooth (“max” evaluation), especially

when close to the solution

M.R. Casu, FMGALS’07

Floorplanning for Throughput
 Heuristic should be smooth and easy to compute

and follow monotonically the real cost. A good
one is
− Statically compute the shortest loop l(e) in which every

edge e appears (outside the iteration loop)
− For every optimization iteration:
1. ∀e, cost(e)=1/l(e)·latency(e)
2. TotCost=Σcost(e)

 latency(e)
− floor of the edge’s Manhattan length divided by the

max length between clocked elements (e.g. previously
defined critical length, lcrit in the following)

M.R. Casu, FMGALS’07

Floorplanning for Throughput

Heuristic properties
−Considers only

relevant nets
−Long nets not in short

loops discarded
−Computationally light
−Smooth (function of

the whole circuit rather
than a max value)

heuristic cost

1-
Th

M.R. Casu, FMGALS’07

Floorplanning for Throughput
Th and DR results

−GSRC and MCNC benchmarks
− floorplans obtained varying lcrit
−On avg: 25% better than area

and 11% better than wirelength
cost functions

−Better gain at long lcrit: 64% and
24% if lcrit= die edge

 Data Rate increases at
shorter lcrit
−higher clock frequency

overcompensates throughput
degradation.

Caveat: clock overhead not
considered (skew, ...)

Data Rate
lcrit (% of die edge)
1/∝ fck

M.R. Casu, FMGALS’07

Did we get real speedup?
 OK, but how does it compare with no wire pipelining at all

− i.e. clock frequency slow-down
 Speedup SU = DR/DR0: upper & lower bounds [TCAD06]

− L/(lcrit+ ‹le,loop›) ≤ SU ≤ L/ ‹le,loop›
 L≥ lcrit is the interconnect length which sets the clock

frequency limit in a no LIP system
 ‹le,loop› is the average length of the edge of the worst loop

− Best floorplan minimizes the average length of the worst loop
 No matter how fast is clock (possibly infinite, i.e. lcrit→0),

the maximum speedup is upper bounded!
− unless the netlist is devoid of loops!

M.R. Casu, FMGALS’07

Did we get real speedup?
 Results obtained letting the tool seek for the optimal floorplan varying

lcrit. It always turned out that lcrit→0, confirming math formulation

bench. #blocks DR DR0 L(%) SU(%) le,loop(%)
n10 10 0.961 0.852 117 +13 104
n30 30 0.979 0.727 138 +35 102
n50 50 0.793 0.617 162 +29 126
n100 100 1.114 0.555 180 +100 90
apte 9 0.705 0.699 143 +1 142
xerox 10 0.613 0.565 177 +9 163
hp 11 0.660 0.511 196 +29 151
ami33 33 1.106 1.039 96 +6 90
ami49 49 1.047 0.774 129 +35 96

M.R. Casu, FMGALS’07

Floorplanning in Adaptive LIPs
 When a block in a loop ignores a subset or all inputs, is

actually breaking the loop
 Performance modeling: a given block’s task needs N

computations of which
− αN done with “closed” loop and (1 − α)N with “open” loop (α ≤ 1)

 α is called channel activation ratio
 Each computation takes one clock cycle when the loop is

open and 1/Th clock cycles when closed.
 The number of ck cycles required to finish is

− M = (1 − α)N + αN/Th.
 The effective throughput of the loop is

− The > Th if α < 1
Th

á
á1

1

M

N
Th

e

+!

==

M.R. Casu, FMGALS’07

Floorplanning in Adaptive LIPs
 Modified floorplan cost function [TCAD06]

− Statically compute the shortest loop l(e) in which
every edge e appears (outside the iteration loop)

− For every optimization iteration:
1. ∀e, cost(e)=1/l(e)·latency(e) ·w(e)
2. TotCost=Σcost(e)

 The only change consists in the inclusion of a
weight w(e) that depends on the channel
activation ratio α(e)

 Several strategies possible
− w = α, w = maxloop(αi), w = 1/(2- α)…

M.R. Casu, FMGALS’07

Floorplanning in Adaptive LIPs
Problem with floorplan benchmarks:

− how to assign channel activation ratios α’s?
GSRC and MCNC benchmarks random

assignment…
− Hypothesis: channels used in burst mode

MPEG encoder and small CPU measured α’s
− Need for post-layout verification (cannot evaluate Th a

priori)
Floorplanner output gives also a performance

estimate (to be compared with actual simulations)
− Calculated with worst effective throughput The

M.R. Casu, FMGALS’07

Outline

 ITRS roadmap calls for innovative design
 Static vs. Adaptive Latency Insensitive

Protocols
 Practical issues
 Latency & throughput-aware floorplanning
 Results and discussion
 Future directions and conclusions

M.R. Casu, FMGALS’07

Example: GSRC n10

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 20 40 60 80 100 120

d
a
ta

 r
a
te

 (
re

la
ti
v
e
 u

n
it
s
)

lcrit (% of die edge)

static LIP

adaptive LIP

no LIP

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 20 40 60 80 100 120

d
a
ta

 r
a
te

 (
re

la
ti
v
e
 u

n
it
s
)

lcrit (% of die edge)

static LIP

adaptive LIP

no LIP

M.R. Casu, FMGALS’07

Example: GSRC n10

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 20 40 60 80 100 120

d
a
ta

 r
a
te

 (
re

la
ti
v
e
 u

n
it
s
)

lcrit (% of die edge)

static LIP

adaptive LIP

no LIP

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 20 40 60 80 100 120

d
a
ta

 r
a
te

 (
re

la
ti
v
e
 u

n
it
s
)

lcrit (% of die edge)

static LIP

adaptive LIP

no LIP

Max p2p wire
length ~ 120%

of die edge

M.R. Casu, FMGALS’07

Example: MPEG [NTT96],[NTT99]

P
re

p
ro

c
e
s
s
in

g

Frame

Memory
+- DCT

Regulator

Quantizer

(Q)

Inverse

Quantizer

(IQ)

IDCT

+

Motion

Compensation

Motion

Estimation

VLC

Encoder

B
u
ffe

r

Frame

Memory

input

output

P
re

p
ro

c
e
s
s
in

g
P

re
p
ro

c
e
s
s
in

g

Frame

Memory

Frame

Memory
+- DCTDCT

RegulatorRegulator

Quantizer

(Q)

Quantizer

(Q)

Inverse

Quantizer

(IQ)

Inverse

Quantizer

(IQ)

IDCTIDCT

++

Motion

Compensation

Motion

Compensation

Motion

Estimation

Motion

Estimation

VLC

Encoder

VLC

Encoder

B
u
ffe

r
B

u
ffe

r

Frame

Memory

Frame

Memory

input

output

Case of
study in
[Carloni00]

M.R. Casu, FMGALS’07

Example: MPEG [NTT96],[NTT99]

P
re

p
ro

c
e
s
s
in

g

Frame

Memory
+- DCT

Regulator

Quantizer

(Q)

Inverse

Quantizer

(IQ)

IDCT

+

Motion

Compensation

Motion

Estimation

VLC

Encoder

B
u
ffe

r

Frame

Memory

input

output

P
re

p
ro

c
e
s
s
in

g
P

re
p
ro

c
e
s
s
in

g

Frame

Memory

Frame

Memory
+- DCTDCT

RegulatorRegulator

Quantizer

(Q)

Quantizer

(Q)

Inverse

Quantizer

(IQ)

Inverse

Quantizer

(IQ)

IDCTIDCT

++

Motion

Compensation

Motion

Compensation

Motion

Estimation

Motion

Estimation

VLC

Encoder

VLC

Encoder

B
u
ffe

r
B

u
ffe

r

Frame

Memory

Frame

Memory

input

output

Case of
study in
[Carloni00]

3

M.R. Casu, FMGALS’07

Example: MPEG [NTT96],[NTT99]

P
re

p
ro

c
e
s
s
in

g

Frame

Memory
+- DCT

Regulator

Quantizer

(Q)

Inverse

Quantizer

(IQ)

IDCT

+

Motion

Compensation

Motion

Estimation

VLC

Encoder

B
u
ffe

r

Frame

Memory

input

output

P
re

p
ro

c
e
s
s
in

g
P

re
p
ro

c
e
s
s
in

g

Frame

Memory

Frame

Memory
+- DCTDCT

RegulatorRegulator

Quantizer

(Q)

Quantizer

(Q)

Inverse

Quantizer

(IQ)

Inverse

Quantizer

(IQ)

IDCTIDCT

++

Motion

Compensation

Motion

Compensation

Motion

Estimation

Motion

Estimation

VLC

Encoder

VLC

Encoder

B
u
ffe

r
B

u
ffe

r

Frame

Memory

Frame

Memory

input

output

Case of
study in
[Carloni00]

3

4

M.R. Casu, FMGALS’07

Example: MPEG [NTT96],[NTT99]

P
re

p
ro

c
e
s
s
in

g

Frame

Memory
+- DCT

Regulator

Quantizer

(Q)

Inverse

Quantizer

(IQ)

IDCT

+

Motion

Compensation

Motion

Estimation

VLC

Encoder

B
u
ffe

r

Frame

Memory

input

output

P
re

p
ro

c
e
s
s
in

g
P

re
p
ro

c
e
s
s
in

g

Frame

Memory

Frame

Memory
+- DCTDCT

RegulatorRegulator

Quantizer

(Q)

Quantizer

(Q)

Inverse

Quantizer

(IQ)

Inverse

Quantizer

(IQ)

IDCTIDCT

++

Motion

Compensation

Motion

Compensation

Motion

Estimation

Motion

Estimation

VLC

Encoder

VLC

Encoder

B
u
ffe

r
B

u
ffe

r

Frame

Memory

Frame

Memory

input

output

Case of
study in
[Carloni00]

3

4

8

M.R. Casu, FMGALS’07

Example: MPEG [NTT96],[NTT99]

P
re

p
ro

c
e
s
s
in

g

Frame

Memory
+- DCT

Regulator

Quantizer

(Q)

Inverse

Quantizer

(IQ)

IDCT

+

Motion

Compensation

Motion

Estimation

VLC

Encoder

B
u
ffe

r

Frame

Memory

input

output

P
re

p
ro

c
e
s
s
in

g
P

re
p
ro

c
e
s
s
in

g

Frame

Memory

Frame

Memory
+- DCTDCT

RegulatorRegulator

Quantizer

(Q)

Quantizer

(Q)

Inverse

Quantizer

(IQ)

Inverse

Quantizer

(IQ)

IDCTIDCT

++

Motion

Compensation

Motion

Compensation

Motion

Estimation

Motion

Estimation

VLC

Encoder

VLC

Encoder

B
u
ffe

r
B

u
ffe

r

Frame

Memory

Frame

Memory

input

output

Case of
study in
[Carloni00]

3

4

9

8

M.R. Casu, FMGALS’07

Example: MPEG [NTT96],[NTT99]

M.R. Casu, FMGALS’07

Example: MPEG [NTT96],[NTT99]

3

M.R. Casu, FMGALS’07

Example: MPEG [NTT96],[NTT99]

3

4

M.R. Casu, FMGALS’07

Example: MPEG [NTT96],[NTT99]

3

48

M.R. Casu, FMGALS’07

Example: MPEG [NTT96],[NTT99]

3

48

9

M.R. Casu, FMGALS’07

Example: MPEG [NTT96],[NTT99]

M.R. Casu, FMGALS’07

Example: MPEG [NTT96],[NTT99]

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 20 40 60 80 100

d
a
ta

 r
a
te

 (
re

la
ti
v
e
 u

n
it
s
)

lcrit (% of die edge)

static LIP
no LIP

post layout adaptive LIP

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 20 40 60 80 100

d
a
ta

 r
a
te

 (
re

la
ti
v
e
 u

n
it
s
)

lcrit (% of die edge)

static LIP
no LIP

post layout adaptive LIP

M.R. Casu, FMGALS’07

Example: MPEG [NTT96],[NTT99]

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 20 40 60 80 100

d
a
ta

 r
a
te

 (
re

la
ti
v
e
 u

n
it
s
)

lcrit (% of die edge)

static LIP
no LIP

post layout adaptive LIP

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 20 40 60 80 100

d
a
ta

 r
a
te

 (
re

la
ti
v
e
 u

n
it
s
)

lcrit (% of die edge)

static LIP
no LIP

post layout adaptive LIP

Max p2p wire
length ~ 100%

of die edge

M.R. Casu, FMGALS’07

Example: MPEG [NTT96],[NTT99]

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 20 40 60 80 100

d
a
ta

 r
a
te

 (
re

la
ti
v
e
 u

n
it
s
)

lcrit (% of die edge)

static LIP
no LIP

post layout adaptive LIP

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 20 40 60 80 100

d
a
ta

 r
a
te

 (
re

la
ti
v
e
 u

n
it
s
)

lcrit (% of die edge)

static LIP
no LIP

post layout adaptive LIP

Max p2p wire
length ~ 100%

of die edge

No tightest
loops

(Th > 1/2)

M.R. Casu, FMGALS’07

Example: small CPU
 Many “tight” loops
 Easy to derive channel

activation ratios and
input “processing”
signals (for the oracle…)

 Post layout code exec.
Two programs:
− Matrix multiply

exercises mostly RF-
DMEM loops

− Extraction Sort
activates mainly CU-
RF-ALU branch loops

M.R. Casu, FMGALS’07

Example: small CPU
 Many “tight” loops
 Easy to derive channel

activation ratios and
input “processing”
signals (for the oracle…)

 Post layout code exec.
Two programs:
− Matrix multiply

exercises mostly RF-
DMEM loops

− Extraction Sort
activates mainly CU-
RF-ALU branch loops

IMEM

DMEM

RF CU ALU

M.R. Casu, FMGALS’07

Example: small CPU
 Many “tight” loops
 Easy to derive channel

activation ratios and
input “processing”
signals (for the oracle…)

 Post layout code exec.
Two programs:
− Matrix multiply

exercises mostly RF-
DMEM loops

− Extraction Sort
activates mainly CU-
RF-ALU branch loops

IMEM

DMEM

RF CU ALU

M.R. Casu, FMGALS’07

Example: small CPU
 Many “tight” loops
 Easy to derive channel

activation ratios and
input “processing”
signals (for the oracle…)

 Post layout code exec.
Two programs:
− Matrix multiply

exercises mostly RF-
DMEM loops

− Extraction Sort
activates mainly CU-
RF-ALU branch loops

IMEM

DMEM

RF CU ALU

M.R. Casu, FMGALS’07

Example: small CPU
 Example VHDL code: input “processing” companion signals in Register File
entity RF is

...
rf_src1 : in UNSIGNED (4 downto 0); -- source reg 1 address
p_rf_src1 : out STD_LOGIC; -- source reg 1 PROCESSING bit
rf_src2 : in UNSIGNED (4 downto 0); -- source reg 2 address
p_rf_src2 : out STD_LOGIC; -- source reg 2 PROCESSING bit
rf_des1 : in UNSIGNED (4 downto 0); -- dest reg 1 address
p_rf_des1 : out STD_LOGIC; -- dest reg 1 PROCESSING bit
...
process(rd, wr, from_mem)
begin
if(rd = ’1’) then

p_rf_src1 <=’1’; -- read cycle: addresses of source
p_rf_src2 <=’1’; -- registers have to be processed!

if(wr = ’1’) then
p_rf_des1 <=’1’; -- write cycle: address of dest

-- register has to be processed!
...

M.R. Casu, FMGALS’07

Example: small CPU
 Example VHDL code: input “processing” companion signals in ALU
entity ALU is

...
op_code : in UNSIGNED (3 downto 0);
src_1 : in UNSIGNED (15 downto 0); -- src_1 input
p_src_1 : out STD_LOGIC; -- src_1 PROCESSING bit
src_2 : in UNSIGNED (15 downto 0); -- src_2 input
p_src_2 : out STD_LOGIC; -- src_2 PROCESSING bit
...
process(op_code)
begin
case op_code is -- switch based on opcode

when OP_IS_ADD => -- when ADDITION
p_src_1 <= ’1’; -- process both input src_1 and
p_src_2 <= ’1’; -- input src_2

when OP_IS_OR => -- when logic OR
p_src_1 <= ’1’; -- process both input src_1 and
p_src_2 <= ’1’; -- input src_2

when OP_IS_RL => -- when ROTATE LEFT
p_src_1 <= ’1’; -- process only input src_1

...

M.R. Casu, FMGALS’07

Example: small CPU

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 70 80 90 100 110 120 130 140

da
ta

 ra
te

 (r
el

at
iv

e
un

its
)

lcrit (% of die edge)

matrix mpy static LIP
matrix mpy adaptive LIP

sort static LIP
sort adaptive LIP

no LIP

M.R. Casu, FMGALS’07

Example: small CPU

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 70 80 90 100 110 120 130 140

da
ta

 ra
te

 (r
el

at
iv

e
un

its
)

lcrit (% of die edge)

matrix mpy static LIP
matrix mpy adaptive LIP

sort static LIP
sort adaptive LIP

no LIP

Static LIP
curves overlap
(no code effect)

M.R. Casu, FMGALS’07

Example: small CPU

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 70 80 90 100 110 120 130 140

da
ta

 ra
te

 (r
el

at
iv

e
un

its
)

lcrit (% of die edge)

matrix mpy static LIP
matrix mpy adaptive LIP

sort static LIP
sort adaptive LIP

no LIP

Static LIP
curves overlap
(no code effect)

Shortest loop
RF-DMEM

M.R. Casu, FMGALS’07

Discussion
Floorplan results confirm that static LIPs

advantage emerges only in few cases
− Loose loops with latencies≠0 only in few edges
− Tight loops must be zero latency
− Otherwise, slowing down computation to meet wire

delay is a better option
Adaptive LIPs alleviate these limitations

− As always, there’s no such a thing as a free lunch…
− wrapper area cost and engineering cost of building

processing signals or wrapper’s FSM)
− In any case advantages are benchmark dependent

Problem: are we benchmarking the right way?

M.R. Casu, FMGALS’07

Discussion

Q: What type and what size for the elementary
logic block (“Carloni’s pearl”)
− Q’: what is the size of a clock domain

A: Prospectively looking, SoC will look more as
array of regular fabrics
− e.g. many simple processor cores paired with

memories and few specialized hw accelerators
− A’. the clock domain is the “tile”

Communication between cores will be explicit
− Latency insensitive protocols will be natively adaptive

M.R. Casu, FMGALS’07

“Tile based” design
 80 cores connected

though NoC [Intel07]
 Global

mesochronous
4GHz clocking

 Cores communicate
only with tile routers

 Tile routers are
connected through
p2p links

 Making links latency
insensitive is easy!

M.R. Casu, FMGALS’07

Outline

 ITRS roadmap calls for innovative design
 Static vs. Adaptive Latency Insensitive

Protocols
 Practical issues
 Latency & throughput-aware floorplanning
 Results and discussion
 Future directions and conclusions

M.R. Casu, FMGALS’07

Future directions

 Exploring the relation
between “new” models
of computation and
the GALS paradigm

 New benchmarks
− Right mix of HW and SW
− Global assessment of

various design choices
through accepted metrics
(and their sensitivity)

 GALS physical design
− Performance

modeling and
inclusion in
floorplan tool

− Simultaneous P&R
of repeaters and
mixed-clock RS

M.R. Casu, FMGALS’07

We are facing
daunting challenges

Conclusions

When the going
gets tough…

…the GALS
get going!

THANK YOU!

M.R. Casu, FMGALS’07

References
[Carloni99] L. P. Carloni et al., A methodology for correct-by-construction latency insensitive
design. In Proc. ICCAD’99
[Carloni00] L.P. Carloni and A. Sangiovanni-Vincentelli, Performance Analysis and
Optimization of Latency Insensitive Systems, Proc. DAC’00
[Carloni01] L.P. Carloni et al. Theory of Latency-Insensitive Design, IEEE TCAD, vol. 20, No.
9, Sept. 2001, pp. 1059-1076.
[DAC04] M.R. Casu and L. Macchiarulo, A New Approach to Latency Insensitive Design, Proc.
DAC’04
[Nowick01] T. Chelcea and S.M. Nowick, Robust Interfaces for Mixed-Timing Systems with
Application to Latency-Insensitive Protocols, Proc. DAC’01
[Singh03] M. Singh and M. Theobald, Generalized Latency Insensitive Systems for Single-
Clock and Multi-Clock Architectures, Proc. FMGALS’03
[Singh05] An Architecture and a Wrapper Synthesis Approach for Multi-Clock Latency-
Insensitive Systems, Proc. ICCAD’05
[Bomel05] P. Bomel et al., High-Level Synthesis in High-level synthesis in latency insensitive
system methodology, Proc. DSD’05
[DATE05] M.R. Casu and L. Macchiarulo, A New System Design Methodology forWire
Pipelined SoC, Proc. DATE’05

M.R. Casu, FMGALS’07

References
[TCAD05] M.R. Casu and L. Macchiarulo, Throughput-Driven Floorplanning With Wire
Pipelining, IEEE TCAD, May 2005.
[Markov03] S. N. Adya and I. L. Markov, “Fixed-outline floorplanning: Enabling hierarchical
design,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 11, no. 6, pp. 1120–1135,
Dec. 2003.
[TCAD06] M.R. Casu and L. Macchiarulo, Floorplanning With Wire Pipelining in Adaptive
Communication Channels, IEEE TCAD, Dec. 2006.
[Ekpaniapong04] M. Ekpanyapong et al., “Profile-guided microarchitectural floorplanning for
deep-submicron processor design,” in Proc. DAC’04
[Long04] C. Long et al., “Floorplanning optimization with trajectory piecewise-linear model for
pipelined interconnects,” in Proc. DAC’04
[Nookala05] V. Nookala et al., “Microarchitectural-aware floorplanning using a statistical design
of experiments approach,” in Proc. DAC’05
[NTT96] T. Kondo et al., “Two-Chip MPEG2 Video Encoder”, IEEE Micro, April ‘96
[NTT99] T. Kondo et al., “Superenc: MPEG-2 Video Encoder Chip”, IEEE Micro, Jul-Aug. 99
[INTEL07] N. Borkar et al., “An 80-Tile 1.28 TFLOPS Network-on-Chip in 65nm CMOS”, in
Proc. ISSCC’07

M.R. Casu, FMGALS’07

Theoretical issues

Is an adaptive LIP system equivalent to the
original (i.e. no LIP) system and to its static
variant?

Definition of latency equivalence requires some
formalism: Tagged signal model.

Suppose a system with M channels. Original
system behavior in [t1,tN]:
− (v1

(i),t1),(v2
(i),t2),…, (vN

(i),tN), i = 1 : M
LIP system behavior in [t1,tN]:

− (v1
(i),t1),τ,(v2

(i),t3),…, (vK
(i),tN), i = 1 : M, K ≤ N

M.R. Casu, FMGALS’07

Latency equivalence
After [Carloni01]:

− “Two signals are latency equivalent if they present the
same sequence of informative events, i.e., they are
identical except for different delays between two
successive informative events.”

n-equivalence definition:
− If, in a given time interval [0, tN], ∃n s.t. every signal in

LIP system has at least n valid events equal and
ordered as in the original case, said system is said “n-
equivalent” or “equivalent of degree n.”

n-equivalence ∀n coincident with Carloni’s
equivalence

M.R. Casu, FMGALS’07

Two steps to equivalence

 Evolutionary proof approach:
 Step A: equivalence between no LIP

system and static LIP system
 Step B: equivalence between no LIP

system and adaptive LIP system

M.R. Casu, FMGALS’07

Step A (1/2)
 Features of static LIPs (abstract) wrappers
1. τ-filtered inputs are buffered in fifos (possibly of zero depth)
2. A synchronizer keeps track of the current tag (local tag counter) and,

as soon as all inputs with the same tag are available:
a) dispatches them to the internal process and remove them from the fifos;
b) if at least one of the inputs is not available, i.e. it does not have the current

tag, the process is stalled.
3. If at least one input fifo is full, a back-pressure signal called stop is

sent back to that input channel.
4. If a stop is received from one of the output channels on a valid

computation (i.e. when the process is not stalled), the wrapper stalls
the process for the next cycle and propagates the stop to all inputs. If
the stop is received on a τ value, the stop is absorbed and will not be
back-propagated.

5. In correspondence with the stall, τ is sent to all outputs.

M.R. Casu, FMGALS’07

Step A (2/2)
 It is possible to prove that a LIP system with wrappers as of

step A is equivalent to the original system
 Need Relay Stations to hold data in case of back-pressure
 Wrappers as well as RS implement “stop absorption”

− back-pressure signals are absorbed when τ (void) events are
pipelined and are not back-propagated

 Last property is the key to prove j-equivalence (by induction):
− sooner or later tags labeled “j” already computed will reach their

destination. Moreover, output stops cannot stall computation
indefinitely (a stop received on a stall event will be ignored).
Therefore inputs “j” will eventually enable computation of “j+1” tags.

 j-equivalence can be proved ∀j, ⇒ equivalence
 No actual need for “tag labels” nor for tag counters

− valid/stop signals suffice (from abstract to real…)

M.R. Casu, FMGALS’07

Step B (1/2)
 Adaptive LIPs wrappers’ features
 An oracle decides which inputs will be actually

needed for the next computation.
 Properties 1 to 5 as before
if the subset of inputs required by the oracle are

present, i.e. they have the same tag as the
current local tag, the computation is triggered
and the fifos updated.

The synchronizer discards all inputs whose tag
is smaller than the current value (tags “older”
than local current tag).

M.R. Casu, FMGALS’07

Step B (2/2)

Again, it is possible to prove equivalence
Differently from the static case, simple check of

validity (i.e.≠ τ) is not sufficient:
− wrapper should be able to identify and discard “older

values” from inactive inputs
− if tags are not used (for practical reasons) and validity

signals are employed, it is necessary to count how
many tags have been discarded.

− thanks to strong ordering, counting the number of valid
events is equivalent to keeping track of their tags

M.R. Casu, FMGALS’07

Outline of possible design flow
 System is developed using standard methodologies

− possibly, blocks inputs are associated with processing signals
 Blocks are encapsulated with wrappers

− with or w/o oracle
 Logic synthesis provides area estimates and clock

frequencies for each block
− global interconnects ignored

 Floorplan gives estimates of global wires length
− highlights new critical path if max wire delay exceeded
− estimates performance if LIPs are used
− allows evaluating data-rate/throughput tradeoffs

 Post-floorplan netlist includes RS locations
− allows new system simulations back-annotated with real latencies

M.R. Casu, FMGALS’07

Floorplanning in Adaptive LIPs
 Problem: The worst loop cannot be statically determined

− depends on communication profile which varies during
computation

 Enriching floorplan cost functions with full profile
information is impractical. We use α [TCAD06]:
− logical time fraction in which a channel is active

 Logical time in terms of logic computation steps
− physical design effects ignored: no need to iterate between

floorplan and channel back-annotation, as opposed to
[Ekpaniapong04][Long04][Nookala05]

− can be assessed through a single profiling experiment (or better,
averaging significant profiling)

 Assumption: activation ratios statistically independent

