
SLAP’04 Preliminary Version

Syntax-driven behavior partitioning for
model-checking of ESTERELprograms

Eric Vecchíe and Robert de Simone1

INRIA, Sophia Antipolis, France

Abstract
We consider the issue of exploiting the structural form of ESTEREL programs to partition
the algorithmic RSS (reachable state space) fix-point construction used in model-checking
techniques. The basic idea sounds utterly simple, as seen on the case of sequential com-
position: inP ;Q, first compute entirely the states reached inP , and then only carry on to
Q, each time using only the relevant transition relation part. Here a brute-force symbolic
breadth-first search would have mixed the exploration ofP andQ instead, in caseP had
different behaviors of various lengths, and that would result in irregular BBD representation
of temporary state spaces, a major cause of complexity in symbolic model-checking.

Difficulties appear in our decomposition approach when scheduling the different tran-
sition parts in presence of parallelism and local signal exchanges. Program blocks (or
“Macro-states”) put in parallel can be synchronized in various ways, due to dynamic be-
haviors, and considering all possibilities may lead to an excessive division complexity. The
goal is here to find a satisfactory trade-off between compositional and global approaches.
Concretely we use some of the features of the TIGER BDD library, and heuristic orderings
between internal signals, to have the transition relation progress through the program be-
haviors to get the same effect as a global RSS computation, but with much more localized
transition applications. We provide concrete benchmarks showing the usefulness of the
approach.

Key words: Esterel, model-checking, BDD, reachability, partitioning,
program-blocks, frontier, high-level, syntax, cofactoring

1 Introduction

In the last decade the advent of BDD-based implicit state-space representation
[Bry86] allowed to scale up various analysis techniques (“model-checking”, in a
wide acceptation of the term) to large realistic synchronous reactive system de-
signs. But BDDs alone cannot be relied upon to cope with all the complexity of
the reachable state space construction. Specifically, while the BDD encoding of the
final reachable state space may often be very compact, the transition relation and
the intermediate steps of next-state computations can be exceedingly larger. Sev-
eral clever techniques for partitioning the application of transition functions have
been proposed, which partially solve the problem [BCL91,BCL+94,ISS+03]. In

1 Eric.Vecchie@sophia.inria.fr , Robert.De simone@sophia.inria.fr

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Eric Vecchié and Robert de Simone

the context of ESTEREL [Ber92] we propose to use the structural syntactic nature
of the design to apply transition relations piecewise, only when it may provide
further states. Intuitively in a sequential compositionP ; Q one clearly wants to
computeall reachable states inP first, then progress to states inQ. While this
may seem a trivial idea at first (after all, reachable state space construction can
be seen as exhaustive symbolic simulation of all behaviors), care has to be taken,
specially in presence of parallel components and internal signal communications,
so that the approach retains some of the advantages of symbolic approach, namely
that all individual behaviors are not enumerated (or not even nearly so). This is a
typical time/space trade-off. Still, using the algorithmic structure of ESTERELpro-
grams to guide (symbolic, exhaustive, breadth-first search) state space construction
is a clear, simple idea that was never tried out before to the best of our knowl-
edge. Other works with similar concern usually attempt to precede the symbolic
breadth-first search with partial explicit depth-first search simulations that identify
new initial configurations “ahead” in the potential behaviors [GB94,PP03].

For expository reasons we shall focus in the current paper on a tiny kernel ver-
sion of the language, still sufficient to present our techniques (which can handle the
full language). In particular we shall only consider specifications consisting of a
general parallel “network” of otherwise sequential components, with global scop-
ing of internal signals. Still, components can exchange signals to start, freeze or
abort one another, and change macro-state configurations.

In essence our refined algorithm proceeds as follows : initially a very restricted
transition relation is applied, with many locations of (internal or external) signal
receptions “blocked”. Then those signal reception occurrences are progressively
“re-allowed”, in a heuristically ordered fashion, so that the transition relation al-
ways grows. But as the new extensions are always applied to “most recent” states,
the old and already largely searched parts get “cleaned up” by some simplifica-
tion properties of the TIGER BDD package [CMT93], which “cofactors” out the
transition parts found to lay outside the domain of states they are applied to. This
operation simplifies drastically the support (i.e, the set of variables that the relation
effectively depends upon), and thus the computations. Heuristics for ordering the
“reception allowances” are based on a graph structure extracted from the structural
syntax, so that it is compliant with the natural precedence that may exist (for in-
stance, when a reception onS causes the emission onT otherwise also expected, it
is obviously better to releaseS beforeT).

The paper is organized as follows : first we informally motivate our framework
on a simple example. Then we give a brief summary of (a restricted micro-subset
of) ESTEREL, as well as technical elements of symbolic model-checking. We focus
on how the TIGER BDD package [CBM89] performs transition partitioning and
“transition cofactoring” in order to decrease the size of data structures (and opti-
mize the variables support) when applying the next-state computation. These tech-
niques will come handy later on to understand ours. Then we provide an abstract
description of our approach, first on sequential components and then on parallel
systems with local signal exchanges, followed by the actual algorithm and its BDD
implementation, relying on the already mentioned features of TIGER. We justify
the correctness of our partitioned approach to build the full RSS. We close with
the description of our prototype implementation and performance benchmarks, fol-
lowed by suggestions for further improvement on the treatment ofloop constructs.

2

Eric Vecchié and Robert de Simone

An example : the good old digital wristwatch.
The design as shown in picture1 consists of several modules, and an interface of 4
input buttons and an output LCD screen (with also an audio buzz) :

an alarm (counter) module computes the time and date by adding up input quartz
ticks; it sends information to thedisplay when change occurs (increment);

a time set module allows to change and update the time and date values using
proper input buttons;

an alarm set module allows to set an alarm time, and to toggle the on/off alarm
mode;

a stopwatch module allows to set/reset or stop a chronometer; it should continue
running if needed even when not on display;

a display module displays proper information on the wristwatch LCD screen or
audio buzz, according to the current modes set;

a button decoder module should link the actual wristwatch buttons to the proper
signals entering submodules according to the current mode(s). In particular the
role of the upper-right button, hereafter named “ModeSelect”, will be to alter-
nate active mode betweenTime set, Alarm set andStopwatch modes.

ALARM / DISPLAY

DISPLAY

BUTTONS

Mode_Select

STOPWATCH

ALARM_SET

TIME_SETBUTTON_DECODER

mode
alarm_set display

mode

stopwatch
modemode

time_set

AM

CHRTMRDUALALM

Fig. 1. The wristwatch design.

The reactive behaviors of the components could not be included here for sake
of room. But the reader can easily convince him/herself that the three submod-
ules amongstTime set, Alarm set, andStopwatch have to be put in parallel, but
remain largely exclusive concerning their response to mostbuttonevents (in fact
only the currently selected mode answers those impulses, safe for the button which
switches modes). The basic breadth-first search analysis of such a program does
not take advantage of the fact that submodules are exclusive and computes the
reachable state space on the whole program. The analysis of this program could be
divided into three parts instead : the first part computing the reachable states in the
Time set mode, then in theAlarm set mode and finally in theStopwatch mode.
Thus, the state search of each mode could largely be done independently of the two
others. The gain in space of such a method is obvious since the analysis of the
original program can be assimilated to the analysis of three programs, all smaller
than the original one as local transitions are used in place of global ones.

2 µ-ESTEREL

ESTEREL is an imperativesynchronous reactive language. We shall only consider
here a simple version, where data variables and data-handling are discarded, as
often in model-checking. We shall thus only useSignalsas (identifier) types. A
full program consists of a header (where an interface ofinput andoutputsignals
are defined), followed by a body. Syntax of program statements is provided by the

3

Eric Vecchié and Robert de Simone

following simple grammar :

P ::= pause | P ‖ P | present S then P else P end

| P ; P | emit S | abort P when S

| loop P end | signal S in P end

with S ranging over signals.
Naive semantics of ESTEREL goes as follows : programs behaviors are dis-

cretely divided between instants. Control threads are executed until reaching a
pause statement, which is the main statement which cuts behaviors into atomic
instants. We call “reaction” the full behavior performed during a given instant. In a
reactioncycle, input signals are read/sampled, and internal computation takes place
until output signals are emitted in answer, and the program state is progressed. In-
stants are based on acommonlogical clock, which paces all parallel threads. This
(the fact that all components proceed with the same atomic steps of instants) is
why we call the model “synchronous”. Of course in a reaction various parallel
threads donot run independently, as they may synchronize and affect one another
causally (hardware people would say “combinationally”). When control reaches a
present S test statement, it may have to postpone execution until a consistent
definitive value (present or absent) is obtained for the signal inside the current re-
action (either because it is emitted somewhere in parallel, or because other threads
of execution provably progressed to a point where provablyall potential emissions
were discarded). The topic of constructive causality (for the determination of sig-
nal presence values) is a large body of ESTEREL semantic theory, but we shall
not address it here; instead we shall assume that there isno cyclic combinational
dependencies between signals.

While a high-level imperative language, ESTERELenjoys a semantic-preserving
translation to hardware RTL level (net-lists) where causality issue can be more read-
ily dealt with, and a second level of interpretation into Mealy FSMs (again semanti-
cally sound). This second level actually looses information on fine causality issues,
but makes explicit the actual reachable state space, and thus can be the definitional
background for model-checking analysis techniques. Of course the purpose of im-
plicit (or symbolic) BDD-based model-checking is to apply these analyses at the
circuit level. In our case we try to lift them some more by exploiting high-level
structuring information from the source syntax.

We shall stick to the classical translation from ESTEREL to circuits described
in [Ber99], which generates exactly one boolean register for eachpause state-
ment. In the sequel we shall consider an abstract syntax tree version for ESTEREL
programs wherepause constructs are explicitly labeled by the corresponding reg-
ister names, providing the necessary association. In fact, we want to recognize
each instance of instruction that we identify here with a unique label mentioned as
exponent. Each node of the tree is typed with respect to the instruction it repre-
sents. Thus, the tree node of an instruction of typeinstruction and labeled byL
is written : (instructionL subtree1

l1 . . . subtreen
ln).

3 Symbolic next-state operation, and optimizations

3.1 Symbolic state space computation

The basic breadth-first search Reachable State Space algorithm can be written:

4

Eric Vecchié and Robert de Simone

1 reachable← INIT
2 new← INIT
3 while (new 6= ∅) do
4 new← Image∆(new, INPUTS) � reachable
5 reachable← reachable ∪ new
6 end while

The set of states reached at thenth iteration is built from the set of states reached
at the(n−1)th iteration and the set of valid inputs of the program, by computing the
image under a transition relation∆. The algorithm stops when no new state can be
found. Each state of the program is a valuation of the setR of boolean registers
of the circuit and each input of the program is a valuation of the setI of input
signals. The unique global transition relation∆ let us compute the new states of
the program with respect to the value ofR andI :

∆ : Bm ×Bn→Bm

(R, I)→R′ = ∆(R, I)

whereB = {0, 1}, m is the number of registers andn is the number of input
signals of the circuit. In fact∆ can be “partitioned” and decomposed into a vector
of functionsδi, where eachδi concerns a different image register, and depends only
on a subset of the source registers and of the input signals :

δi : Bmi ×Bni→B

(Ri, Ii)→ r′i = δi(Ri, Ii)

VectorsRi andIi are called the support of these transition functions.mi andni are
respectively the number of registers and the number of input signals of this support.
Such a partitioning scheme is used to speed up applications of BDDs representing
the individualδi.

3.2 Set encoding

Given a set of BDD variablesR = {r1, . . . rn}, we introduce the operatorbRc =
λX → ¬r1 ∧ . . . ∧ ¬rn. If r1, . . . rn are variables representing boolean registers
R1, . . . Rn thenbRc represents the set of states in which all registersRi are inactive
for all i ∈ [1..n].
We notice thatbRc = λX → r1 ∨ . . . ∨ rn represents the set of states in which at
least one registerRi is active fori ∈ [1..n]. We haveS ∩bRc = S�bRc for all set
S.

3.3 Extended cofactoring methods

We shall extensively use some well-known BDD transformations, known in gen-
eral asextended cofactoring techniques[Cou91]. In essence the principle is that,
if the value of the BDD is only relevant on a subset of the possible valuations of
its variables, then this restricted domain of definition can be used to simplify the
expression of the BDD (possibly changing its value outside of it). Generally the
domain is itself provided as a BDD. We notef↑S the cofactoring off by the setS :

f↑S(X) = λX →
{

f(X) if X ∈ S
? if X 6∈ S

The value off↑S out of S is not used and can be anything. It is set in order to
minimize the size of the BDD representingf↑S. In our algorithm, this operator

5

Eric Vecchié and Robert de Simone

is used in theImage function. It lets us handle smaller BDDs during the image
computation since the transition relation is reduced with respect to the domain it is
applied on. More precisely, given a registerr, if the activation condition ofr (the set
of states for whichr = 1) and the domain of the transition relation are disjoint, then
the transition function ofr can be reduced to a very simple expressionλX → ¬r.
In other words, the BDD encoding the transition function of registers that will not
be activated in the next instant is very small.

4 General description of the method

At the heart of the method is the division of the program body into blocks (or
macro-states) of proper granularity. In sequential subcomponents macro-states will
be combined in sequence or as alternative choicesif-then-else. State search will
be performed inside each block until stabilization, before moving to the next one.
The next iterative step will take as new initial states those“pending” , which were
obtained as end frontier states from the proper previous local fix-point searches. To
disallow search in given blocks, one needs only to remove the part of the transition
relation where all registers of these blocks are inactive.

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

Fig. 2. Partitioning method according to four blocks of program. Frontiers between blocks
(drawn in dashed line) are opened one by one.

This scheme raises a problem with parallelism, and the case where two local
frontiers can be traversed concurrently in parallel components. Taking all possible
combinations of blocks into account would lead to a Cartesian product explosion
of cases. So we choose instead to follow the following strategy: first, find a “good”
ordering of frontiers, likely to match the progress of state creation. Then, we start
with a minimal number of active blocks, and we onlyadd upnew blocks when
passing frontiers, without closing any back. So the transition relation will grow
from initial to the global full one. But, meanwhile, we only apply growing tran-
sition relations to states that could provably create new ones outside the previous
scope, so that states that were reached and contributed onlyinside a previous step
were safely computed using only a restricted version. So, ournewset of states on
which transition relation is applied will always lay outside the previous combina-
tions of blocks, and the various operations of cofactoring will (hopefully) leave out
much of the transition relation description. This “wave” of progressing blocks is
shown in figure2, while figure3 shows the details of behaviors at the frontiers.

The division in between blocks and the definition of relevant frontiers of course
rely heavily on the structural syntax, and mostly on signal receptions (as inabort
P when S) and, to a lesser extent, on signal emissions. We use a control flow
graph data structure to help us with this task. The graph is built on top of our
syntax tree, using the same nodes. It describes all possible paths followed by the
control between each instruction of an ESTERELprogram, especially between reg-
isters. The frontier between blocks will then be described by selecting a dedicated
subset of edges. The selection varies dynamically as less and less frontier edges are
preserved, causing the extension of the transition relation described before. Then,

6

Eric Vecchié and Robert de Simone

���
���
���
���
���

���
���
���
���
���

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

	�	�	
	�	�	
	�	�	
	�	�	

�
�

�
�

�
�

�
�

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�
�

�
�

�
�

�
�

�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

 � �
 � �
 � �
 � �
 � �

!�!�!
!�!�!
!�!�!
!�!�!
!�!�!

"�"�"
"�"�"
"�"�"
"�"�"
"�"�"

#�#
#�#
#�#
#�#
#�#

$�$
$�$
$�$
$�$
$�$

%�%�%
%�%�%
%�%�%
%�%�%
%�%�%

&�&�&
&�&�&
&�&�&
&�&�&
&�&�&

'�'�'
'�'�'
'�'�'
'�'�'
'�'�'

(�(�(
(�(�(
(�(�(
(�(�(
(�(�(

)�)�)
)�)�)
)�)�)
)�)�)
)�)�)

��*
��*
��*
��*
��*

+�+�+
+�+�+
+�+�+
+�+�+
+�+�+

,�,�,
,�,�,
,�,�,
,�,�,
,�,�,

-�-�-
-�-�-
-�-�-
-�-�-

.�.�.
.�.�.
.�.�.
.�.�.

/�/�/
/�/�/
/�/�/
/�/�/
/�/�/

0�0�0
0�0�0
0�0�0
0�0�0
0�0�0

1�1�1
1�1�1
1�1�1
1�1�1
1�1�1

2�2�2
2�2�2
2�2�2
2�2�2
2�2�2

3�3
3�3
3�3
3�3
3�3

4�4
4�4
4�4
4�4
4�4

5�5�5
5�5�5
5�5�5
5�5�5
5�5�5

6�6�6
6�6�6
6�6�6
6�6�6
6�6�6

P

Q

Fig. 3. Detail of our partitioning method on a frontier between two blocksP andQ. In the
first three steps, the saturation ofP is performed. States which overflow outside of theP
area are not used in the image computation. In the last three steps, the saturation ofP and
Q is performed starting with the former pending states. Since wholeP has been analyzed,
the exploration of the reachable states only concernsQ.

from the current graph containing locked and unlocked edges, each iterative macro-
step of the algorithm consists in computing the set of inactive registers, build the
proper BDD description of the considered area, select the proper set of next-step
initial configurations from statespending. In the next section we shall describe our
choice offrontier from the structural syntax, together with the control flow graph
creation.

5 Partitioning into “macrostates” according to syntax

There are two aspects that will be considered here. The first obvious one is how to
partition the transition relation application according to syntax. The second is how
to figure when the decomposition is indeed beneficial (because no subpart is in fact
degraded to the point that considering it in isolation would be a waste of energy);
we shall remain elusive on that second aspect for the time being.

Sequence statement.
Consider a program consisting of two components put together in sequence :

P ; Q. If the reachable state space is computed in a breadth-first search manner
on a global transition relation, then states inQ will be considered while possibly
further states inP are still not reached, in which case the intermediate symbolic
description is likely to be larger than the final one, if one grants that intermediate
forms of partially reached state spaces are more irregular than final ones. Moreover,
the sequentially partitioned state space search here allows to use only the relevant
part of the transition relation when dealing with each component (P , thenQ).
There are two cases where partitioning is a waste of energy. The first is the obvious
case whereP or Q contains no pause statement. The second occurs whenP is a
constant-length program. For example, ifP is of the formpause ; pause then
each execution ofP is spread on two instants. In other words, the partitioning of
P ; Q is naturally performed by the breadth-first search algorithm.

Choice operator.
If we now consider present S then P else Q end alternative

choice, the situation is very similar. Reachable state spaces inP andQ can be built
independently if one assumes that both branches do not terminate instantly, and
thus containpause statements.

7

Eric Vecchié and Robert de Simone

Preemption.
An abort P when S statement allows to add abortive transitions to the nat-

ural terminations ofP . Our partitioning technique will aim at exploring fullyP
before exploring the next program blocks activated byP ’s terminations (of course
this will have the effect of blocking also the potential emissions causing the abort,
that would figure in the same global transition). Therefore, we want to consider
each transition exitingP as frontier.

Loops.
In a sequential (“parallel-free”) context, the exploration of aloop P end

program breaks down to the exploration ofP , since the loop only leads back to the
initial configurations ofP , already reached. In the (more common) parallel setting,
though, the problem comes from the fact that which blocks can be active in parallel
is in general dynamically obtained through successive synchronizations (this is in
a large part why RSS construction can be so hard). Our current solution is toonly
increasethe register support for transition relations used in successive fix-points,
and to relyhopefullyon the fact that actual synchronizations will only allow state
creation of such shape that the regular cofactoring of TIGER will clean up the ex-
cess of transition relations (when configurations are uniformly inactive, leading to
false-valued registers, the corresponding transition parts are discarded). In the fu-
ture, further studies of the control-flow graph structure should help us figure which
frontiers can be seen as globally synchronizing the full system’s pattern of loops,
so that it can be preserved as a frontiereach timeloops are ”unrolled”.

Parallel networks and signal synchronizations.
As already mentioned, the problem here is to establish which blocks put in

parallel can be active in parallel, so that the global search can be divided with
matching progressions. This is shown in figure4. The only syntactic element at

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

	�	�	
	�	�	
	�	�	
	�	�	

�
�

�
�

�
�

�
�

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

S1

S2

S1

S2

S1

S2

Fig. 4. Partitioning method for a parallel component. There are two signals synchro-
nizing three parallel components. Our technique aims at partitioning according to the
black-colored blocks. Hatched blocks should be removed by cofactoring methods.

our disposal here to indicate synchronization will of course be signal reception.
These receptions must be matched by corresponding emissions when signals are
local (otherwise receptions of input signals can occur anytime, but each parallel
component must perceive it consistently). Nevertheless it should be noted that,
in the synchronous reactive framework,it is possiblethat a local signal emission
causes no reception, if none are ”actively watching” at the time. So, while we
shall use signal receptions to generate frontier transitions, these will automatically
generate simultaneous frontiers atemitsidewhen they are enabled, and otherwise
emissions can be passed and go unsynchronized. To clarify further, consider the
following simple example :P1; emit S; P2 || Q1; await S; Q2. If
the design of this program is so that any emission ofS is received by theawait
S statement, thenP2 can not be active ifQ2 is not. Thus partitioning according to
Q1 andQ2 will partition the first branch according toP1 andP2 as well. If some

8

Eric Vecchié and Robert de Simone

emissions ofS are not received, then partitioning according toQ1 andQ2 will have
no precise effect on the first branch. In all case there is a real benefit in partitioning
this way. In the best case, the reachable state space computation will concernP1

andQ1 first and then,P2 andQ2. In the worst case, it will concernP1, P2 andQ1

and then,P2 andQ2.

Frontier ordering.
Currently, the order in which frontiers will be unlocked is defined dynamically, “at
run time” during the course of our successive fix-point iterations searching new
states in growing support domains. We select each time a frontier that is likely to
produce new states, and is not strictly preceded by another one. This relies deeply
on the shape of apendingset of states that are incompletely processed, and can
generate configurations beyond the current frontiers. Details shall be provided in
section7.1. In the future we intend to investigate possible refinements of this choice
(of more static nature), specially looking for frontiers with global effects that could
be preserved across loops.

6 Control flow graph

Our control flow graph is built over the syntax tree of ESTEREL programs. The
control flow graph of a given syntax treeT is defined as follows :
G(T) = (I,O,N , E ,F) whereN is the set of the nodes of the graph. These nodes
are the same as those of the syntax tree.I andO are subsets ofN and represent
respectively the start and final nodes of the graph. The edges of our graph (written
i→ j) are divided into two categories :E contains “normal” edges andF contains
the edges used as frontiers. By construction, the setE ∩ F is empty. Thus, edges
corresponding topresent andabort statements are settled inF . Such edges
are called “frontier” edges. Other edges are settled inE .

 pause;[pause||pause]

abort
 loop pause end

when S;
present T then

else

|| pause; pause

 pause; pause
end;
pause

|| ?

F1 F2.1

F2.2

||
F2.1

F2.2

Fig. 5. Example of an ESTEREL program with its control graph. FrontiersF1, F2.1 and
F2.2 in dashed line have been produced by theabort and thepresent statements.

We describe here the way we build our control flow graph for each ESTEREL
instruction. This description uses labels of the syntax tree which are a lighter way
to identify the nodes. The usual operator “× ” allows us to join each element of a
setI = {I1, . . . Im} to each element of a setJ = {J1, . . . Jn}.

Atomic instructions produce graphs containing a single node and no edge :

G(emitL s) = ({L}, {L}, {L}, ∅, ∅)

G(pauseL r) = ({L}, {L}, {L}, ∅, ∅)

In the following statements, we suppose that an instructionI produces a graph
G(I) = (I,O,N , E ,F). As well, fori ∈ [1, 2] we haveG(Ii) = (Ii,Oi,Ni, Ei,Fi).
In our graph, we can abstract the beginnings and the ends of the scope. The graph
of a signal declaration is thus the same as forI :

9

Eric Vecchié and Robert de Simone

G(signalL s I endL′
) = (I,O,N , E ,F)

In a binary sequence, final nodes of the first graph are linked to start nodes of the
second graph :

G(seqL I1 I2 endL′
) = (I1,O2,N1 ∪N2, E ′,F1 ∪ F2)

E ′ = E1 ∪ E2 ∪ (O1×I2)
A loop never terminates, thus its set of final nodes is empty. The final nodes of
G(I) are linked to its entries.

G(loopL I endL′
) = (I, ∅,N , E ∪ E ′,F)

E ′ = O×I
Both branches of a parallel are started in the same instant. Thus the start point of a
parallel is a unique node linked to the entries of its both branches.

G(parL I1 I2 endL′
) = ({L},O1 ∪ O2,N1 ∪N2 ∪ {L}, E ′,F1 ∪ F2)

E ′ = E1 ∪ E2 ∪ ({L}×(I1 ∪ I2))
In a present statement, we want to put frontiers in order to exploreI1, thenI2

and then, anything which is executed after this statement in the program. Frontiers
are thus placed before and after the “then” branch and the “else” branch.

G(presentL s I1 I2 endL′
) = ({L}, {L′},N1 ∪N2 ∪ {L, L′}, E1 ∪ E2,F ′)

F ′ = F1 ∪ F2 ∪ ({L}×(I1 ∪ I2)) ∪ ((O1 ∪ O2)×{L′})
Eachpause instruction may lead to the end of theabort instruction that encloses
it. Such transitions are frontiers which will help us split the RSS computation and
thus are put in the setF .

G(abortL s I endL′
) = (I, {L′},N ∪ {L′}, E ,F ∪ F ′)

F ′ = (O ∪ {l / (pausel r) ∈ N})×{L′}

7 The precise algorithm and its BDD implementation

We shall introduce useful notations.Closure(N ,E) (I) represents the set of states
reachable fromI through edges inE . We writeε(X) = {j ∈ N / i ∈ X,∃i→j ∈
E} the set of target nodes of edges ofE whose source belongs toX :

Closure(N ,E) (I) = (µX . I ∪ ε(X))

The following function computes the “surface” of a program block. Given a set
R ⊂ N of nodes (corresponding to a set of active registers), the surface is the set
of edges that can be crossed in the immediate instant following the activation of
one or more registers inR. If R is the set of nodes of type “pause”, then :

Surface(N ,E) (R) = Trans(µX . R∪ (ε(X)�R))

whereTrans(X) is the set of edges inE whose source belongs toX. Given a
setS of graph nodes, we introduce the operatorRegister〈S〉 which returns the set
of register BDD variables inS : Register〈S〉 = {ri / (pause ri) ∈ S}. This
operator will help us to make the link between our control flow graph and the
symbolic BDD-based computations.

10

Eric Vecchié and Robert de Simone

7.1 Partitioned algorithm

Our partitioned algorithm is guided by the control flow graph where edges are
progressively unlocked. The BDDrestrictedArea represents the set of all states
(reachable or not) lying inside the frontier. At each step of the algorithm, the im-
age computation is performed only on the pending reachable states lying inside
restrictedArea (line 7). Cofactoring according to the current domain is implicitely
done in the image computation (line 8). At the end of each step, the new-found
states are stored in thepending set (line 9). No unlocking is needed as long as new
states are found insiderestrictedArea (lines 4, 5, 6).
This first algorithm does not describe the wayrestrictedArea is initialized and en-
larged (this will be explained later).

1 reachable← INIT, pending← INIT
2 −− 1. Initialize the set encoded by ‘‘restrictedArea’’
3 while (pending 6= ∅) do
4 if ((pending ∩ restrictedArea) = ∅) then
5 −− 2. Unlock some edges and enlarge ‘‘restrictedArea’’
6 end if
7 currentDomain← pending ∩ restrictedArea
8 new← Image∆(currentDomain, INPUTS) � reachable
9 pending← (pending � currentDomain) ∪ new

10 reachable← reachable ∪ new
11 end while

Control flow graph and restricted area initializations (1).
We assume that the syntax tree of the analyzed program is given inT . The

initialization process consists in building the graph to obtain an initial set of locked
edges and then build the setrestrictedArea with respect to these initial conditions.

1. Initialize the set encoded by “restrictedArea”
1 (I,O,N , E ,F)← G(T)
2 allRegs ← Register〈N〉
3 reachableRegs ← Register〈Closure(N ,E) (I)〉
4 restrictedArea← ballRegs�reachableRegsc

The first step consists in building the graph (line 1). Then, we need to know
the setreachableRegs of registers which are allowed to be active (line 3). Fi-
nally, restrictedArea is defined as the set of states such that no register but those
in reachableRegs is active (line 4).

Restricted area enlargement (2).
When restrictedArea is required to be enlarged, we want to unlock “good”

edges. We only want to unlock edges which allow us to include some pending
states inside the growingrestrictedArea set. Such edges can only be found in the
surface ofreachableRegs. Furthermore, more than one edge may be required to be
unlocked. This is the typical case where two parallel branches are awaiting the
same signal. Thus, while no pending state lies insiderestrictedArea, a new edge
is analyzed in order to decide whether it should be unlocked or not. In fact, edges
whose origin belongs toClosure(N ,E) (I) must be analyzed first, which does not
appear in our algorithm.

11

Eric Vecchié and Robert de Simone

2. Unlock some edges and enlarge “restrictedArea”
1 surface = F ∩ Surface(N ,E∪F) (reachableRegs), i← 1
2 while ((pending ∩ restrictedArea) = ∅)
3 frontier ← surface[i], i← i + 1
4 −− 2.1. Check if ‘‘frontier ’’ should be opened
5 if (unlock?) then
6 −− 2.2. Unlock ‘‘frontier ’’
7 end if
8 end while

Edge crossing (2.1).
To determine whether an edge should be unlocked, one has to focus on the new

active registers in the setpending.

2.1. Check if “frontier ” should be opened
1 newRegs ← Register〈Closure(N ,E∪frontier) (I)〉 � reachableRegs
2 if (newRegs = ∅) then
3 unlock?← true
4 else if ((pending � bnewRegsc) 6= ∅) then
5 unlock?← true
6 else
7 unlock?← false
8 end if

First, we compute the set of nodes in the graph that would be reached if the edge
frontier was unlocked. We just need to know the new-found registers which are
stored innewRegs at line 1. If frontier leads to no register, it can be unlocked but
this will have no effect on the setrestrictedArea (line 2, 3). IfnewRegs is not empty,
we check if there are some states inpending that have activated one or more new
registers contained innewRegs (line 4, see section3.2). In this case, the edge can
be unlocked.

Unlocking compatible frontiers (2.1’).
An example :R1, R2 andR3 are three inactive registers locked by three distinct

edges. The setpending contains two states : the first in which onlyR1 andR3 are
active and the second where onlyR2 andR3 are active. We unlock a first edge that
lets us activate the registerR1. Then, at this point of the algorithm nothing forbids
us to activateR2 beforeR3 whereas we would prefer to activate onlyR3.
The solution consists in making a copy of the setpending calledpending’ before
starting to unlock edges. Each time an edge is unlocked, we reduce the setpending’
in order to keep only “compatible” states activating new-allowed registers.

1 pending’← pending
2 ...
3 else if ((pending’ � bnewRegsc) 6= ∅) then
4 pending’← pending’ � bnewRegsc
5 unlock?← true
6 ...

In our previous example, onceR1 has been allowed to be activated,R2 cannot be
activated beforeR3 any more.

12

Eric Vecchié and Robert de Simone

Unlocking an edge (2.2).
Once an edge has been decided to be unlocked, we just have to perform the

following updates : first, the unlocked edge is moved fromF to E . Then, the set
restrictedArea is enlarged.

2.2. Unlock “frontier ”
1 E ← E ∪ {frontier}, F ← F � {frontier}
2 reachableRegs ← reachableRegs ∪ newRegs
3 restrictedArea← ballRegs�reachableRegsc

7.2 Correctness arguments (hints)

We shall give informal arguments to justify our claim that all states will be reached
by our partitioned technique.

In the end, the ever-growing transition relation will reach the form of the global
one used in the classical single iteration breadth-first search. But it is only applied
to a selection of new initial states (those taken from the temporarypending sets),
and thus will reachall statesreachable only from there. But, importantly, the new
states reached inside a fix-point search at a given stage of transitions selection that
arenot put inside thepending set are thosewhich cannot produce any further suc-
cessors(because we have reached a fix-point of that restricted relation transition).
So, a reachable state will eventually be reached when frontier unlocking will open
a path to it.

8 Prototype implementation and benchmarks

We implemented our method with the help of the TIGER BDD package and we
tested it on some ESTERELdesigns. The results presented here have been obtained
by executing our program on a Bi-Pentium III - 550 MHz with 1 GByte of memory
and running under the Linux operating system.
As our current prototype model-checker can only handle theµ-ESTERELrestricted
syntax (without data handling), we were not yet able to parse and analyze large
programs from the ESTEREL benchmark suites. Results are still promising on
small, hand-written programs. For instance, on the largest benchmark example
which passed our syntactic criteria (namedsequencerin the benchmark suite), we
decreased the peak memory usage due to BDD consumption by about 60% (17
Mbytes vs 40 Mbytes). Figures6 and7 show the evolution of the algorithm on this
example.

On another large design (namedcabin in the benchmark suite), the default
method using a global transition relation is not able on our workstation to pro-
duce more than 534 states, following three iteration steps in the search (in 11.85
seconds), and collapsing in the fourth step with over 900 Mbytes of memory con-
sumed. Our method was able to produce135 441 875states (after 35 hours 40
minutes) achieving with success 123 iterations.

Although inspiring, the wristwatch design presented in section1 is too small to
present significant results.

13

Eric Vecchié and Robert de Simone

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 20000 40000 60000 80000 100000 120000 140000

m
em

or
y

(K
b)

number of states

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 100 200 300 400 500 600

nu
m

be
r o

f s
ta

te
s

time (s)

Fig. 6. In the both graphs, boxes represent the default algorithm. The solid-line represents
the partitioned algorithm. The first graph shows the memory used with respect to the num-
ber of states found (partitioned is better). The second shows the number of states found
with respect to the computation time (default method is faster, as expected).

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 20000 40000 60000 80000 100000 120000 140000

B
D

D
 n

od
es

 in
 n

ew
 s

et

number of states

 0

 5000

 10000

 15000

 20000

 25000

 0 20000 40000 60000 80000 100000 120000 140000

B
D

D
 n

od
es

 in
 re

ac
ha

bl
e

se
t

number of states

Fig. 7. The first graph shows the number of nodes in the BDD encoding the new-found
states with respect to the number of states found. The second shows the number of nodes
in the BDD encoding the reachable states with respect to the number of states found.

9 Conclusion and future work

To the best of or knowledge our method is the only partitioning method based
on syntactic{sequential/alternative/parallel/synchronized} structural information
drawn from (synchronous) programs. Our method tends to mimic the behavioral
progression of control through time, but in a context where all paths have to be
followed (exhaustive search, as opposed to single path simulation). We presented
a solution to partition the RSS computation, primarily according to signal recep-
tions, and then order the evaluation of blocks according to progression of control.
This latter information is drawn from a control-flow graph, itself directly emanated
from the abstract syntax tree. The graph is also used to actually build the precise
transition relation selected at any given macro-step, by including the parts where
registers enclosed inside proper frontiers are found. Frontiers are progressively ex-
panded, in a hopefully “good” order, so that all reachable states can be captured.
The ever-increasing aspect of the transitions allow to avoid the potential blow-up
in various cases of pairing blocks active in parallel. But, as a corollary, the method
still suffers from relative inefficiencies in the treatment of loops, which cannot re-
ally be divided in a succession of steps. We intend in the future to study whether
closer inspection of the graph can lead to cases where a frontier (say, a signal re-
ception) can be seen to have a global synchronization feature, so that a number of
looping components put in parallel cannot progress at respective irregular “speeds”.
This is for instance the case in our sketchedwristwatch example, where thebut-

14

Eric Vecchié and Robert de Simone

ton decoder main loop has the effect of serially activating the apparently parallel
Time set, Alarm set, andStopwatch modules, while most of their behaviors can
only be performed in a round-robin fashion, commanded by thebutton decoder
main loop.

References

[BCL91] J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic model checking
with partitioned transition relations. In A. Halaas and P.B. Denyer, editors,
International Conference on Very Large Scale Integration, pages 49–58,
Edinburgh, Scotland, 1991. North-Holland.

[BCL+94] J. R. Burch, E. M. Clarke, D. E. Long, K. L. MacMillan, and D. L. Dill.
Symbolic model checking for sequential circuit verification.IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 13(4):401–424,
1994.

[Ber92] Gérard Berry. The Esterel synchronous programming language: Design,
semantics, implementation.Science of Computer Programming, 19(2):87–152,
1992.

[Ber99] G. Berry. The constructive semantics of pure Esterel. Draft version 3.
http://www-sop.inria.fr/meije/, 1999.

[Bry86] R. E. Bryant. Graph-based algorithms for boolean function manipulation.IEEE
Transactions on Computers, C-35(8):677–692, 1986.

[CBM89] O. Coudert, C. Berthet, and J. C. Madre. Verification of synchronous sequential
machines using symbolic execution. InProc. Workshop on Automatic
Verification Methods for Finite State Machines, volume LNCS 407, 1989.

[CMT93] O. Coudert, J. C. Madre, and H. Touati. Tiger version 1.0 user guide, 1993.
Digital Paris Research Lab memorandum.

[Cou91]Olivier Coudert. SIAM: Une Boite à Outils Pour la Preuve Formelle
de Syst̀emes Śequentiels. PhD thesis, Ecole Nationale Supérieure des
Télécommunications, Octobre 1991.

[GB94] D. Geist and I. Beer. Efficient model checking by automated ordering
of transition relation. In David L. Dill, editor,Proceedings of the sixth
International Conference on Computer-Aided Verification CAV, volume 818,
pages 299–310, Standford, California, USA, 1994. Springer-Verlag.

[ISS+03] S. Iyer, D. Sahoo, Ch. Stangier, A. Narayan, and J. Jain. Improved Symbolic
Verification using Partitioned Techniques. LNCS ??, 2003.

[PP03]E. Pastor and M.A. Pẽna. Combining Simulation and Guided Traversal for
the Verification of Concurrent Systems. InProceedings of DATE’03. IEEE
publisher, 2003.

15

	Introduction
	-Esterel
	Symbolic next-state operation, and optimizations
	Symbolic state space computation
	Set encoding
	Extended cofactoring methods

	General description of the method
	Partitioning into ``macrostates'' according to syntax
	Control flow graph
	The precise algorithm and its BDD implementation
	Partitioned algorithm
	Correctness arguments (hints)

	Prototype implementation and benchmarks
	Conclusion and future work
	References

