Fault tolerance Adequation in Syndex

Thomas Léveque

September 15, 2004

Contents

1 Conception Document 3
1.1 Required data 3
1.2 Result data o e 3
1.3 Global Adequation Algorithm L 3

1.3.1 Build of an architecture reduce for each failure pattern 3
1.3.2 Generate a simple schedule for each failure pattern 4
1.3.3 Unionofall graphs 4
1.3.4 Make a pseudo-topological order for the graph 4
1.3.5 Calculate start time, end time and timeout for each task 5
1.4 Failures patterns files L 6
1.5 Bugs 6
1.6 Future work L 6
1.7 Adequation Tests 6

2 Making manual 10
2.1 required software L 10
2.2 Install and make a distrib of Syndex L Lo 10
2.3 Links. . . . L e e 11
2.4 Modified files for this adequation 11
2.5 Troubleshouting e 11

3 User manual 12
3.1 Why Fail tolerance 7 e e 12
3.2 What’s a schedule which tolerate failures patterns ? 12
3.3 Create failures patterns L 12
3.4 Save and restore failures patterns Lo L 12

3.4.1 Save a failures pattern L 12
3.4.2 Restore failures patterns Lo 13
3.5 Failures patterns files 13
3.6 Generate and view simple schedule of each failures pattern. 13
3.6.1 Generate simple schedule for each failures pattern 13
3.6.2 View simple schedule for each failures pattern 13
3.7 Generate and view schedule which tolerate each failures pattern 13
3.7.1 Generate a schedule which tolerate each failures pattern 13
3.7.2 View schedule which tolerate each failures pattern 14
3.8 Use Syndex command line L 14
3.9 Unsupported with this adequation 14

4 Tutorial 15
4.1 Graphic use L e 15
4.1.1 Create algorithm L 15
4.1.2 Create architecture 15
4.1.3 Create failure patterns 16
4.1.4 Save failure patterns 16
4.1.5 Remove a failure pattern Lo 17
4.1.6 Load a failure pattern 17
4.1.7 Generate simple schedules Lo 17
4.1.8 View simple schedules 17
4.1.9 Generate global schedules L 17
4.1.10 View global schedules L 18

4.2 Command line use e 18

Chapter 1

Conception Document

1.1 Required data

e an algorithm graph

e an architecture graph
To make Adequation :

e Faillures patterns which want to tolerate
To view schedule :

e one or more effective fails

1.2 Result data

e One schedule which tolerate faillures patterns

1.3 Global Adequation Algorithm
Five points :
1. Build of an architecture reduce for each failure pattern
2. Generate a simple schedule for each failure pattern

Union of all graphs

LS

Make a pseudo-topological order for the graph

5. Calculate start time, end time and timeout for each task

1.3.1 Build of an architecture reduce for each failure pattern

The procedure failures patterns_check () checks failures patterns , in the others words, they don’t
generate disjoint architectures and remove the subsets of another failure pattern. We should use it before
make any adequation.

1.3.2 Generate a simple schedule for each failure pattern

During adequation, we don’t allow to use a component included in the failure pattern. The function routes
ol 02 exclusives_routes returns the shortest route list between o1 and 02 which not contain a component
included in exclusives_routes. The function best_opr_esfs_sp operation operators graph fp returns
optimal esfs, the best operator for this operation operation included in operators and not included in fp.
If there isn’t operator, an exception is throwed. The fault tolerant adequation fp graph function call
generate adequation of the graph graph with fail components are the set fp.

1.3.3 Union of all graphs

The function union_graph graph_list returns a graph which is the union of graph list. To make union, we
add each graph of the list to the first . The procedure union 2 _graph gl g2 add gl to g2. For all the nodes
(operation type) of graph, add them with procedure operation_add which change operation name (same
name with #operator at the end) if it is necessary if they are not in the other graph (same operation name and
same operator). The function op_exist returns a boolean which represents the presence of the node. Finally,
for all nodes of the graph, we update successors and predecessors. Be carefull, we must update four lists of
each task : t_opn_dependences predecessors, t_opn_dependences_successors, t_opn_predecessors and
t_opn_successors. Use function dependence_add to update these four lists and add a data dependency on
graph.

Algorithm 1 Build graph list union

let union_graph graph_list =
let union_2_graph gl g2 =
let op_exist operation graph =
let op_list = (Hashtbl.find_all graph (identifier_of_operation operation))
@ (Hashtbl.find_all graph ((identifier_of_operation operation)~"#"
" (name_of _operator (operator_of_operation operation))))
in
List.exists (
fun op -> (name_of_operator (operator_of_operation op))=
(name_of_operator (operator_of_operation operation))) op_list
in
Hashtbl.iter (fun name_operation -> fun operation ->
if not(op_exist operation gl)
then operation_add gl operation
) g2;
Hashtbl.iter (fun name_operation -> fun operation ->
%Update successors et predecessors of gli) g2;
in
List.iter (fun g -> union_2_graph (List.hd graph_list) g) graph_list;
List.hd graph_list

1.3.4 Make a pseudo-topological order for the graph
Let G graph which we would like calculate a pseudo topological order ¢ and N the noeud list of G.
Algorithm 2 Calculate a pseudo-topological order for the graph

Properties :

1. Any predecessor w’ of w which his operation is different from w operation and there isn’t edge between
w’ and w in the original algorithm graph not ordinate.

2. There a predecessor w’ ordinate which his operation is equal to w or an edge between w’ and w in the
original algorithm graph.

3. For all data dependency dp which is predecessor of w in the original algorithm graph, there is a ordinate
predecessor which corresponding to dp.

4. w must not be included in X.

begin
let k = ref 1 and X = ref [] in
let checkPred w = %Prop 1% and
checkDep w = match operator_of_operation w with
|Operator _ -> true
|[Media m -> %Prop 2% and
checkOp w = match operator_of_operation w with
|[Media _ -> true
|Operator op -> ¥%Prop 37 and
checkNotOrd w = %Prop 4% in
let check w = checkNotOrd w && checkPred w && checkDep w && checkOp w in
while !'k<=length(N) do
let w = List.find check N in

X:=w :: 1X;
phi. (k) := w;
k := 1k + 1;
done
phi

end

1.3.5 Calculate start time, end time and timeout for each task
We try to find a fix point for timeout.

Algorithm 3 Calculate start time, end time and timeout of a graph

begin
forall (node v) do teta.(0).v:=0;
i:=0;
repeat
i:=i+1;
forall (failurePattern F) do
if isStarving v F then teta.(F).v = teta.(i-1).v
else teta.(F).v = infinite;
let (alpha. (F),beta.(F),epsilon.(F)):= minimalExecution teta. (F);
end for
forall (node v) do teta.(i).v:=(max alpha v)+ 1
until teta. (i) = teta.(i+1)
end

The procedure minimal_execution _computation phi teta starvingNodes computes minimal execution.
It needs a pseudo topological order phi, timeout teta and the list of the nodes which not receive all their
datas starvingNodes. It updates all the esfs, start time of each task. We use four datas to make this
computation :

e beta represents all the end times.
e epsilon checks if an operation is executed.
e notCalc checks if an operation is already calculated.

e empty_times is the set of all the times where each operator or media is not used.

In the order of the pseudo-topological order, we compute start time and end time for each operation. This
computation may fail if all the predecessors aren’t already calculated, we indicate that this operation is not
calculated. The procedure alpha_computation does this computation . When this computation not fails,
we compute all the predecessors in the order which have not been calculated.

1.4 Failures patterns files

This files have .fp extension and are text files with this rules :

e a failure pattern by each line

no empty line

a failure pattern is represent by each name of fail component separated by exactly one space

each line doesn’t begin or end by a delimiter

Two failure patterns exemple : one line describe procl and proc2 as failed and another line with com3,
operator6 and operator8 out of order :

procl proc2
com3 operator6 operator8

1.5 DBugs

e Nothing ! So far !

1.6 Future work

e Use progress box during fusion proceed

1.7 Adequation Tests

We generate randomly 50 algorithms for each CCR (Communication to Computation Ratio) and number of
tasks with link.
Tested CCR :

e CCR=0.1
e CCR=1
e CCR =10

Tested number of tasks :
e 25
e 50
e 75
e 100

We compute the length of the critical path for each produced schedule and compare with those obtained with

other adequation algorithms (FTBAR). To speed up making tests, we call the function minimal execution_computation
one time with an infinite timeout for each operation and no starving operation (empty list) instead of com-

puting timeout. Then we look after the highest end time of all operations and return it. These changes are

to do in the file fault_tolerance with fp.ml. The following process is to automate the tests. We insert

the following code in the main loop of the file ihm_ctk.ml :

for k = 1 to 4 do
let number_of_task = (25%k) in
for j =1 to 3 do
let ccr = match j with
-> 0.1
-> 1.
-> 10.
in
for num = 1 to 50 do
let test_file = ("alg""(string_of_int (number_of_task/25))
“"_red"" (string_of_int num) ~"_ccr"
“(string_of_float ccr)”"_archi_p4.sdx") in
open_file_name test_file ;
let time_test = (fault_adeq_test ()) in
ps (string_of_float time_test);
done;
done;
done

w N =

The test_file value is the name of the files which have to make tests. The fault_adeq test function is
a call of the desire adequation function and then the computation of execution time. To make following
graphs, we use Scilab with the following script :

NBTASKS=[25 50 75 100];

// FTBAR tests read

FT25C01=fscanfMat (’25_tasks_ccr_0.1.ftbar’);
FT25C1=fscanfMat (’25_tasks_ccr_1.ftbar’);
FT25C10=fscanfMat (*25_tasks_ccr_10.ftbar’);
FT50C01=fscanfMat (°50_tasks_ccr_0.1.ftbar’);
FT50C1=fscanfMat(’50_tasks_ccr_1.ftbar’);
FT50C10=fscanfMat (’50_tasks_ccr_10.ftbar’);
FT75C01=fscanfMat (’75_tasks_ccr_0.1.ftbar’);
FT75C1=fscanfMat (’75_tasks_ccr_1.ftbar’);
FT75C10=fscanfMat (*75_tasks_ccr_10.ftbar’);
FT100C01=fscanfMat (’100_tasks_ccr_0.1.ftbar’);
FT100C1=fscanfMat (’100_tasks_ccr_1.ftbar’);
FT100C10=fscanfMat (’100_tasks_ccr_10.ftbar’);
// Failures Patterns tests read
T25C01=fscanfMat(’25_tasks_ccr_0.1.test’);
T25C1=fscanfMat (’25_tasks_ccr_1.test’);
T25C10=fscanfMat(’25_tasks_ccr_10.test’);
T50C01=fscanfMat (’50_tasks_ccr_0.1.test’);
T50C1=fscanfMat (’50_tasks_ccr_1.test’);
T50C10=fscanfMat(’50_tasks_ccr_10.test’);
T75C01=fscanfMat(’75_tasks_ccr_0.1.test’);
T75C1=fscanfMat (’75_tasks_ccr_1.test’);
T75C10=fscanfMat (’75_tasks_ccr_10.test’);
T100CO01=fscanfMat (’100_tasks_ccr_0.1.test’);

T100C1=fscanfMat(’100_tasks_ccr_1.test’);

T100C10=fscanfMat (*100_tasks_ccr_10.test’);

// functions

deff (’ [x]=average(y)’,’x=sum(y)/length(y)’);

// averages

FTAV=1list ([average (FT25C01) ;average (FT50C01) ;average (FT75C01) ;average (FT100C01)], ...
[average (FT25C1) ;average (FT50C1) ;average (FT75C1) ;average (FT100C1)],. ..

[average (FT25C10) ;average (FT50C10) ; average (FT75C10) ;average (FT100C10)1) ;

FPAV=1ist ([average (T25C01) ;average (T50C01) ;average (T75C01) ;average (T100C01)], ...
[average (T25C1) ;average (T50C1) ;average(T75C1) ;average (T100C1)], ...

[average (T25C10) ; average (T50C10) ;average (T75C10) ;average (T100C10)]);

// graphs

xsetech([0.,0.,1.,0.33],[-1,1,-1,11);

rect=[0,0,100,1500] ;

leg="FTBARQFailures Patterns";

plot2d (NBTASKS, [FTAV(1) FPAV(1)]1,[2 3],"111",leg,rect)

xtitle("Comparison between FTBAR and FP for CCR = 0.1","number of tasks","execution time")
xsetech([0.,0.33,1.,0.33],[-1,1,-1,11);

rect=[0,0,100,4000] ;

leg="FTBARQFailures Patterns";

plot2d (NBTASKS, [FTAV(2) FPAV(2)],[2 3],"111",1leg,rect)

xtitle("Comparison between FTBAR and FP for CCR = 1","number of tasks","execution time")
xsetech([0.,0.66,1.,0.34],[-1,1,-1,11);

rect=[0,0,100,35000] ;

leg="FTBARQFailures Patterns";

plot2d (NBTASKS, [FTAV(3) FPAV(3)],[2 3],"111",leg,rect)

xtitle("Comparison between FTBAR and FP for CCR = 10","number of tasks","execution time")

NBTASKS is the set of the different numbers of tasks. For each case (number of tasks, CCR and adequation
type), we create a vector of results. We define the function average as the average of all elements of a vector.
Then we create an average list for each adequation type. The View parameters are rect which represents
scale, 1leg which represents caption, [2 3] define two colors for differents graphs, the xsetech command
define the position of graphs in the frame and the xtitle allow to change graph title and axe labels.

Comparison between FTBAR and FP for CCR = 0.1

— FTBAR
Failures Patterns

execution time

25 50 75 100
number of tasks

Comparison between FTBAR and FPfor CCR=1

3520 —— FTBAR
Failures Patterns

execution time
N
N
8

Lol lalyl

58

25 50 75 100

number of tasks

Comparison between FTBAR and FP for CCR = 10

35000]
31500
28000
24500
21000
17500
14000
10500

7000

3500

—— FTBAR
Failures Patterns

execution time

25 50 75 100
number of tasks

FTBAR seems to be the best adequation for execution times. We can notice that for CCR = 10, Failures
Patterns adequation (FPTOL) are better than FTBAR one time of four.

Chapter 2

Making manual

2.1 required software

compiler ocaml v3.07 or more

patch camltk-hidden-state.patch

Tcl/Tk v8.3 or more

Syndex source code

2.2 Install and make a distrib of Syndex

Change COMMON_0BJS of Makefile :

COMMON_0BJS=version.cmo symbolic.cmo coord.cmo port.cmo types.cmo \
application.cmo algorithm.cmo architecture.cmo adequationtypes.cmo \
parserexpressioninit.cmo lexerexpression.cmo parserexpression.cmo \
sdx_lexer.cmo sdx_parser.cmo write.cmo \
transformation.cmo camltk/progress_box.cmo \
adequation_core.cmo fault_tolerance_adequation_core.cmo \
latency_adequation.cmo fault_tolerance_adequation.cmo \
fault_tolerance_with_fp.cmo read.cmo genexec.cmo

e Change directories in Makefile.config. [SYSTEM].
o Verify the version of ocaml compiler (enter ocamlc -v)

e verify the existence of patch. We should observe *+2” on the right side of versus number of Objective
Caml (exemple : Objective Caml version 3.07+2). Enter patch -pl otherlibs/labltk/Widgets.src
< camltk-hidden-state.patch if the patch is not present.

e Go in Syndex directory.
e Enter make

e Optional : to use Syndex command line , enter make tui

10

2.3 Links

e Objective Caml : http://caml.inria.fr/ocaml/distrib.html
e patch camltk-hidden-state.patch : http://pauillac.inria.fr/camltk/

e Tcl/Tk : ftp://ftp.scriptics.com/pub/tcl/

2.4 Modified files for this adequation

The interfaces (.mli) of the next files have been modified.
e Makefile to compile new files
e ihm ctk.ml and ihmcommon.ml for HCI
e fault adequation with fp.ml for adequation functions
e fault_tolerance_adequation_core.ml to view schedule specific functions
e tui.ml for command line

e application.ml to save failures patterns

2.5 Troubleshouting

If your system Linux is recognize as Windows during compilation, you must set the environnement variable
OSTYPE to linux before compiling.

11

Chapter 3

User manual

This chapter is about “Fail Tolerance” in Syndex. For more informations of Syndex, go to url : http://www-rocq.inria.fr/s;

3.1 Why Fail tolerance ?

Fail tolerance is very important for critical embedded systems ! The hardware components may be out of
order. A controler of car brakes may become failed. We need some mecanisms to prevent the failure of one
or more component of him.

3.2 What’s a schedule which tolerate failures patterns ?

A failure pattern is a set of components (operator or media) which can become out of order at the same
moment. A schedule which tolerate failures patterns is a schedule with replicas of tasks and data dependency
which returns the correct result even if a failure pattern appear. Generally, it doesn’t support two failures
patterns in the same moment.

3.3 Create failures patterns

You should have create an main architecture graph. There is two way to obtain Failures Patterns frame :
e Click on ‘ ‘Failures patterns Adequation’’ in Adequation menu
e Press F9

All the components of the main architecture are in the left list of the frame. Select components you want
to define as failed then click on the button Create to create a new failures pattern. A new item appear in
the central list. His name contain all the components name of the failure pattern. There are only the max
failures patterns, i.e., a failure pattern which is a subset of another of them is removed.

3.4 Save and restore failures patterns
All this proceed is available in ‘ ‘Failures Patterns’’ frame.

3.4.1 Save a failures pattern

Select one or more failures patterns then click on the button Save F.P. to save this failures patterns. A
frame is opened to choose the file will contain the save then click on Save.

12

3.4.2 Restore failures patterns

Click on Load F.P.. A frame is opened to choose what file contains the failures patterns save. Click on
Open to add this failures patterns. If failures patterns contain component which are not included in the main
architecture, or they are subset of a failures pattern which exists, or they generate disjoint architecture then
they are not added !

3.5 Failures patterns files
This files have .fp extension and are text files with this rules :
e a failure pattern by each line
e 1no empty line
e a failure pattern is represent by each name of fail component separated by exactly one space

e cach line doesn’t begin or end by a delimiter

Two failure patterns exemple : one line describe procl and proc2 as failed and another line with com3,
operator6 and operator8 out of order :

procl proc2
com3 operator6 operator8

3.6 Generate and view simple schedule of each failures pattern

This type of schedule is a schedule corresponding to selected failures patterns. All this proceed is available
in ‘‘Failures Patterns’’ frame.

3.6.1 Generate simple schedule for each failures pattern

Select one or more failures patterns in the central list then click on the button Calc Simple Adequation.
Another schedule appear in the right list for each selected item.

3.6.2 View simple schedule for each failures pattern

Select one or more simple schedule which you want to view then click on the button View Simple Schedule.
A frame is opened for each schedule.

3.7 Generate and view schedule which tolerate each failures pat-
tern

This type of schedule tolerate any failure patterns of the list. All this proceed is available in ¢ ‘Failures
Patterns’’ frame.

3.7.1 Generate a schedule which tolerate each failures pattern

Click on the button Calc Global Adequation to make adequation. The global adequation element rep-
resents a schedule which tolerate all the failures patterns where no fail appears during execution.

13

3.7.2 View schedule which tolerate each failures pattern

Select global adequation then click on the button View Schedule. A frame is opened which show this
adequation.

3.8 Use Syndex command line

To use command line with syndex, enter ./syndex-tui.bin [input_file] [output file] -fp [fp._file].
input_file is the file which contains architecture and algorithme graphs, fp_file contains the failures pat-
terns and output_file is the file which will contain the adequation.

3.9 Unsupported with this adequation

It supports operator fails (all types) point-to-point media fails. This adequation don’t support multi-point
medias (the bus) and disjoint architectures !

14

Chapter 4

Tutorial

This chapter teach you how generate a fail tolerant schedule. it is necessary to know how create an algorithm
graph and an architecture graph with Syndex. For more informations on this operations, you can read the
Syndex documentation (http://www-rocq.inria.fr/syndex/).

4.1 Graphic use

4.1.1 Create algorithm

Use int librairy to create an algorithm algo with the operations inl (input), in2 (input), add1 (Arit.add),
mull (Arit.mul), visuaddl and visumull (output). Finally, create the dependency between the ref which
looklikes to next figure :

=" Algorithm Function main_algo_m (main)

Window Edit
addi (%) L
' | 0fp——=

2
B

4.1.2 Create architecture

e Use library U to create four computing units (called operators in Syndex), procl , proc2, proc3, and
procé4.

e Use library U to create four medias, medial , media2 , media3 and media4.
e Create connections between operators and the medias.

e Define this architecture as main.

The architecture looks like next figure :

15

= Architecture tutol (main) [=][Ol[x]
Window Edit
il
prac (ufLl pracd ()
fated gated
gate2 qatez
proce (L) procd (udl)
gatel gatel
fatez gated
i
L
d o~

4.1.3 Create failure patterns

e Click in the menu Adequation on the item Failures Patterns Adequation.

e Select the operators procl and proc2 in the left list. Use CTRL to do multiple selection.

= Failures Pattemns : tutol
Operators and medias

Failures Patterns

IERIL=TES]
G

Aderuations

medial
mediaZ

L5

7

Create

Remove
Load F.P.
Save F.P. §

procl procz A

Calc Adequation

o,

Calc Global Adequation ;

i
|
.5 View Schedule ||

£

ok |

cancel §

e Click on the button Create to add the new failure pattern. You can observe it in the middle list.

e Repeat previous operation for the two operators proc3 and proc4.

4.1.4 Save failure patterns

Select item procl proc2 in the failures patterns list (central list) then click on the button Save F.P..
frame is opened to choose the save destination file, enter the name test.fp. Click on Save to save.

Directory: fMomefattacusitlevequefsyndex/ve ot

£ camitk £ utils

£ Cva El testip

7 documentation

£ emamples

7 externals

£ libs

£ macros

i ot
File hame: itestfp Save ;

Files of type: {Failures Patterns files} (*.fp) .. Cancel

16

4.1.5 Remove a failure pattern

Select item procl proc2 in the failures patterns list (central list) then click on the button Remove.

4.1.6 Load a failure pattern

Click on the button Load F.P.. A Frame is opened to choose the loaded file, choose the file test.fp. Click
on Open to load the file. The failures pattern procl proc2 is added to failures patterns list.

T e e e e |

Directory: fMome/attacusitleveque/syndex/ive ot

£ camitk £ utils

E1EVS El testfp

7 documentation

£ emamples

7 externals

£ libs

£ macros

i ot

File name: :testfp Open

Files of type: {Failures Patterns files} (*.fp) .. Cancel

4.1.7 Generate simple schedules

Select the item procl proc2 in the failures patterns list (central list) then click on the button Cacl
Adequation. Another item with the same name is added to the schedule list (right list).

=" Failures Patlems : tutol
Operalors amd medias Failures Patterns Adequations

i
i
medial 3 Create procl procz Calc Adequation proc3 procd .4 View Schedule ;E
media? proc3 procd procl proc?]
mediai Remove Calc Global Adequation %
mediad
proci Load F.P.
proc2
proc3 Save F.P. §

procd

|

§

ok § cancel §

4.1.8 View simple schedules

Select the item proc1 proc2 in the schedule list (right list) then clicks on the button View Simple Schedule.
A Frame corresponding to the schedule of selected item procl proc2 is opened.

4.1.9 Generate global schedules

Clicks on the button Calc Global Adequation. The set of schedules are calculated. Then a unique item
global adequation is added to the schedule list (right list).

17

[(=4 Failures Pattems : tutol EER
Operalors anmd medias Failures Patterns Adequations

medial 3 Create procl procz Calc Adequation “global adequation .3 View Schedule
media? proc3 procd

mediad Remove Calc Global Adequation
medial

proci Load F.P.
proc2

proc3 Save F.P. §

procd

§

ha'Se
B,
L

m‘i'i,,é cancel

4.1.10 View global schedules

Select the element global adequation in schedule list then click on the button View Schedule. Another
frame corresponding to this schedule is opened.

4.2 Command line use

After saving algorithme and architecture graphs in test.sdx, enter . /syndex-tui.bin test.sdx output.sdx
-fp test.fp. The file output.sdx contains your adequation.

18

Bibliography

[1] C. Dima, A. Girault, and Y. Sorel. Static fault-tolerant scheduling with “pseudo-topological” orders. In
Joint Conference on Formal Modelling and Analysis of Timed Systems and Formal Techniques in Real-
Time and Fault Tolerant System, FORMATS-FTRTFT’04, volume 7777 of LNCS, Grenoble, France,
September 2004. Springer-Verlag.

[2] Christian ROLLAND. E'TEX : Par la pratique. O'Reilly, 1999.

[3] Emmanuel CHAILLOUX, Pascal MANOURY, and Bruno PAGANO. Développement d’applications avec
OCAML. O’Reilly, 2000.

[4] Andrew TANENBAUM and Maarten VAN STEEN. Distributed System : principles and paradigms. Prentice
Hall, 2002.

19

