Electronic Notes in Theoretical Computer Science 88 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume88.html pages

Modeling of Avionics Applications and
Performance Evaluation Techniques using the
Synchronous Language SIGNAL*

Abdoulaye GAMATIE !, Thierry GAUTIER 2

IRISA / INRIA - Campus de Beaulieu - 35042 Rennes cedez, France

Loic BESNARD?

IRISA / CNRS - Campus de Beaulieu - 85042 Rennes cedex, France

Abstract

Modeling is widely accepted to be essential to design activity. A major benefit is the
use of formal methods for analysis and predictability. In PorLycHRONY, the tool-set
of the SigNAL language, a component-based approach have been defined to model
avionics applications. This approach uses SIGNAL models of so-called APEX services
based on the avionics standard ARINC 653. This gives access to the formal tools
and techniques available within PorLycHRONY for verification and analysis.

In this paper, we illustrate the approach by considering a small example of avio-
nics application. We show how an associated SiGNAL model is obtained for the
purpose of temporal validation. This brings out the capability of the SiaNaL to
seamlessly address critical issues in real-time system design.

1 Introduction

Today, in the design of embedded systems such as avionics systems, key chal-
lenges are typically the correctness of the design with respect to the require-
ments, the development effort and time to market, and the correctness and
reliability of the implementation. This calls for a seamless design process
which takes into account these challenges. In such a context, modeling plays
a central role. Among advantages [I4], we mention the enhanced adaptability

* This work has been supported by the european project IST SAFEAIR (Advanced Design
Tools for Aircraft Systems and Airborne Software) [8].

1 agamatie@irisa.fr

2 gautierQirisa.fr

3 lbesnard@irisa.fr

(©2003 Published by Elsevier Science B. V.

GAMATIE, GAUTIER AND BESNARD

of models and their parameters; more general descriptions by using generic-
ity, abstraction, behavioral non determinism, and the possibility of applying
formal methods for analysis and predictability.

Several model-based approaches have been proposed [15] [0] [2] for the de-
velopment and verification of embedded systems. They use different kinds of
formalisms for the modeling and provide tools for system development and
validation. While our approach aims at the same objective, its main partic-
ularity relies on the use of a single semantical model, Sienar [7], to describe
embedded applications from specification to implementation with the possi-
bility of verification and analysis. This facilitates the validation. Porycurony,
the tool-set for SienaL (http://www.irisa.fr/espresso/Polychrony) devel-
oped by INRI, offers the required functionalities (high level specifications,
modular verification and analysis, automatic code generation, etc.).

The work presented in this paper is part of a more general design method-
ology for distributed embedded applications, defined during the Sacres project
[6] and currently improved. This methodology is based on the iterative appli-
cation of transformations on a SianaL model that preserve semantic proper-
ties. During the transformations, “abstract” components can be instantiated
in different ways from modules related to actual target architecture features,
addressing various purposes (e.g. embedded code generation, temporal val-
idation). In this context, a library of specific components has been defined
in SigNaL. It includes on the one hand elementary communication mecha-
nisms such as FIFOs [5], and on the other hand more complex models such as
those presented in [4] for the description of avionics applications based on the
ARINC standard. In particular, we illustrate here how the SianarL model of an
avionics application is specified using these components in order to perform
timing analysis within PoLycHRONY.

The remainder of the paper is organized as follows: section 2 first discusses
the ARINC 653 specification. Then, section 3 introduces the main features
of the Sienan language, while section 4 concentrates on the modeling of an
avionics application in SignaL. In section 5, we address issues on performance
evaluation for temporal validation based on the Signar language. Finally,
conclusions are given in section 6.

2 The standard ARINC 653

The ARINC specification 653 [3] defines the interface between the application
software and the core software (OS, system specific functions), called APEX
(APplication EXecutive). This specification is based on the Integrated Modular
Avionics approach (IMA). In an IMA system, several avionics applications
can be grouped into one core module hosted on a single shared computer

4 There is also an industrial version, SILDEX, implemented and commercialized by TNI-
Valiosys (http://www.tni-valiosys.com).

2

GAMATIE, GAUTIER AND BESNARD

system. A critical issue is to ensure that shared computer resources are safely
allocated so that no fault propagation occurs from one hosted avionics function
to another. This is addressed by partitioning the system. Basically, it consists
in a functional decomposition of the avionics applications, with respect to
available time and memory resources.

A partition [3] is an allocation unit resulting from this decomposition.
Suitable mechanisms are provided in order to prevent a partition from having
“abnormal” access to the memory area of another partition. The processor is
allocated to each partition for a fixed time window within a major time frame
maintained by the core module-level OS. A partition cannot be distributed
over multiple processors neither in the same module nor in different modules.
Partitions communicate asynchronously via logical ports and channels.

Each partition is composed of one or more processes which represent the
executive unitd®]. Processes run concurrently to achieve functions associated
with the partition. The partition-level OS is responsible for the correct exe-
cution of processes, and the scheduling policy is priority preemptive. Com-
munications between processes are achieved by three basic mechanisms: the
bounded buffer is used to send and receive messages, it allows storing messages
in FIFO queues; the event permits the application to notify some processes in
the partition of the occurrence of a condition; and the blackboard is used to
display and read messages, no message queues are allowed and any message
written to a blackboard remains there until the message is either cleared or
overwritten by a new instance of the message. Synchronizations are achieved
by semaphores.

The APEX interface includes services for communication between parti-
tions/processes, synchronization services for processes, partition and process
management services, etc.

3 An overview of the SIGNAL language

The underlying theory of the synchronous approach [I] is that of discrete
event systems and automata theory. Time is logical: it is handled according
to partial order and simultaneity of events. Durations of execution are viewed
as constraints to be verified at the implementation level. Typical examples of
synchronous languages are EsTEREL, LUSTRE, or SIGNAL which is used here.
The SienaL language [7] handles unbounded series of typed values (x;)en,
denoted as x in the language, implicitly indexed by discrete time (denoted
by ¢ in the semantic notation): they are called signals. At a given instant, a
signal may be present, then it holds a value; or absent, then it is denoted by
the special symbol L in the semantic notation. There is a particular type of
signals called event. A signal of this type is always true when it is present
(otherwise, it is L). The set of instants where a signal x is present is called its

5 An ARINC partition/process is akin a UNIX process/task.
3

GAMATIE, GAUTIER AND BESNARD

clock. 1t is noted as “x and is of type event. Signals that have the same clock
are said to be synchronous. A SigNaL program, also called process, is a system
of equations over signals. The SianaL language relies on a handful of primitive
constructs that are combined using a composition operator (also referred to as
the language kernel). These core constructs are of sufficient expressive power
to derive other constructs for comfort and structuring.

To check a SignaL program, one can distinguish two kinds of properties:
invariant properties (e.g. a program exhibits no contradiction between clocks
of involved signals), and dynamical properties (e.g. reachability, liveness). The
SieNAL compiler itself addresses only invariant properties. For a given program,
it checks the consistency of constraints between clocks of signals, and statically
proves properties (e.g. the endochrony property guarantees determinism). A
major part of the compiler task is referred to as the clock calculus. Dynamical
properties are addressed using other connected tools such as the boolean model
checker Sicart. Performance evaluation is another functionality of Porycarony,
section 5 discusses it in a detailed way.

Finally, put together, all these features of SicnarL programming favor mod-
ular and reliable designs.

4 Modeling of an avionics application

POSITION_INDICATOR

board

FUEL_INDICATOR

sema ’

S ¢

Global_params

PARAMETER_REFRESHER s_port

Figure 1. The partition ON_FLIGHT.

A presentation of the basic component models (communication and syn-
chronization services, ARINC processes, etc.) required for the description of
avionics applications has been given in [4]. Here, we show how these models
are used to describe avionics application. Then, we illustrate how timing
issues are addressed, e.g. to compute worst case execution times on the re-
sulting description.

6 The example considered in the following takes its inspiration from a real world avionics
application which is currently being modeled.

4

GAMATIE, GAUTIER AND BESNARD

Informal specification of the application. The application is represented
by one partition, called ON_FLIGHT. Roughly, its function consists in com-
puting the current position and fuel level. A report message is produced in
the following format:

[date_of _the_report::height::latitude: :longitude::fuel_levell

The partition includes the following objects: a blackboard board, two buffers
buffl and buff2, an event evt, a semaphore sema, a sampling por s_port,
and a resource global_params which contains some parameters.

There are three processes.

(i) The process POSITION_INDICATOR first produces the report message
which is updated with the current position information (height, latitude
and longitude). It works as follows:

elaborate the report message and set the current date;

send a request to the process PARAMETER REFRESHER for a refresh-
ment of global parameters, via buff2 (in order to be able to update the report
message with position informations);

wait for notification of end of refreshment, using evt;

read the refreshed position values displayed on board;

update the report message with height, latitude and longitude informations;
send the report message to the process FUEL_INDICATOR, via buff1;

(ii) The main task of FUEL.INDICATOR is to update the report message
(produced by POSITION_INDICATOR) with the current fuel level.
if a message is contained in the buffer buff! then
retrieve this message;
end if
update it with the fuel level information from Global_params, via protected
access (using sema);
send the final report message via the sampling port s_port;
re-initialize evt;
(iii) Finally, the process PARAMETER_REFRESHER refreshes all the global
parameters used by the other processes in the partition.
if a refresh request arrives in the buffer buff2 then
retrieve this message;
end if
refresh all the global parameters in Global_params, using protected access;
display refreshed position values on board;
notify the end of the refreshment, using evt;

Now, let us describe the associated synchronous model.
The SiacnaL model of the partition. The executable model of a partition

7 A sampling port allows no message queuing. There are two kinds of ports: source and
destination. A message remains in a source port until it is transmitted by the channel or
overwritten by a new occurrence of the message. During transmissions, channels ensure
that messages leave source ports and reach destination ports in the same order. A received
message remains in the destination port until it is overwritten.

bt

GAMATIE, GAUTIER AND BESNARD

consists of three basic components: first, the executive units represented by
ARINC processes; second, the interactions between processes expressed via
APEX services; and finally, the partition-level OS which is in charge of resource
allocation to processes within the partition.

=
Active_paftition_ID I
Active_process_ID -
timedout POSITION_INDICATOR({1} b jeportl
end_processingl 1l
PARTITION_LEVEL_OS{1}
Il FUEL_INDICATOR{2} l
end|prpcessing2 n
~PPARAMETER_REFRESHER(3} yepori2
e
end_J I
—-—PCREATE_RESOURCES{}
initialize

global_params

oard

uffl

uff

port
"t
ema

Figure 2. A SigNAL model of the partition ON_FLIGHT.

The model of the partition ON_FLIGHT is shown in Figure @ We clearly

distinguish the partition-level OS as well as the three processes. The box
that contains the SigNAL process CREATE_RESOURCES has been added for struc-
turing. It provides the processes with communication and synchronization
mechanisms (e.g. buffl, sema). These mechanisms are created on the occur-
rence of the input signal initialize. The presence of this signal corresponds
to the initialization phase of the partition. The input Active_partition_ID
represents the identifier of the running partition selected by the module-level
O, and it denotes an execution order when it identifies the current parti-
tion. Whenever the partition executes, the partition-level OS designates an
active process within the partition. This is represented by its output signal
Active_process_ID. It is sent to all the processes. Every process that com-
pletes notifies the OS through a special signal (e.g. end_processingl for the
process POSITION_INDICATOR), so the OS can take a decision about the next
process to execute.
A process can be blocked during its execution, for instance, when it tries to
send a message to a full buffer. A time counter may be initiated to wait for
the availability of space in the buffer. The signal timedout produced by the
partition-level OS notifies processes of the expiration of their associated time
counters.

8 The activation of each partition depends on this signal. It is produced by the module-level
OS which is in charge of the management of partitions in a module.

6

GAMATIE, GAUTIER AND BESNARD

(end_p g,
Active_pfocess_ID active_block) =

CONTROL{PID
NB_BLOCKY(
Active_proc
ess_ID, ret2
timedout, ret3
et ret2, et5
|_processing ret3ret5)

retl

timedout|

@
3

(| (et ret2,ret3,
reportl,ret5) :=
COMPUTE{)(
active_block
bufi2evt, reportl
board,buff1)
D

active_block

eportl

board
buff1

buff2

evt

Figure 3. A SigNAL model of the process POSITION INDICATOR.

Modeling of processes. To illustrate the description of processes, we mainly
focus on the process POSITION_INDICATOR (the modeling of the other pro-
cesses follows the same scheme).

A well-known design principle for getting modularity consists in splitting the
considered system into control and computation parts. Among others, one
can note the great popularity gained by this idea in hardware design. The
model we propose for ARINC processes relies on this principle. So, two ba-
sic sub-components are distinguished as shown in Figure Bi CONTROL and
COMPUTE. The former specifies the execution flow of the process. Typi-
cally, it is a finite state machine that indicates which statements (or actions)
should be executed whenever the process is active. The latter describes these
statements grouped into blocks. Each block is attached to a state specified in
CONTROL. The way the two sub-components of the process model interact
is similar to what happens in a mode-automaton [I1]. On the other hand,
a block is assumed to be executed without interruption, within a bounded
amount of time.

In the model in Figure Bl the signal active_block identifies a block se-
lected in CONTROL. This block is executed instantaneously. Therefore, one
must take care of what kinds of statements can be put together in a block.
Two sorts of statements can be distinguished: those which may cause an inter-
ruption of the running process (e.g. a SEND_BUFFER request on a full buffer),
termed system calls (in reference to the fact that they involve the partition-
level OS); and statements that never interrupt a running process (typically
data computation functions), referred to as functions. Since a block is sup-
posed to be non-interruptible, we impose that it contains either one system
call or one or more functions. This way, the instantaneousness of the block
execution is guaranteed to be coherent with its non-interruptibility.

7

GAMATIE, GAUTIER AND BESNARD

active block (| trigger0 := when (active_block=0)
pblegk) | report := SET_DATE({}(when trigger0)
)]

+—>P(trigger1 := when (active_block=1)

| retl := SEND_BUFFER{L}((var buff2) when trigger1,99999.0,2,10.0) ’,;T

etl

buff2)]

{— (| trigger2 := when (active_block=2)
| ret2 := WAIT_EVENT{1}((var evt) when trigger2,20.0) Eg
evt)

yer2

(| trigger3 := when (active_block=3)
| (d_area,d_size,ret3) := READ_BLACKBOARD{1)(... when ...,2.0)
board)

yets

RE S0 2
e

(| trigger4 := when (active_block=4)
| | reportl := COMPUTE_POS{}((var report) when triggerd,(var diag_area)
when trigger4, (var diag_size) when trigger4)

reportl
)]

(| trigger5 := when (active_block=5) H
| ret5 := SEND_BUFFER{1}((var buff1) when trigger5,var report.
Message_Area,var report Message_Size,10.0) | a—

ret5

buffl)}

Figure 4. The COMPUTE sub-component and the automaton associated with the
CONTROL for the process POSITION_INDICATOR.

Figure @l shows statements contained in COMPUTE. Blocks are represented
by inner boxes. The statements associated with a block k are executed when-
ever the current state of the automaton specified in CONTROL is blocky, i.e.
whenever the event triggerk is present. For instance, from top to bottom,
the first block contains a function SET_DATE which produces an instance of
the report message, where only the field date_of_the_report is updated. The
other fields will be completed later. The second block contains the system call
SEND_BUFFER, which is used to send a message in buff2. Input parameters are
the message address and size (respectively, denoted by 99999.0 and 2), and a
time-out value (10.0 time units) to wait for space when the buffer is full. A
return code ret1 is sent for diagnostic. Blocks are computed sequentially from
top to bottom as represented by transitions labeled by ¢; in the automaton
depicted by Figure @l However, there could be consecutive executions of a
same block. This happens when a system call is executed and the required
resource is not yet available. For example, consider the READ_BLACKBOARD re-
quest (used to get a message from board), if no message is currently displayed
in the blackboard, the calling process will get suspended on this block. After
a message is available, the process is switched to the “ready” state. As soon
as it becomes active, it should re-execute the same block (which induced its
suspension) to read the latest message available in the blackboard. These sit-
uations are expressed by transition ¢, in the automaton.

Modeling of the partition-level OS. The main task of the partition-level
OS is to ensure a correct concurrent execution of processes within the parti-
tion. Its modeling requires on the one hand, APEX services (e.g. in Figure B,
CREATE_PROCESS and START are used respectively to create and start processes),
and implementation-dependent functions on the other hand, for instance to

8

GAMATIE, GAUTIER AND BESNARD

define a scheduling policy (e.g. PROCESS_SCHEDULINGREQUEST in Figure [).

(] (attl,att2,att3) := GET_PROCESSES_ATTRIBUTES{}(when initialize) (a)
(pidl,return_codel) := CREATE_PROCESS{}(attl when initialize) (b)
(pid2,return_code2) CREATE_PROCESS{}(att2 when initialize)
(pid3,return_code3) CREATE_PROCESS{}(att3 when initialize)

return_coded SET_PARTITION_MODE{} (#NORMAL when (“return_code3)) (c)

return_code5 := START{}(pidl) (D
return_code6 := START{}(pid2)
return_code7 := START{}(pid3)
partition_is_running := (Active_partition_ID = Partition_ID) (e)
diagnostic := PROCESS_SCHEDULINGREQUEST{}(
when partition_is_running) (£)
| (Active_process_ID,status) := PROCESS_GETACTIVESTATUS{}() (g)
| timedout := UPDATE_COUNTERS{}() (h)
| Active_process_ID "= timedout "= when partition_is_running
| return_code8 := SUSPEND{}(Active_process_ID when (end_processingl
“+ end_processing2 "+ end_processing3)) ()

return_code9 := SET_PARTITION_MODE{}(#IDLE when (“end_processing2)) G3)

Figure 5. The partition-level OS model.

Figure Bl shows a partial view of the Sianar description of the partition-
level OS. On the presence of the signal initialize (which corresponds to the
initialization phase of the partition), process attributes are first defined in
equation (a), example of attributes are priority, periodicity. Just after that,
processes are created?] and started]. For instance, the lines (b) and (d) cor-
respond to the creation and starting of the process identified by pid1i (in fact
POSITION_INDICATOR). In equation (c), the partition is set to the NORMAL
modd ™. The signal Active_partition_ID represents the identifier of the run-
ning partition selected by the module-level OS. It denotes an execution order
when it identifies the current partition, this is the meaning of the boolean
partition_is_running definition (e). So, process rescheduling is performed
whenever the partition is active (see (£)), and the process with the high-
est priority in the ready state is designated to execute (Active_process_ID
in equation (g)). On the other hand, all time counters used in the parti-
tion are updated whenever it executes (equation (h)). The signal timedout is
sent to processes to notify them a possible expiration of their associated time
counters. A running process gets suspended as soon as it completes (one of
the signals end_processingl, end_processing2, or end_processing3 is received
from processes in the partition). This is expressed in equation (i). Finally,

9 Creation [3] does not imply dynamic memory allocation, it only creates a link between
the given name and a statically allocated process (this is done via a service called PRO-
CESS_RECORD in our library) with a suitable stack area having the same name.

10 The START service only puts the specified process in the “ready” state, the process does
not execute yet.

" There are four operating modes [3]: in the IDLE mode, the partition is not executing any
process within its allocated windows; in the COLD_START mode, the partition is executing
a cold start initialization; in the WARM_START mode, the partition is executing a warm
start initialization; and in the NORMA L mode, the scheduler is activated. All the required
resources in the partition must have been created before.

9

GAMATIE, GAUTIER AND BESNARD

the partition is set to IDLE mode when no process executes while the parti-
tion is still active (line (j)). Here, the process FUEL_INDICATOR completes the
last, and notifies the partition-level OS by sending the signal end_processing?2.

The above small example aimed to show the feasibility of describing avion-

ics applications using the synchronous language Sienar. Modularity and ab-
straction are key features of the SiegnaL programming. They allow for the
scalability of our approach. The description of a large application is achieved
with respect to a well-defined design methodology which consists in specifying
either completely or partially (by using abstractions) sub-parts of the appli-
cation. After that, the resulting components can be composed to obtain new
components. These components can be also composed and so on, until appli-
cation is complete.
A great advantage of Sianar-based modeling is the possibility to formally an-
alyze specifications. In particular, timing issues such as worst case execution
times, can be addressed using the performance evaluation technique imple-
mented in POLYCHRONY .

5 Performance evaluation

A SieNaL process that models an application is recursively composed of sub-
processes, where elementary sub-processes belong to the language kernel and
called atomic nodes. A profiling of such a process substitutes each signal with
a new signal representing availability dates date_r and automatically replaces
atomic nodes with their timing model counter-part (“timing” morphism). The
resulting time model is composed (by standard synchronous composition) with
the original functional description of the application, and for each signal =,
a synchronization with the signal date_r is added. The resulting process is
close to (or even represents exactly) the model of the temporal behavior of the
application running on its actual architecture. One can obviously design less
strict modeling to get faster simulation (or formal verification); it is sufficient
to consider more abstract representations either of the architecture or of the
program.

5.1 Temporal interpretation of SIGNAL processes

An interpretation of a SiGNaL process is a process that exposes a different view
of the initial one. The structure of the interpretation process is essentially
the same but its computations exhibit another aspect of its behavior. The
temporal interpretation exposes the time aspect and allows to see how an
implementation of a specified function will behave over time [10].

For each process independent of its complexity level, another process can
be automatically derived to model its temporal behavior on a given imple-
mentation. These processes are called temporal interpretations. For a SieNaL
process P, its temporal interpretation for an implementation I will be denoted

10

GAMATIE, GAUTIER AND BESNARD

by T(Pr), where P; is the SianaL process that models implementation I of P.
Thus, if a system specified by a process P has a variety of possible implementa-
tions I(1) to I(k), then each implementation can be modeled by Py;y,i € [1,],
and for each Pj(;) a temporal interpretation T'(P;(;)) can be derived. This way,
a comparative performance evaluation of the different implementations can be
performed and the design space of possible implementations can be effectively
explored before committing the design to one particular implementation. Such
an approach permits to concentrate the design effort to a set of candidate im-
plementations.

Signal availability dates. For each signal in the initial Sienar specification
a date signal is defined in its temporal interpretation: x € P — T'(x) € T(P).
For any signal x in P we have a date_x in T'(P) with = synchronous to date_z:

P—T(P), x = T(x) = dater, x "= date_x.

These date signals are some sort of time-stamps providing the availability
times for the values of the corresponding signals in the functional specifica-
tion, in respect to a global time reference. Depending on the implementation
context, time can be measured using either physical time units or full clock
cycles. In the first case the date signals are positive real numbers and in the
second positive integers. From a cycle count integer measurement we can go
on to physical time measurement by multiplying the cycle count to the cycle
period.

Each operation in a SienaL specification is represented by a node in the
Hierarchical Conditional Dependency Graph, which is the internal represen-
tation of a SianaL program. To each node in the graph, a delay is associated.
This delay is represented by the same data type as the data type used to
represent dates and is a function of several parameters. The actual node de-
lay is obtained by giving values to these parameters. The delay depends on
parameters like: the operation performed by the node, data types involved,
the chosen implementation, etc. Furthermore, a delay can be represented by a
pair of numbers corresponding to the worst and best case delays. Since delays
are represented by intervals, dates will be represented as intervals too. Com-
puting these dates takes into account the processing delays. It is important to
note that this date mechanism allows us to go from logical to physical time.
Non-functional interpretations. The temporal interpretation of a SiGNaL
specification is just a special case of a general non-functional interpretation.
The non-functional interpretations are SianarL processes and as such they can
be decomposed into a control and a data part. The control computations
are identical to those in the initial processes from which the interpretations
are derived. What changes are the data computations since they extract the
information related to the particular interpretation.

For a SienaL process P we know that P = Cp|Dp, with Cp and Dp rep-
resenting respectively the control and data parts of P. Similarly for an inter-
pretation of P, we have: T(P) = Cpp)|Dp(p). Since the interpretation of a
complex process can be defined as the recursive composition of the interpre-

11

GAMATIE7 GAUTIER anD BESNARD
tations of the constituent processes for T'(P) we have: T(P) = T(Cp)|T(Dp),

with T(CP) = CT(CP)|DT(CP) and T(Dp) = CT(DP)|DT(DP)-
For the control part, we have Cr(py = Cp.

t
Cp

I T(1)

orey | 1O

P > T(P)

Figure 6. Temporal interpretation of a SIGNAL process P.

The process of obtaining an interpretation 7'(P) of a process P is graphi-

cally depicted in Figure @ This process gives a general form of morphism of
SienaL programs, which is available in Porycurony. The data part (Dp) of the
process P computes output values (Op) from input values (7). The computa-
tions are conditioned by activation events (H) computed in the control part
(Cp). To compute the activation conditions H, Cp uses Boolean input signals
(I;) and intermediate Boolean signals B computed by Dp. Finally, certain
outputs are output events (Hp) computed by Cp. The control parts of the
initial process and its interpretation are identical, but the data computations
differ. The data computations in T'(P) extract the information of interest,
implicit in the initial specification P.
The date computation model. The Siecnar kernel operators are the sim-
plest processes that can be used to build more complex ones. Similarly, the
interpretation of a process can be viewed as the composition of the interpre-
tations of the primitive processes making up the initial process.

The interpretations of the kernel processes perform the appropriate com-
putations relating to a particular interpretation. These interpretations are
organized in a collection which represents the [ibrary of cost functions, de-
fined in Sienar. For each interpreted process, this library is extended with
the interpretations of external function calls and other separately compiled
processes, used in the initial process. For example, the “timing” morphism
available in PorycHrONY associates with the monochronous addition operator
z := x + y, the following cost function:

process CostPlus{type_x, type_y}
(? date_type date_x, date_y, date_clk_z, wait_i;
! date_type date_z, done_i)
(| date_z := MAX2(MAX3(date_x, date_y, date_clk_z), wait_i when “date_z)
+ getCostPlus{type_x, type_y}()
| done_i := (date_z default wait_i) cell “done_i

D)

where the MAXn denotes a process that returns the maximum value of n in-
puts, among those that are present at a given instant (it is not monochronous).
The notations type_x and type_y represent respectively the types of x and y;

12

GAMATIE, GAUTIER AND BESNARD

date_clk_z is a signal associated with the common clock of x, y and z by the
morphism. Signals wait_ i and done_i are associated with the current node
and have the same type as date signals: wait_i accumulates dates coming
from incoming precedences other than data dependencies, whereas done_i is a
date required by the next nodes other than data dependencies (i.e. done_i is
part of wait_i+1). The date of z, denoted by date_z, is the sum of the max-
imum date of inputs and the delay of the addition operation, some A,. The
quantity A, depends on the desired implementation, on a specific platform.
It has to be provided in some way by the user, with respect to the considered
architecture. In the current implementation in Porycurony, the value A, is
provided by a function getCostPlus which has the types of the operands as
parameters and which fetches the required value from some table.

The scheme illustrated above for monochronous operators handles also
“control” operators. For constructs such as the default operator, which allow
for control branching, the definition of the associated interpretation accounts
for this branching (for a default b, the date at which the input value is
available is given by date_a default date_b). Moreover, thanks to composi-
tionality of SianaL specifications, the above mechanism can be applied at any
level of granularity.

5.2 Obtaining results

Figure [depicts a co-simulation of the application model composed with its
associated temporal interpretation. At each iteration, the date of an output
(d(Oy)) depends on the date of an input (d(I;)) and the control configuration
represented by a “valuation” of a condition vector [cy, ... ,¢,] corresponding
to intermediate boolean signals B (cf. Fig. B) computed in the original pro-
gram. In a straightforward approach, it is possible to provide a set of vectors
that covers all the possible combinations for the control flow. A better way
is to take into account the existing relationships between these booleans such
as provided by the clock calculus (this is expressed through the composition
of the original program and its temporal interpretation). In addition, specific
observer processes, comparing dates or verifying some conditions (timing re-
quirements) for example, can be inserted into the model.

Comments. Execution time estimation is an important metric for per-
formances in real-time system design. Some current practices for timing pre-
dictability proceed by actually running programs on a set of test data and
measuring execution times. One major drawback here concerns the degree of
pertinence of this set of data w.r.t. the considered context. Other approaches
such as [I3] [12] have shown that timing issues can be successfully addressed
at higher level languages (e.g. language C) rather than lower level languages
(e.g. assembly language). In the case of the Sienar language, the timing pre-
dictability problem consists in simulating a SignaL program which reflects the
temporal dimension of an initial program. On the other hand, the tools and

13

GAMATIE, GAUTIER AND BESNARD

.
Generator . Q
of inputs - —
Library of
cost functions
Temporal l
interpretation uses
of ON_F|GHT Platform—
dl (morphism) dependent
Generator (j) cost values d(Ok) Vi
of dates - —_—
[Observer
*

Figure 7. Co-simulation of the application with its temporal interpretation.

techniques available in PorycHrony remain applicable on this temporal “im-
age” (e.g. for the purpose of some formal verifications when the corresponding
required abstractions are considered).

Several successful experiments have been done on sample SigNAL programs.
For the ON_FLIGHT model, some simplifications have been made because of
the complexity of used data structures. So, the cost of the accesses to those
data structures and related effects is not taken into account. The cost func-
tion library currently considers simple data structures (e.g. integer, boolean,
arrays). Others are considered as external. As a result, the current computed
results are not relevant enough to be highlighted here. However, this library
is being currently enhanced to allow more efficient experiments on programs
with complex data structures. Thus, more relevant results will be available
soon.

6 Conclusions

In this paper we illustrated an approach to the modeling of avionics applica-
tions for the purpose of formal verification and analysis. The whole approach
relies on the use of a single formalism of the SianaL language. This is part of a
more general design methodology for distributed embedded applications, de-
fined within Porycurony. This methodology proceeds by successive transfor-
mations on an initial SiaNAL model that preserve semantic properties. During
the transformations, “abstract” components can be instantiated in different
ways from modules related to actual target architecture features, address-
ing various purposes (embedded code generation, temporal validation, etc.).
We considered models of APEX services [4] to describe avionics applications.
Then, we used the PorycHroNY tool-set to analyze applications, in particular,
we focused on the real-time behavior. The technique [I0] is still being im-
plemented in order to take into account Sienan programs with complex data
structures (such as the model of the partition ON_FLIGHT described in this

paper).
14

GAMATIE, GAUTIER AND BESNARD

References

[1] A. Benveniste and G. Berry, The Synchronous approach to Reactive and Real-Time
Systems, proc. of IEEE, vol. 79, No. 9, pages 1270-1282, April 1991.

[2] E. Closse, M. Poize, J. Pulou, J. Sifakis, P. Venier, D. Weil, and S. Yovine, TAXYS:
a tool for the development and verification of real-time embedded systems, proc. of
Computer Aided Verification, Paris, France, Springer-Verlag, July 2001.

[3] Airlines Electronic Engineering Committee, ARINC Specification 653: Avionics
Application Software Standard Interface, Aeronautical radio, Inc., Annapolis,
Maryland, January 1997.

[4] A. Gamatié and T. Gautier, Modeling of Modular Avionics Architectures Using the
Synchronous Language SIGNAL, In the 14th Euromicro Conference on Real Time
Systems, WiP session, IEEE Press, June 2002. (Complete version is available as INRIA
research report n. 4678, December 2002).

[6] A. Gamatié and T. Gautier, The SIGNAL Approach to the Design of System
Architectures, In the 10th IEEE International Conference and Workshop on the
Engineering of Computer Based Systems, April 2003.

[6] T. Gautier and P. Le Guernic, Code generation in the SACRES project, Safety-critical
Systems Symposium, Springer, Huntingdon, UK, February 1999.

[7] P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le Maire, Programming real-time
applications with SIGNAL, in proc. of IEEE, 79(9), p. 1321-1336, September 1991.

[8] D. Goshen-Meskin, V. Gafni and M. Winokur, SAFEAIR: An Integrated Development
Environment and Methodology, INCOSE’01, Melbourne, July 2001.

[9] T. A. Henzinger, B. Horowitz and Ch. Meyer Kirsch, Embedded Control Systems
Development with Giotto, proc. of LCTES. ACM SIGPLAN Notices, 2001.

[10] A. Kountouris and P. Le Guernic, Profiling of SIGNAL Programs and its application in
the timing evaluation of design implementations, proc. of the IEE Colloq. on HW-SW
Cosynth. for Reconfig. Systems, p. 6/1-6/9, HP Labs, Bristol, UK, February 1996.

[11] F. Maraninchi and Y. Rémond, Mode-Automata: About Modes and States for Reactive
Systems, European Symposium On Programming, Lisbon, Portugal, Springer-Verlag,
March 1998.

[12] C. Y. Park and A. C. Shaw, Experiments with a Program Timing Tool Based on Source-
Level Timing Schema, IEEE Computer 24(5): 48-57, May 1991.

[13] P. Puschner and Ch. Koza, Calculating the Maximum FEzecution Time of Real-Time
Programs, Journal of Real-Time Systems, vol 1, n. 2, p. 159-176, September 1989.

[14] J. Sifakis, Modeling Real-Time Systems - Challenges and Work Directions,
EMSOFT’01, Tahoe City. Lecture Notes in Computer Science 2211, October 2001.

[15] S. Vestal, MetaH Support for Real-Time Multi-processor Avionics, IEEE Workshop on
Parallel and Distributed Real-Time Systems, April 1997.

15

	1 Introduction
	2 The standard ARINC 653
	3 An overview of the SIGNAL language
	4 Modeling of an avionics application
	5 Performance evaluation
	5.1 Temporal interpretation of Signal processes
	5.2 Obtaining results

	6 Conclusions
	References

