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Abstract

The Signal compilation process is based on a formal analysis called clock calculus.

It constructively determines if a speci�cation is endochronous by synthesizing a

sequential control structure. The analysis applies to relations over clocks inferred

from speci�cations and encoded into boolean equations. This paper �rst gives an

overview of requisite fundamental notions related to clocks (control in data-�ow

speci�cations, link with operational semantics, boolean encoding) then uses this

lighting to present technical aspects of the calculus [1,2].

Key words: Signal, clock calculus, clocks, data-�ow paradigm,

control-�ow synthesis, code generation

1 Introduction

The automatic and safe code generation from speci�cations is one of the at-

tractive advantages o�ered by the synchronous development environments.

While they share common concerns such as code e�ciency and compactness,

synchronous languages have developed proper and very di�erent compilation

techniques that yield to di�erent code structures (automaton, imperative sin-

gle loop, functional code, circuits, boolean equations, etc). The earlier Lus-

tre and Esterel compilers generate an automaton, while the Signal and

Scade compilers synthesize a sequential control structure. Nevertheless the

Esterel compilation process is strongly evolving toward the generation of se-

quential code from a control-�ow graph (Esuif, Saxo-RT [12]), while Signal

might exploit the Lustre generation of automaton for veri�cation purposes.

This suggests that, in spite of paradigm di�erences, each language could take

advantage of some others outstanding methods. It requires that their basic

principles are clearly identi�ed and as far as possible abstracted from technical,

implementation-related and language-dependent details.

This paper focuses on the Signal case. The Signal compilation process,

called clock calculus, is a very rich analysis based on original ideas which
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involve both theoretical and implementation-related concepts, non standard

objects (clocks), techniques (transformation of a system of equations into a

set of de�nitions), data structures (clock trees) and specialized vocabulary.

This variety of aspects makes it di�cult to explain and it has been mainly

presented from a technical implementation-related point of view [1,2]. Though

an example-based presentation, or systematic translation schemes into imper-

ative code should be explanatory, the present paper � that adds no research

contribution � focuses on an overview of fundamental requisite notions that

highlight the technical details presented in [1,2]. Section 2 recalls basic syn-

chronous (mostly data-�ow) models and operational semantics 2 . Section 3

focuses on clocks as they are de�ned (as set of instants) and used (for control

purposes) in the data-�ow paradigm, then presents their formalization in the

Signal context, emphasizing their combinational nature and their boolean

encoding. Section 4 presents the clock calculus itself, through both intuitive,

theoretical and technical aspects. Finally Sect. 5 concludes.

2 General Synchronous Notions

The synchronous paradigm considers that the execution of a reactive system is

an in�nite sequence of reactions (a reaction is the process of inputs acquisition,

computations and outputs emission). The synchronous hypothesis assumes

that a reaction occurs inside a logical instant. Figure 1(a) represents such an

execution, indexed by a discrete sequence of instants ti. In Sect 2.1 we explain

that synchronous variables can be absent inside a reaction. Then we focus on

the data-�ow paradigm and present in Sect. 2.2 a general operational model,

instantiated on the Signal case.

2.1 Absence of Signals and Variables

The imperative paradigm is dedicated to control dominated applications. The

control of imperative speci�cations is speci�ed via emissions and receptions of

events called signals (pure or valued) that have an inherent status of absence

or presence in any reaction. In the case of Esterel the value of a signal can

be modi�ed only in case of presence but is persistent: It can be read when the

signal is absent. Things are di�erent in the data-�ow paradigm, dedicated to

intensive computations on data: Speci�cations are systems of equations that

specify how the values of variables 3 are computed. Nevertheless variables also

have a status of presence/absence 4 . Furthermore an absent variable has no

signi�cant value. We denote here absence by a special value 5 ?, like in [10].

A data-�ow execution exhibits this special value, as shown on Fig. 1(b).

2 [1] uses a �ow semantics, but an operational one seems to be more intuitive.
3
Lustre has variables but Signal has signals like Esterel: We choose to use the term

�variable� for the whole data-�ow paradigm.
4 E.g. the Lustre equation y = x when x>0 induces that y is absent if x is negative.
5 Traditionally ? in the Signal context.
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(b) data-�ow execution

t1 t2 t3 t4 t5
N ? 1 ? �2 3 : : :

y ? 1 0 �2 3 : : :

py ? 0 1 0 �2 : : :

my 0 �! 0 �! 1 �! 0 �! �2 : : :

(c) adding memories

py = ? ^
y = ? ^

N = ?

py = ? ^
y = ?

N = ? ^

N 6= ? ^ N > 0
py � 0 ^ y = N

py = 1 ^ y = 0
N = ? ^

y = py � 1

� 0

mymy

> 0

py > 1 ^ N = ?

N � 0 ^ y = N ^ py � 0

(d) symbolic automaton

Fig. 1. synchronous models

2.2 Data-Flow Operational Semantics and Notations

Let us precise where does absence take place in data-�ow operational models,

using the very general Symbolic Labeled Transitions Systems (SLTS, see [10]

for more formal details). A SLTS is built over a set of variables S of domain

D and a set of persistent memoriesM (conventionallymx 2M is the memory

associated to x 2 S). Note that a variable has a status while a memory is by

essence always present. A valuation V : S ! D [ f?g represents a reaction of

the system. A state is a valuation of memories E : M ! D. A SLTS contains

an initialization predicate I (initial state), a memorization predicateM and a

combinational (without state) predicate C. M handles the state of the system,

invisible from the outside. C interfaces the system with its environment and

speci�es what occurs inside a reaction. SLTS parallel composition is standard.

2.2.1 The Signal Case

Recall that the Signal kernel contains a parallel composition operator |,

a delay operator $, plus operators when, default and functions (see their

syntax on Fig. 2). Only the delay operator involves a memorization part. The

equation py := y $ 1 init v0 is represented by the SLTS:

I : (my = v0) ; C : (py = ?, y = ?) ; M :

8><>:m0

y =

(
y if y 6= ?

my else

if py 6= ? then py = my

(1)

Other combinational Signal operators induce a SLTS reduced to a predicate

C, as shown on Fig. 2. The Signal parallel composition corresponds to SLTS

composition. Note that absence occurs only in sets of valuations models of the
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combinational part, that label transitions of the underlying symbolic automa-

ton (see e.g. Fig. 1(d)). Such an automaton is a classical veri�cation model: Its

extension with ? prevents from using standard tools. Accordingly the boolean

veri�cation tool Sigali [9] dedicated to Signal speci�cations uses an encod-

ing of the three values {?,true,false} into {0,1,-1}, yielding computations in

Z=3Zby means of an extension of BDD to three values. Unfortunately this

original technique does not scale to in�nite domains.

Example 2.1 Let y be a counter initialized with an input variable N : while

positive it decreases and is re-initialized with N after it has reached 0:

py := y $ 1 init 0 | y := N default py - 1 | N �= when py <= 0

These equations are represented by the SLTS containing predicates I and M

shown on Eq. (1) where v0 = 0, and the following combinational part C:

py = ?, y = ? ^ y 6= ?, (N 6= ? _ py 6= ?) ^ N 6= ?) y = N

^ (N = ? ^ py 6= ?) ) y = py � 1 ^ N 6= ?, (py 6= ? ^ py � 0)

A possible execution is given Fig. 1(c) (arrows show links between variables

and memories). The associated symbolic automaton is given Fig. 1(d). �

y := g(x1, ..., xn) ; y = ?, x1 = ?, : : :, xn = ?
V

y 6= ?) 8i; xi 6= ? ^ y = g(x1; : : : ; xn)

y := x when c ; c 6= true) y = ?
V

c = true) y = x

y := x default z ; x 6= ?) y = x
V

x = ?) y = z

Fig. 2. C for Signal combinational operators

3 Clocks

We explain in Sect. 3.1 what are clocks and how they are used to specify the

control of data-�ow systems. Then we present in Sect. 3.2 their formalization

traditionally used when dealing with Signal.

3.1 Data-Flow Clocks

Clock of a System, of a Component The sequences of instants that ap-

pear in models of execution given Fig. 1 are called time scale in the imperative

paradigm, and clocks in the data-�ow one. More precisely, the clock of a sys-

tem is the set of its instants of reaction (Fig. 1(a)). This notion is classical

outside the synchronous paradigm (just consider circuits): A clock triggers

the activation of a periodic system. Because there is no reason why concur-

rent components of a system should perform their computations at the same

time, they must have distinct activations, so the system should contain several
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clocks: It is the base of the multi-clock approach, opposed to the monolithic

mono-clock one.

Clock of a Variable Let us examine now how clocks are communicated

to components. In the case of Lustre 6 the activation of a component is

triggered by the presence of at least one of its input variable, say y. The

clock of the component corresponds exactly to the set of instants where y is

present: This set is by extension called the clock of y, denoted by by in the

Signal context. Note that the potential absence of variables is now justi�ed a

posteriori: A variable has the double identity of a data-�ow conveyer and (via

its clock) of a sporadic event used to control behaviors like in the imperative

paradigm.

Clocks and Control The Signal philosophy emphasizes this last point:

Clocks are fundamentally the main way the programmer has to specify the

control of its speci�cation 7 , indicating the instants when some computations

take place. Clocks are very widely used in Signal: Any object related to

a computation (e.g. an expression, a data dependency) is associated a clock

which activates it. An intuitive case is the clock by of a variable y, which

triggers the computation of y. Following this principle, the executable code

associated to a system contains tests over clocks; For instance �at instant t,

if t belongs to clock h then activate computations associated to h�.

3.2 The Signal Clocks Formalization

Clock Algebra In the Signal context relations over clocks are described

using the clock algebra (denoted here by H). Clocks were de�ned in Sect. 3.1

as sets of instants; The clock algebra accordingly uses set notations:

H = hU;\;[; n;Oi

where U is a reference set of instants and O is the empty clock. Given a set

of clock variables K interpreted as subsets of U (containing e.g. bx), H can

represent relations like bx = by [ bz. We also use the set inclusion operator �.

Expressiveness Even if in their very �rst de�nition clocks are subsets of

the time scale that indexes executions (see Fig. 1(a) and 1(b)), relations over

clocks do not describe such executions (that are sequences of valuations) but

only sets of valuations/reactions. Indeed, consider the equation bx = by. It is

true of an execution if, for any indexing instant t, x and y are both present

or absent in the reaction that occurs at t. In other words, bx = by is true if in

any reaction/valuation of the execution, x and y are both present or absent:

The reference to time has disappeared and so did the order of valuations.

6 The Signal mechanism is more general, see [10] for a detailed discussion.
7 Recall that data-�ow equations o�er no control structure like in the imperative paradigm;

The plain execution of equations is very ine�cient.
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The expressiveness of relations over clocks is then purely combinational. The

equation bx = by denotes the set of valuations V s.t. V (x) = ?, V (y) = ?.

Practical Encoding into the Propositional Calculus This set of val-

uations can be described equivalently by associating to clocks bx and by the

propositional variables bx and by and by considering the boolean equation

bx , by, which describes the set of distributions � : fbx; byg 7! {0,1} where

�(bx) = 0 , �(by) = 0. We just have to interpret �(bx) = 0 (resp. 1) as �x is

absent (resp. present)�. More generally [2] proposes a correspondence between

H and boolean functions. We prefer the propositional calculus PC like [10].

The encoding is very simple: Each variable k 2 K is associated a propositional

variable bk; Each set operator is associated the logical operator corresponding

to its characteristic function. Informally consider the following example:

H U O bx \ by = bz [ bw bx n bz = by
PC true false bx ^ by , bz _ bw bx ^ :bbz , by

Thanks to this encoding, the executable code handles clocks as propositional

variables and not sets of instants 8 . A clock has a value true or false in a

reaction, and tests over clocks mentioned in Sect. 3.1 are nothing but the test

of a boolean variable: �if t belongs to h then� is encoded by �if bh then�.

4 Principles of the Signal Clock Calculus

The compilation process of synchronous languages is not limited to code gen-

eration: Some analyses are �rst applied to determine if the speci�cation is

indeed executable. Let us mention the Lustre [6] and Esterel [4] causal-

ity analyses, the Lustre [6] and Lucid Synchrone [5] clock analyses and

the Esterel constructive analysis [4]. The Signal compilation process con-

tains one major analysis called clock calculus [1,2] from which code generation

and causality analysis [1] directly follow. As a consequence the clock calculus

contains various aspects, which makes it very rich but di�cult to explain.

The calculus applies to the synchronizations of a speci�cation, presented

in Sect. 4.1. It synthesizes a control structure from which single loop code

directly follows (examples of control structures inferred from synchronizations

are given in Sect 4.2). Its core is a constructive decision procedure which de-

termines if a speci�cation is endochronous (Sect. 4.3). We describe in Sect. 4.4

the data structures and algorithms, and their implementation in Sect. 4.5.

4.1 Synchronizations of a Signal Speci�cation

A Signal equation speci�es a relation 1. over the values of present variables

2. over the status of variables. For example y := x default z states that

8 Note that Lustre clocks of variables are directly particular boolean variables of speci�-

cations, with the drawback that the notion of clock is recursive.
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y is present i� x is present or z is present. This statement describes the

synchronizations of the equation, or a relation over clocks. It can be described

equivalently using the clock algebra (e.g. by = bx [ bz) or Signal high-level

operators (e.g. y �= x �+ z). But clocks of variables are not su�cient: The

synchronizations induced by the under-sampling when operator involve the

value of a boolean variable, y := x when c states that y is present i� x and

c are present and c has value true.

It is therefore necessary to introduce a new kind of clock that deals with

boolean values. Such a condition-clock is denoted by [c] 2 K (when c in Si-

gnal), meaning the set of instants when c is present with value true ([:c]

corresponds to value false). [c] is said to be obtained by under-sampling (or

extraction) of bc by the condition c. Signal synchronizations are shown on

Fig. 3. Expressed in the clock algebra they form a system of equations called

clock system/equations. The braced equations are optional: They correlate

[c], [:c] and bc by specifying that when c is present, c takes either the value

true or false (in short that ([c], [:c]) is a partition of bc).
P

synchronizations

of P in Signal

synchronizations

of P in H

y := g(x1,...,xn) y �= x1 | ...| y �= xn by = bx1 . . . by =cxn
py := y $1 init v0 py �= y cpy = by

y := x when c y �= x �* when c

by = bx \ [c]

[c] [ [:c] = bc
[c] \ [:c] = O

)
y := x default z y �= x �+ z by = bx [ bz

Fig. 3. synchronizations

Let us precise now the link between the propositional encoding of synchro-

nizations and boolean models extended with ? like Z=3Z. The encoding of

relations over clocks of variables into PC (Sect. 3.2) is very intuitive because

the status of a variable is clearly boolean. A condition-clock [c] is similarly

encoded into a propositional variable b[c] but distributions indicate both the

status and the value of c, e.g. �(b[c]) = 0 means that c is either absent or

present with value false. As explained in Sect. 2.1 the semantical computa-

tion domain is {?,true,false} but the introduction of condition-clocks makes

possible an encoding into the only two values of the propositional calculus.

This trick is nothing but the classical encoding of a tri-values logic into a

boolean algebra using auxiliary variables 9 :

9 Note that one of the variables b[c], b[:c] and b
bc is redundant with others: The clock

calculus uses only b[c] and b[:c].

7



Nebut

bc = b[c] = b[:c] = 0 ; c = ? bc = 1;

(
b[c] = 0; b[:c] = 1 ; c = false

b[c] = 1; b[:c] = 0 ; c = true

In other words thanks to condition-clocks the clock algebra can describe the

whole boolean combinational part of Signal speci�cations 10 and similarly

any boolean combinational predicate C (Sect. 2.2). It means that, by applying

such an encoding to C, Sigali could be implemented using standard stu�.

From now, we assimilate clock variables (resp. relations over clocks) and

their correspondent propositional variables (resp. boolean equations).

4.2 From Synchronizations to Control Structure: Main Ideas

As explained in Sect. 3.1 the Signal philosophy strongly emphasizes that

clocks indicate the control of data-�ow speci�cations. Accordingly the control-

�ow of the target executable code is synthesized from relations over clocks, or

synchronizations. Since clocks can describe only what occurs inside a reaction,

we address only the control-�ow corresponding to combinational instructions

(see Sect. 5 for a complete example). We give here an intuition of the main

ideas (they will be detailed in the following sections), illustrated by exam-

ples. The �rst example concerns the equation y := x default z, the second

one the counter of Ex. 2.1, the third one equations y := x + 2 | z := y

+ 2 when y <= 0 | w := z when z < 0. Their synchronizations are given

respectively by Eq. (2), (3) and (4):by = bx [ bz(2) by =cpy by = bN [cpy bN = [c](3) by = bx bz = by \ [c0] bw = bz \ [c00](4)

where c, c0 and c00 abstract respectively conditions py � 0, y � 0 and z < 0.

The corresponding code is given on Fig. 4(a), 4(b), and 4(c) respectively. It

appears clearly that the control-�ow is materialized by tests over clocks 11 .

Clocks are fundamentally used as r/w guards for the value of variables.

Any access to the value of a variable y is embedded into a test over by: On

Fig. 4(c) z := y + 2 (line 5) is guarded by a test on by (y is read) and on bz
(z must be computed), lines 1 and 4. Testing the value of clocks implies that

clocks must be chosen a de�nition: It is the main goal of the clock calculus 12 .

Some de�nitions are quite intuitive: The choice for the de�nition of by line 1

10For example if x, y and z are boolean variables the equation y := x default z can be

encoded into the boolean system by = bx [ bz, [y] = [x][ ([z] n bx).
11The connection between control-�ow (clocks) and data-�ow (computations of values of

variables) is determined syntactically. For example the parsing of equation y := x default

z attaches to by the need of computing y, to bx the de�nition of y by x, and to bz n bx the

de�nition of y by z. Hence the code of Fig. 4(a) from line 2. So, once the control-�ow has

been inferred from synchronizations, the code directly follows.
12The de�nition of a condition-clock is not dealt with by the calculus, since not speci�ed

by synchronizations (see also Sect. 4.3). See for example the de�nition of b[c] Fig. 4(b) line

2 (in fact the Signal compiler suppresses this useless variable).
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(1) by := bx or bz;

(2) if by

then // compute y

(3) if bx then y := x

end if

(4) if (bz and not bx)

then y := z

end if

end if

(a)

(1) if by

then

(2) b[c] := py �0

(3) bN := b[c] ;

if bN

then y := N

else y := py - 1

end if

(4) end if

(b)

(1) if by
then

(2) y := x + 2

(3) bz := y <= 0

(4) if bz

(5) then z := y + 2

bw := z < 0

if bw

then w := z

end if

end if

end if

(c)

Fig. 4. control structures inside reactions

Fig. 4(a) directly follows from transforming the equation (2) into an oriented

de�nition. A glance at the counter shows that in the general case extracting

de�nitions from relations over clocks is more complex: Eq. (3) implies that by
is constrained by the recursive equation by = bN [ by; Moreover by is in fact not

given a de�nition since considered as an input clock, line 1 Fig. 4(b).

Finally the knowledge of some clock inclusions and equivalences is used

to optimize the control structure by avoiding useless tests at execution time.

Synchronizations of Eq. (4) imply inclusions bz � by and bw � bz (for instance bz
cannot be true if by is not also true). Consequently on Fig. 4(c) tests over by,

bz and bw are nested. Tests are also factorized : by is tested only once while y is

written (line 2) and read (line 5). Additionally the number of clock variables

is optimized: Since synchronizations imply by = bx there is no need for some

variable bx.

4.3 Endochrony: From Equations to De�nitions

A component is endochronous if it can be executed in an asynchronous envi-

ronment which provides only values of inputs, with no information about their

status (see [3] for more details). The component has no way to test determin-

istically the status of its inputs (intuitively because such a test is blocking): It

cannot test deterministically more than one input clock. So an endochronous

component must own an identi�ed master clock (which is nothing but its ac-

tivation clock), which is the only input clock of the executable code. Hence all

other (necessarily slower) clocks must be recursively de�ned from the master.

Lustre components are endochronous by construction: A reference mas-

ter clock is given and any other clock is either an already existing clock, or

a clock de�ned functionally by the under-sampling of an existing clock. Si-

gnal is more general: Endochrony is not ensured. Moreover as explained

in Sect. 4.1 Clocks are linked together not only through under-sampling but

9
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also by any combination of operators [, \ and n. Finally some fundamentally

relational synchronizations cannot be transformed into functions.

Example 4.1 The code of Fig. 4(a) cannot be executed deterministically and

does not represent an endochronous component: The greatest clock by is not a

master, since computed as a function of the input clocks bx and bz. The master

clock on Fig. 4(b) and 4(c) is by. Consider the equation y �< x. It speci�es

the clock inclusion by � bx but does not indicate how by is computed from bx. �
To check that a speci�cation is endochronous, the calculus must infer a

master clock (if it exists) and compute for any other clock a de�nition which

is a function of other clocks (if possible): If it succeeds the speci�cation is

declared endochronous. To do so it makes the clock system triangular
13 (this

process is called resolution). It uses a particular strategy that focuses on

under-sampling, whose importance appears clearly in Lustre. A condition-

clock like [c] depends on the status and value of c, but this value is unknown

since not de�ned by synchronizations. So [c] cannot be given a de�nition

and may carry any value: Condition-clocks play the role of special parameters

present in the initial system. All other clock variables play the role of variables:

From now only these ones are called clock variables. So the strategy consists

in de�ning clock variables by a function of condition-clocks. Inclusions [c] � bc
and [:c] � bc are particularly meaningful 14 and widely exploited.

4.4 Data Structure and General Algorithms

From now we enter into technical details taken from [1,2,10]. Because the

resolution exploits under-sampling inclusions, the used data-structure is based

on trees whose nodes are clock variables and s.t. for two nodes n1 and n2, �n1

is a descendant of n2� means that �the clock n1 is included into the clock n2�.

Its goal is to reduce the size of de�nitions and to represent both the shape of a

triangular system and the control structure of the speci�cation. We distinguish

two types of de�nitions for clocks: Syntactical de�nitions appear in code (e.g.

de�nition of by by bx[bz on Fig. 4(a)) while semantical de�nitions characterize a

clock h by a function def (h) of condition-clocks (e.g. assume given syntactical

de�nitions h3 := h1[h2 and h4 := h3\h1 where def (h1) = [c1] and def (h2) =

[c2], then def (h4) = [c1]). We denote by var(h) the set of condition-clocks on

13The notion of triangular system is very generally de�ned in the theory of boolean

equations. Solving a consistent boolean system amounts to compute all solutions of

f(x1; : : : ; xn) = 0. Instead, one can give to this equation a general solution under para-

metric form, given by a family of boolean functions f i(p1; : : : ; pn)gi=1:::n where pi are

parameters that can take any value in f0; 1g. The triangular form of the general solution

is: x1 =  1(p1) x2 =  2(p1; p2) . . . xn =  n(p1; : : : ; pn) where  is are de�nitions. An ir-

redundant solution is obtained by constraining parameters by a constraint system C which

ensures an injection between vectors p1; : : : ; pn and solutions of the equation.
14For instance adding [c] � cpy to Eq. (3) suppresses the recursive constraint on by since
bN [cpy is now trivially equivalent to by.
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which def (h) depends (e.g. f[c1]; [c2]g for h3). To simplify we consider only

syntactical de�nitions of the kind h1 op h2 where op 2 f[;\; ng. Semantical

de�nitions will be of fundamental importance in Sect. 4.5.

4.4.1 Clocks Layout in Trees

An inclusion induced by under-sampling is represented by an intuitive basic

tree (called partition tree) represented on Fig. 6(a). Lustre synchronizations

can be directly represented by a tree containing only under-samplings and

which root is the master clock. Signal trees must also represent inclusions

induced for instance by de�ning a clock h by [c2] \ h1 (see Fig. 5(a)). The

principle is not to represent all inclusions (here h � [c2] and h � h1) but only

those which indicate the corresponding code structure. A depth �rst traversal

(dft) of the tree exhibits the order of computations induced by de�nitions.

An example of control structure directly inferred from a tree is given Fig. 5.

Note that nested tests follow exactly the tree structure and that the partition

([c1]; [:c1]) corresponds to an if then else statement.

[c1] [:c1] [c2]

h1 h2

[c2] \ h1

(a)

compute c1;

if c1 then compute h1; if h1 then... endif

else compute h2; if h2 then... endif

endif /* if c1 */

compute c2; if c2 then... endif;

if c2 and h1 then... endif

(b)

Fig. 5. control structure inferred from a tree

4.4.2 Construction of Trees

The initial step is to build all partition trees: Any clock variable is root of

such a tree or of a tree reduced to a root. Then the algorithm iterates the

following process: 1. choice from synchronizations of a syntactical de�nition

for some clock variable h3 of the type h1 op h2 s.t. h1 and h2 belong to a tree

a0; 2. computation of def (h3) and insertion of the sub-tree a whose root is

h3 into a0 (it is a fusion, see Fig 6(b)). Hence, the root excluded, each node

corresponds either to a condition-clock (never de�ned) or to a clock variable

which has been given a de�nition. The root r is a temporary �local� master

clock: def (r) = true. All the problem is to �nd a convenient placement for

h3. Two ideas are important here.

Sub-tree Properties A sub-tree a contains a set of condition-clocks from

which other clocks can be de�ned (we call it its context) and must respect

two principles: 1. any clock h in a is such that var(h) belongs to this context

(locality criteria); 2. a dft �nds all variables of var(h) before h (this ensures

11
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a triangular shape for the clock system, i.e. the respect of dependencies in

computations).

Branching of Nodes Since h1 and h2 belong to the same sub-tree a0 they

share the same context and have a common ancestor h (called their branch-

ing), which is of particular interest: If def (h3) = def (h1) op def (h2) it is easy

to check that the insertion of h3 as the right-most child of h respects the above

two principles (whatever op be, the inclusion h1 op h2 � h holds), see Fig 6(b).

In fact, some deeper insertions may be correct, leading to more nested control

structure and more inclusions made explicit: We refer to Sect. 4.5.

If a single tree is obtained the speci�cation is declared endochronous, its mas-

ter clock being the root. The algorithm progresses by computing de�nitions

h1 op h2 s.t. h1 and h2 belong to the same tree. If no such expression can

be found in synchronizations, another compilation module applies them some

rewriting rules. The used rewriting system is ad-hoc and in particular incom-

plete. If no convenient expression appears after rewriting, the calculus stops

and the speci�cation is declared not to be endochronous (while it may be so).

bc

[c] [:c]

(a)

a

h3

h3

h

h1 h2

h

h1 h2

a0 a0

(b) tree fusion

Fig. 6. construction of trees

4.4.3 Proof of Boolean Properties

Synchronizations are represented by a set of equivalence classes. Assume that

two clocks of the same class h1 and h2 have been given a de�nition. Since

h1 and h2 are equivalent, the equivalence def (h1) = def (h2) must be veri�ed

for synchronizations to be coherent. The calculus can only check that this

equivalence is a logical consequence of the set of already computed de�nitions

def (h) 15 . If the proof fails, the equivalence is reported to the user as a clock

constraint which makes the speci�cation not endochronous.

4.5 Implementation of De�nitions and Insertions

De�nitions def (h) are implemented by BDD. Condition-clocks [c] and [:c] are

represented by complementary elementary BDD (Fig. 7(a)), which implements

their partition of bc provided bc is represented by the BDD 1 (1 �de�nes� any

root r of a tree). The set var(def (h)) is the corresponding BDD support.

15The still relational part of synchronizations cannot be exploited since the algorithm only

considers semantical de�nitions, thus the proof is necessarily incomplete.
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c

10

[c]

c

[:c]

1 0

(a)

[c2]

[c1]

(b) c1 � c2

1

2 3

c1

c2c2

(c) c1 � c2

1 2 3
0

c2

c1c1

(d) c2 � c1

Fig. 7. BDD and trees

The tree and BDD properties are exploited to uniquely characterize def (h)

from its syntactical de�nition. For any clock k in a tree a of root r, let f(k)

denote the father clock of k. We de�ne the enlarged de�nition of k as [2]:

def e(k) = def (h) ^ def (f(h)) ^ : : : ^ def (f i(h)) ^ def (r)

Because of inclusion k � f(k), def e(k) is equivalent to def (k) but takes into

account inclusions such as [c] � bc. Consider again a clock h3 de�ned by

h1 op h2 where the branching of h1 and h2 is h. We have:

def e(h1) =

F1z }| {
def (h1) ^ def (f(h1)) ^ : : : ^ def (f i(h1)) ^def e(h)

If we de�ne similarly F2 for h2 then we can indeed insert h3 as a child of h

and give it the factorized de�nition def (h3) = F1 op F2. In fact [2] shows that

there exists a unique deepest clock h0 descendant of h and a unique expression

F s.t. h3 can be de�ned by F and inserted under h0: 1. def e(h1) op def e(h2) =

F ^ def e(h
0) and 2. the two sub-tree properties of Sect. 4.4.2 are veri�ed. To

�nd h0, one just need to consider the greatest node n (for a dft) that appears in

var(defe(h1) op def e(h2)) and to follow the path from n to h while condition

1. is veri�ed.

Since BDD have canonical forms and the pair (h0; F ) is unique, trees are

a canonical representation of synchronizations, very e�cient for two reasons.

Firstly thanks to the tree structure only parts of the boolean system are rep-

resented (de�nitions def (h)) and considered at each operation (enlarged def-

initions def e(h)). Moreover the order � of variables in BDD supports is not

chosen randomly but incrementally determined during trees construction by

the dft order. As a consequence BDD are naturally small. For instance the

tree of Fig. 7(b) induces the order c1 � c2, meaning �compute �rst c1 then

c2�. This order leads to a smaller BDD (Fig. 7(c)) than the reverse order

(Fig. 7(d)).

5 Conclusion

This paper gives an overview of the Signal compilation process under its

main aspects. Before entering into technical details it focuses on fundamental

notions that must be understood to fully appreciate principles of the clock
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calculus. It explains in particular what are clocks, how they are formalized as

sets of instants but used as propositional variables to encode the combinational

boolean part of speci�cations, and what is the di�erence with the encoding

into Z=3Z(traditionally misunderstood).

The calculus has remained stable since 1995. It could be intrinsically

improved: Lustre-like assertions should be introduced and algorithmically

considered not as constraints to prove but as hypotheses for proofs mentioned

in Sect. 4.4.3; These proofs could take into account relational aspects and

not only functional ones. The other synchronous compilation process must

also be examined: A deep comparison with the Lustre [6] and Lucid Syn-

chrone [5] approaches must be done (for example consequence of simpler

synchronizations on the complexity and modularity of analyses); New Este-

rel techniques that infer a control-�ow from an event-graph must also be

considered. We make here a few remarks about the Lustre compilation into

automata.

Contrary to Signal, Lustre synthesizes the control-�ow of the executable

code from the evolution of the speci�cation boolean memories [7]. So code

optimization consists in testing these values only when necessary: Such tests

are suppressed by statically computing these values. The generated code is

structured like an automaton, whose states are values of boolean memories and

transitions represent combinational reactions speci�c to the source state. It

implies that the reachable boolean state space is explored. On the contrary, the

Signal process is bounded to the purely combinational analysis of relations

over clocks, so can only structure the control �ow inside reactions. States

are not distinguished and the generated code is an single loop whose body

represents all possible reactions that can occur in any state of the system.

For instance the complete code for the counter contains an initialization of

my by 0, followed by a single loop which embeds the code of Fig. 4(b) where

memories have been inserted: Addition of py := my before line 2 and of my :=

y before line 4.

It is well known that the single loop code is very compact, while the size of

an automaton is exponential (Lustre algorithms essentially aim at reducing

this size [7]). But the automaton structure is very well adapted to veri�cation

purposes (for which state explosion is a common problem). Lustre veri�ca-

tion tools take as input the interpreted automaton synthesized by the compiler.

Such an automaton looks like the one of Fig. 1(d) with a major great partic-

ularity: Transitions are labeled by formal imperative-like expressions. These

expressions are similar in nature to the code encountered in the Signal loop

body: Absence is also compiled through tests over clocks [11]. For instance

the left to right transition could be labelled by if by then if py <= 0 then

y := N. In this way Lustre avoids the use of models extended with ? and

commonly addresses numerical in�nite domains (e.g. NBac tool [8]). So the

Lustre approach could bring to Signal a standard model for veri�cation

hence a basis for numerical tools, following the work of [10].
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