
SLAP’04 Preliminary Version

Synchronous dataflow pattern matching 1

Grégoire Hamon 2

Computing Science Departement,
Chalmers University of Technology,

Göteborg, Sweden

Abstract

We introduce variant types and a pattern matching operation to synchronous dataflow
languages. These languages are used in the design of reactive systems. As these
systems grow increasingly complex, the need for abstraction mechanisms, in par-
ticular, data and control structures, is critical. Variant types provide a mechanism
to precisely model structured data. The pattern matching operation, defined as a
clock operator, provides an efficient control structure.

Key words: synchronous languages, dataflow, pattern matching,
inductive types, clock calculus, controle structure, data structure

1 Introduction

Reactive systems [1] are systems that need to interact continuously with their
environment and at the speed imposed by this environment. Such systems are
found everywhere, and their number is growing: fly-by-wire control systems,
cell phones, washing machines, etc. Alongside their number, their complex-
ity is also dramatically increasing. Faced with this increasing complexity,
designers need efficient abstraction mechanisms that can make both the im-
plementation and the certification of reactive systems easier.

We are interested in extending synchronous dataflow languages with both
data and control structures. To this end, we propose the addition of variant
types and pattern matching, two key features of functional languages. Variant
types allow precise definition of structured data. Pattern matching is defined
as a control structure.

1 This material is based on work supported by the National Science Foundation under
Grant No. CCR-0086096 through the University of Illinois
2 Email: hamon@cs.chalmers.se

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Hamon

1.1 Synchronous dataflow languages

Synchronous dataflow languages are dedicated to the design of reactive sys-
tems. They combine the synchronous approach and dataflow programming.
The synchronous approach [2] makes the hypothesis that the system reacts
instantaneously to any stimulus. This allows a concurrent and deterministic
description of systems. Dataflow languages are functional languages over in-
finite streams. Combining these two approaches allows efficient descriptions
of reactive systems with a continuous behavior, as found in most control sys-
tems. Synchronous dataflow languages include Lustre [3] and its industrial
counterpart Scade, Signal [4] (strictly speaking, Signal is not functional but
relational), and Lucid Synchrone [5].

1.2 A need for data structures

Synchronous dataflow languages do not support a wide range of data types.
Lustre supports basic types (booleans, integer, floating-point numbers) and
some forms of array, Saga [6] introduced named records. Other data structures
have to be imported from a host language. Access functions, written in this
host language, are then required to manipulate the data. This makes writing
programs difficult, as the components of the structure cannot be accessed
directly. Moreover, program certification is then complicated by the need to
check properties on the host language.

As the complexity of systems is increasing, the need for more complex
data structures is becoming critical. Industrial users of synchronous dataflow
languages like Scade are expressing the need to define and use their own data
types.

1.3 A need for control structures

Synchronous dataflow languages are well adapted to represent continuous be-
haviors. However, expressing sequential or evolving behaviors with a set of
equations is quite challenging. To design truly evolving systems, imperative
synchronous languages like Esterel are better adapted. The question remains
open concerning systems described as a composition of several continuous be-
haviors. Several works have considered combinations of formalisms (Lustre

and Esterel, Lustre and Argos [7], Synchronous Eiffel and the Synchronie
Workbench [8], Ptolemy [9]). Recent developments of Esterel extend the lan-
guage with equations (Esterel v7). Another possibility is to extend a dataflow
language with control structures. Scade provides condition activations, Mode-
Automata [10] adds automatons as a control structure over Lustre. These
additions do not mix well with the rest of the language, Mode-Automata for
example have to consider a subset of Lustre.

2

Hamon

1.4 Clocks as control structures

Dataflow synchronous languages provide a means to activate/deactivate some
parts of a program through a clock mechanism. A clock represents the pace
of an expression and can be specified using special operators. Dealing with
expressions evolving on different paces can introduce inconsistencies. In order
to avoid them, a static analysis known as the clock calculus is used. Clocks
give a semantically clean way to model concurrent processes evolving at dif-
ferent speeds. They are also used by compilers (Signal, Reluc [11], and Lucid

Synchrone) to produce efficient code.

Nonetheless, using clocks to express control has proven to be difficult, the
mechanism is complex to use. Works on the Lucid Synchrone language have
shown that the clock calculus can be defined as a type system close to the
type system of ML [12,13]. ML has shown the possibility to combine a strong
type system and ease of use – ML programmers consider the type mechanism
as a help and not as a constraint. The “clocks as type” point of view of
Lucid Synchrone opens the question as to whether the same can be achieved
with clocks, making it possible to use them to define control structure. We
study this question through the definition of the pattern matching operation
associated with variant types.

1.5 Plan

In section 2 we introduce timed variants and the pattern matching operation
using examples. These ideas are formalized in section 3. Compilation issues
are studied in section 4. In section 5 we compare our approach with related
works and discuss the choice of using clocks to structure programs.

2 Timed variants and pattern matching

2.1 Lifting variants to streams

Simple types in dataflow languages are built by lifting scalar types: an integer
stream is a stream made of integers. In the same way, variant types can
be defined naturally: a variant stream is a stream made of values from the
corresponding scalar variant type.

2.1.1 A first example

We consider a program that takes mouse events as input and counts depending
on this input. Three distinct events can be received: left click, middle click
or right click. This information can be encoded as an integer or as a pair of
booleans; it is however more readable and less error-prone to create a variant
type:

type event = Left | Middle | Right

3

Hamon

A value of this type is a stream, evolving with time:

Left Left Right Middle Right ...

We implement a counter increasing on a left click, decreasing on a right click
and starting over on a middle click:

let up_down mouse = count where

rec count = 0 ->

match mouse with

| Left on c => (pre count) when c + 1

| Middle => 0

| Right on c => (pre count) when c - 1

The function up down takes an argument mouse of type event. It defines a
value count, which is a stream. Its first value is 0, and is followed by (as
indicated by the -> operator) the value defined by the match expression. The
match discriminates on possible value of mouse. On a left click, it returns the
previous value of the counter (pre count) incremented by 1, on middle click
0, and on right click it decreases the counter. The when operator is used to
filter a stream. Here pre count produces a value on every instant, we filter
it in each branch to return a value only when the branch is taken. A possible
execution of this program is:

e Middle Left Left Right Left ...

up down e 0 1 2 1 2 ...

2.1.2 Constructors with arguments

Constructors can carry arguments. We add a Key event occurring whenever
the user presses a key on the numeric keypad. This event carries an integer
value:

type event = Left | Right | Middle | Key of int

We can change the step of the counter using the keyboard:

let up_down event = count where

rec count, step = (0, 1) ->

match event with

| Left on c => ((pre count) + step, pre step) when c

| Middle on c => 0, (pre step) when c

| Right on c => ((pre count) - step, pre step) when c

| Key i on c => (pre count) when c, i

4

Hamon

A possible execution of this program is:

e Middle Left Key 3 Left Right ...

up down e 0 1 1 4 0 ...

In both those examples, using variants and pattern matching offers a clear
way to write the program. Without those features, the events would have to
be encoded as integers or booleans or imported from a host language. Our
solution gives a simpler program, closer from the specification of the program.

2.1.3 Recursive types

Recursive types are interesting, and largely used in generalist languages. They
are however associated to recursive functions, which are not supported in
synchronous dataflow language for synchrony reasons. We do not consider
such types here.

2.2 Clocks and pattern matching

We now detail the clock of the pattern matching operation. This allows us to
use this construction as a form of control structure.

2.2.1 One clock per branch

A variant stream can be seen as the combination of complementary streams.
In this example, e is the composition of four streams:

e Middle Left Key 3 Left Left Right ...

Left Left Left ...

Middle ...

Right ...

Key 3 ...

These streams are defined by the patterns: each one corresponds to one pattern
in our example. They also have complementary clocks: only one of them is
present at each instant. Each branch of the pattern matching thus defines a
clock, the branch-clock, which is true only when the branch is taken. In the
pattern Key i, the variable i is defined only when the event as the form Key

*: the clock of i is the branch-clock. Those branch-clocks have interesting
properties:

• they are all sub clocks of the clock of the matched element (here e): if this
element is absent, all the branches are absent.

5

Hamon

• they are exclusive: only one branch is taken on each instant. This exclusivity
is a property of the pattern matching operation, which as usual, uses the first
pattern matching the argument if the patterns themselves are not exclusive.

• they are complementary: on each instant, if the filtered element is present,
one branch will be present (we force the pattern matching to be complete).

For the pattern matching to define a control structure, we ask the code associ-
ated to each branch to be on the corresponding branch-clock: it is “present”,
thus executed, only when the branch-clock is true. The construction combines
the results of all the branches. Consider for example:

type number = Int of int | Float of float

let float_of_number n =

match n with

| Int i => float i

| Float f => f

The type number has two constructors, Int and Float. The function converts
a number to a float. Supposing n has clock cl:

• the branch Int i defines a clock c1, i is on clock cl on c1. The expression
float i is on clock cl on c1.

• the branch Float f defines a clock c2, f is on clock cl on c2. The expression
f is on clock cl on c2.

Moreover, we have the following properties on c1 and c2:

c1 ∧ c2 = false c1 ∨ c2 = cl

Thanks to these properties, the result of the pattern matching, which is the
combination of the branches is uniquely defined and is on clock cl.

2.2.2 Naming the branch-clock

In our examples, we have explicitly named the branch clock using the on

construction in patterns:

match event with

...

| (Key i) on c => (pre count) when c, i

This name is used to sample pre count. Otherwise, it would be on a faster
clock than the branch itself, as count is itself faster (being the result of the
match).

We might want to make this mechanism implicit: naming the branch-clock
is necessary to sample the free variables of the branch expressions. We could
systematically (and implicitly) sample all free variables with the branch clock.
However, doing that, we loose some expressivity, the two following expressions:

6

Hamon

pre (x when c)

(pre x) when c

are not equivalent. Using an implicit filtering mechanism, we can only de-
fine the first one (i.e. the expression pre x, where x is implicitely filtered
corresponds to the expression pre (x when c). More generally, an implicit
mechanism, while allowing a more lightweight syntax, only allows filtering
variables instead of sub-expressions.

The construction itself can be used to sample the expressions:

match event, (pre count) with

...

| (Key i), pc => (pc, i)

By filtering pre count and having it match every branch with a trivial pat-
tern, we get a variable pc, which is on the branch clocks and has the expected
value. No naming mechanism is needed here. However, this solution clearly
does not scale when the number of sub-expressions to be filtered increases.

3 Formalization

We formalize those ideas by considering a small functional language over
streams, and enriching it with variant types and pattern matching. Then
we give it a semantics and a clock calculus. The previous examples translate
very simply to this core language.

3.1 The core language

The core language contains expressions which are either a constant c (a scalar
constant lifted to streams or the definition of a function), a variable x, the
application of a scalar operator op, the application of the fby (from which ->

and pre are defined), when, whenot, or merge operator. Definitions associate
names to expressions, function applications or clocks and can be combined
concurrently (AND) or sequentially (IN). The main program is a definition d of
the form x with D returning the value of x in the declaration D.

e ::= c | x | op (e, e) | c fby e | e when e

D ::= D and D | D in D | x = e | x = e (e)

c ::= i | fun x. y with D

d ::= x with D

i ::= true | false | 0 | ...

op ::= + | ...

7

Hamon

This language is given an operational semantics expressing how a program
interacts with its environment in an instant. This semantics is made from
rules of the form:

R ` e
v→ e′ R ` D

R′
→ D′ R ` d

v→ d′

where R in an environment associating values to variable. A value v can be
either a constant or a special value “absent” (noted []). The rules express
the fact that in an environment R, an expression e (resp. a declaration D,
a definition d) reduces itself on an expression e′ (resp. a declaration D′, a
definition d′) and produces the value v (resp. the new environment R′, the
value v). We do not detail the rules here, they are given in appendix A. A
full description of this semantics can be found in [14].

The semantics is partial: no semantic is given to non-synchronous pro-
grams (for example, x+y is only defined if x and y are either both present or
both absent). Ensuring that a program is synchronous is done statically by a
clock calculus. This clock calculus is defined as a type system. The language
of clocks is the following:

σ ::= ∀α1, ..., αm.∀K1, ..., Kk.cl n,m, k ∈ IN

cl ::= cl → cl | s | (k : s)

s ::= base | s on k | α

k ::= x | K

a clock is a functional clock cl → cl, a stream-clock s or a dependent clock
(k : s). Stream-clocks are the base clock base, a sub-clock s on k, or a clock-
variable α. Dependencies k are either a name x (as defined by a let clock),
or a dependency variable K. We also have clock-schemes σ. The clock calculus
is defined by predicates of the form:

H ` e : cl H ` D : H′ H ` d : cl

Stating that in a clock environment H, associating clocks to variables, an
expression e (resp. a declaration D, a definition d) has clock cl (resp. defines
the clock environmentH′, has clock cl). The rules are presented in appendix B.
A full description of this clock calculus can be found in[14].

3.2 Adding variants and pattern matching

3.2.1 Extending the language

The language is extended with variant type declarations. They have the fol-
lowing form:

type (α1, ..., αm) t = C1 of τ1 | ... | Cn of τn

8

Hamon

c-[]

R ` e
[]→ e′

R ` Ci(e)
[]→ Ci(e

′)

c

R ` e
sv→ e′

R ` Ci(e)
Ci(sv)→ Ci(e

′)

Fig. 1. Reduction rule for patterns

α1, ..., αm are type-arguments of t, C1, ..., Cn are the constructors for type t,
τ1, ..., τn are the constructors’s arguments. If F(u) is the set of free-variables
in a type u, ∀i.F(τi) ⊆ {α1, ..., αn}. We don’t consider recursive types, thus
∀i.t /∈ F(τi).

Such a declaration extends the language with expressions and patterns for
type t. The pattern matching operation is a declaration, in which the branch-
clock is named (in the concrete syntax, as presented in the examples, the name
can be omitted), the code associated to each branch is a definition:

e ::= ... | C1(e) | ... | Cn(e)

P ::= c | x | C1(P) | ... | Cn(P)

D ::= ... |

x = match e with

| P on x ⇒ d

...

| P on x ⇒ d

3.2.2 Semantics

The operational semantics is extended to handle expressions with constructors
and pattern matching. Instantaneous values, which where either a constant
or absent ([]) need to be extended with constructors applied to constant argu-
ments:

sv ::= c | C1(sv) | ... | Cn(sv)

v ::= sv | []

Constructors cannot be applied to []. Reduction rules for constructed expres-
sions are given in figure 1. They are synchronous: an expression returns absent
if and only if its argument is absent. Reduction rules for the pattern matching
are given in figure 2. They follow the proposed behavior:

• If the filtered expression is absent (rule match-[]): all the branch clocks are
false (ci takes the value F), all branches are absent, the result is absent.

• Otherwise (rule match): the branch corresponding to the filtered expres-
sion’s branch clock is true(T), it returns a result, which is returned by the

9

Hamon

match-[]

R, [[]/x] ` e
[]→ e′ ∀i ∈ {1, ..., n} R, [[]/x], [[]/xi], [F/ci] ` di

[]→ d′i

R `

x = match e with

| P1(x1) on c1 ⇒ d1

...

| Pn(xn) on cn ⇒ dn

[[]/x]→

x = match e′ with

| P1(x1) on c1 ⇒ d′1

...

| Pn(xn) on cn ⇒ d′n

match

R, [v/x] ` e
Pj(vj)→ e′ R, [v/x], [vj/xj], [T/cj] ` dj

v→ d′j

∀i ∈ {1, ..., n} such that i 6= j, R, [v/x], [[]/xi], [F/ci] ` di
[]→ d′i

R `

x = match e with

| P1(x1) on c1 ⇒ d1

...

| Pn(xn) on cn ⇒ dn

[v/x]→

x = match e′ with

| P1(x1) on c1 ⇒ d′1

...

| Pn(xn) on cn ⇒ d′n

Fig. 2. Reduction rules for the pattern matching

match, all the other branches are absent.

3.2.3 Clock calculus

The new rules are given in figure 3. Constructed expressions have the clock of
their argument. In the pattern matching each branch is on its branch-clock:
in the branch Pi on ci ⇒ di, if the filtered expression is on clock cl, di must be
on clock cl on ci. We restrict the scope of the branch-clocks to the branch by
forbidding them to appear in the clock environment. This restriction is not
mandatory but makes the pattern matching closer to a control-structure. The
clock of the whole expression is the clock of the matched expression.

Correctness of the clock calculus

The extended clock calculus has been proved correct with regards to the
extended semantics: any well-clocked program in this calculus evaluates in the
extended semantics. The proof is similar to the correctness proof of the clock
calculus of the core language, only the new cases have to be considered. The
full proof is given in [14](page 80).

10

Hamon

c-h
H ` e : s

H ` C(e) : s

match-h
H, [x : cl] ` e : cl

∀i ∈ {1, ..., n} : H,Hi ` Pi : cl on ci H,Hi, [x : cl] ` di : cl on ci

ci /∈ fvcl(H), Dom(Hi) = fvPi

H `

x = match e with

| P1 on c1 ⇒ d1

...

| Pn on cn ⇒ dn

: [x : cl]

Fig. 3. Extended clock calculus

4 Compilation issues

Our goal is to use the pattern matching operation as a control structure. It
is thus important for this construction to be efficiently compiled. Compiling
pattern matching in a traditional language is a known problem[15]. To com-
pile our construction, we translate it into a similar construction in the target
language (in our case, Ocaml [16]).

For simple examples, where all the sub-expressions in the branches are
on the branch-clock, the compilation is straightforward: the program can be
translated as is. However, if some sub-expressions are not on their branch-
clock, the translation is not straightforward:

match v with

| true on c => let rec nat = 0 fby (nat + 1) in

(nat when c)

| false => 0

nat when c is on the branch-clock cl on c (where cl is the clock of v). There-
fore, nat and its definition are on clock cl, which is faster than the branch-
clock: we can’t translate the construction directly. The program is equivalent
to the following one:

let rec nat = 0 fby (nat + 1) in

match v with

| true on c => nat when c

| false => 0

nat is defined outside of the construction. All computations taking place

11

Hamon

inside the branches are on the branch-clock, the match can be compiled as-is.
The rewriting is done automatically by the compiler, using the clock of the
expressions. Unfortunately, this is not always enough:

match v with

| true on c => let rec nat = 0 fby (nat + 1) in

let x = (merge c nat 0) in

(x when c)

| false => 0

If v has clock cl; x when c is on the branch clock (cl on c), x is on clock cl

(faster than the branch clock), and nat is on the branch-clock. As before the
definition of x would need to be moved outside the construction. However,
dependencies between computations (x when c depends on x which depends
on nat, make it difficult. This program is equivalent to the following one:

let nat, c =

match c with

| true => let rec nat = 0 fby (nat + 1) in

nat, true

| false => 0, false in

let x = merge c (nat when c) 0 in

match v with

| true => x when c

| false => 0

both clocks and dependencies are respected, every expression in the branches
are on their branch-clock. However, the structure of the program has not been
maintained by the translation. This goes against the idea of the construction
as a control structure. The implementation restricts the use of match to
programs not requiring such rewriting.

5 Conclusion

We have presented the addition of variant types and pattern matching in a
synchronous dataflow language. The addition of variants proposes an answer
the need for data-structure in those languages. They allow an efficient and
clean representation of structured data. The associated operation of pattern
matching provides a control structure in synchronous dataflow languages.

5.1 Related works

Few works have been interested in data types in dataflow languages, most
languages provide access to types of the host language through abstract oper-
ators. The support for custom data types and an associated control structure
directly in the language seems crucial, allowing simpler designs. Using ab-
stract operators requires using two separate languages and some encodings as

12

Hamon

soon as a control structure based on the data type is needed.

The definition of a control structure in the language is related to the
works on Mode-Automata, and more generally to works on combination of
formalisms. Mode-Automata answered the question of combination of formal-
ism by providing a control structure (the automata) on top of Lustre. With
this structure, systems with several continuous behaviors can be defined and
compiled efficiently. We follow here a similar approach by providing a control
structure in the language. However, the match construction is here part of
the language and integrates smoothly into it. Restrictions imposed on the
language in Mode-Automata (no clocks, no functions, pre only on variables)
are not necessary. This smooth integration is made possible by the use of
clocks to define control.

In [17] an encoding of Mode-Automata in Lucid Synchrone was proposed.
Using variant types and pattern matching makes this encoding simpler and
easier to understand. The use of the match construction allows the compiler
to produce efficient code, each mode of an automaton corresponding to one
branch of a pattern matching operation.

5.2 Adaptations

Variant types and pattern matching as presented here are implemented in the
current version of the Lucid Synchrone compiler. Following the same ideas, we
can imagine different construction. Free variables appearing in the branches
can be implicitly filtered as discussed in section 2.2.2. Compilation issues
disappear: branch sub-expressions cannot go faster than the branch in this
case.

The experimental version of the Scade compiler, Reluc [11], supports a
similar construction, restricted to enumerated types (constructors without ar-
guments). The restrictions we imposed due to compilation issues 4 are not
imposed. The construction can get compiled as several control structures in
the host language. This construction is used to model automata in the lan-
guage.

5.3 From functional to synchronous dataflow language

This addition shows that synchronous dataflow language can benefit from
constructions developed for functional language.

It also shows that, even if the clock calculus is a complex mechanism,
constructions based on it can be easy to use. The clock calculus is essential,
allowing the description of concurrent processes evolving at different speed
in a safe way. While using it directly to define control is difficult, it can be
used more easily through dedicated constructions. The “clock as type” point
of vue allows inference and good diagnosis which are essential in defining
such constructions. In a similar way as the type system in ML is an help to
the programmer and not a burden, the clock calculus must be an help when

13

Hamon

combining concurrent processes.

6 Acknowledgements

The author would like to thank Marc Pouzet and Jean-Louis Colaco for their
suggestions concerning this work and Carmella Schaecher for her insightful
comments. Anonymous reviewers significantly helped in improving this paper.

References

[1] Harel, D., Pnueli, A.: On the development of reactive systems. In: Logic
and Models of Concurrent Systens, NATO Advanced Study Institute on Logics
and Models for Verification and Specification of Concurrent Systems, Springer
Verlag (1985)

[2] Halbwachs, N.: Synchronous programming of reactive systems. Kluwer
Academic Pub. (1993)

[3] Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous dataflow
programming language lustre. Proceedings of the IEEE 79 (1991) 1305–1320

[4] Amagbégnon, P., Besnard, L., Guernic, P.L.: Implementation of the Data-
flow Synchronous Language Signal. In: Conference on Programming Language
Design and Implementation, La Jolla, California (1995) 163–173

[5] Caspi, P., Pouzet, M.: A functional extension to Lustre. In Orgun, M.A.,
Ashcroft, E.A., eds.: International Symposium on Languages for Intentional
Programming, Sydney, Australia, World Scientific (1995)

[6] Bergerand, J.L., Pilaud, E.: Saga: a software development environment for
dependability in automatic control. In: SAFECOMP’88, Pergamon Press
(1988)

[7] Maraninchi, F.: The Argos Language: Graphical Representation of Automata
and Description of Reactive Systems. In: IEEE Workshop on Visual Languages,
Kobe, Japan (1991)

[8] Poigné, A., Morley, M., Maffeis, O., Holenderski, L., Budde, R.: The
Synchronous Approach to Designing Reactive Systems. Formal Methods in
System Design 12 (1998) 163–187

[9] Girault, A., Lee, B., Lee, E.A.: Hierarchical finite state machines with
multiple concurrency models. IEEE Transactions On Computer-aided Design
Of Integrated Circuits And Systems 18 (1999)

[10] Maraninchi, F., Rémond, Y.: Mode-automata: About modes and states
for reactive systems. In: European Symposium On Programming, Lisbon
(Portugal), Springer-Verlag (1998)

[11] Colaco, J.L.: (Personal communication)

14

Hamon

[12] Caspi, P., Pouzet, M.: Synchronous kahn networks. In: ACM
SIGPLAN International Conference on Functional Programming, Philadelphia,
Pensylvania (1996)

[13] Colaço, J.L., Pouzet, M.: Clocks as first class abstract types. In: ACM
SIGPLAN International Conference on Embedded Software. Volume 2855 of
Lecture Notes in Computer Science., Springer-Verlag (2003) 134–155

[14] Hamon, G.: Calcul d’horloge et structures de contrôle dans Lucid Synchrone,
un langage de flots synchrone à la ML. PhD thesis, Université Paris 6 (2002)

[15] Le Fessant, F., Maranget, L.: Optimizing pattern-matching. In: Proceedings
of the 2001 International Conference on Functional Programming, ACM Press
(2001)

[16] Leroy, X.: The Objective Caml system release 3.07 Documentation and user’s
manual. Technical report, INRIA (2003)

[17] Hamon, G., Pouzet, M.: Modular resetting of synchronous data-flow programs.
In: ACM International conference on Principles and Practice of Declarative
Programming (PPDP’00), Montreal, Canada (2000)

A Operational semantics

im-[]

R ` c
[]→ c

im

R ` c
c→ c

taut

R, [v/x] ` x
v→ x

op-[]

R ` e1
[]→ e′1 R ` e2

[]→ e′2

R ` op (e1, e2)
[]→ op (e′1, e

′
2)

op

R ` e1
c1→ e′1 R ` e2

c2→ e′2 c = op(c1, c2)

R ` op (e1, e2)
c→ op (e′1, e

′
2)

fby-[]

R ` e
[]→ e′

R ` c fby e
[]→ c fby e′

fby

R ` e
c′
→ e′

R ` c fby e
c→ c′ fby e′

when-[]

R ` e1
[]→ e′1 R ` e2

[]→ e′2

R ` e1 when e2
[]→ e′1 when e′2

when-t

R ` e1
c→ e′1 R ` e2

true→ e′2

R ` e1 when e2
c→ e′1 when e′2

when-f

R ` e1
c→ e′1 R ` e2

false→ e′2

R ` e1 when e2
[]→ e′1 when e′2

15

Hamon

in

R ` D1
R1→ D′

1 R,R1 ` D2
R2→ D′

2

R ` D1 in D2
R2→ D′

1 in D′
2

and

R,R2 ` D1
R1→ D′

1 R,R1 ` D2
R2→ D′

2

R ` D1 and D2
R1,R2→ D′

1 and D′
2

decl-e

R, [v/x] ` e
v→ e′

R ` x = e
[v/x]→ x = e′

def

R ` D
R′
→ D′ R,R′ ` x

v→ x

R ` x with D
v→ x with D′

decl-app

R, [v/y] ` f
fun x. z with D→ f ′ R, [v/y] ` (x = e and D) in y = z

R′,[v/y]→ D′

R ` y = f (e)
[v/y]→ D′

B The clock calculus

im-h

H ` i : ∀α.α

abs-h
H, [x : cl1] ` D : H0 genH(H0) ` y : cl2

H ` fun x. y with D : cl1 → cl2

op-h

H ` e1 : s H ` e2 : s

H ` op(e1, e2) : s

fby-h

H ` e1 : s H ` e2 : s

H ` e1 fby e2 : s

when-h

H ` e1 : s H ` e2 : (K : s)

H ` e1 when e2 : s on K

inst-h
cl = inst (σ)

H, [K : σ] ` K : cl

decl-e-h
H, [x : cl] ` e : cl

H ` x = e : [x : cl]

decl-app-h
H, [x : cl1] ` f : cl2 → cl1 H, [x : cl1] ` e : cl2

H ` x = f (e) : [x : cl1]

and-h
H,H2 ` D1 : H1 H,H1 ` D2 : H2

H ` D1 and D2 : H1,H2

in-h
H ` D1 : H1 H, genH(H1) ` D2 : H2

H ` D1 in D2 : H2

def-h
H ` D : H0 H, genH(H0) ` x : cl

H ` x with D : cl

16

	Introduction
	Synchronous dataflow languages
	A need for data structures
	A need for control structures
	Clocks as control structures
	Plan

	Timed variants and pattern matching
	Lifting variants to streams
	Clocks and pattern matching

	Formalization
	The core language
	Adding variants and pattern matching

	Compilation issues
	Conclusion
	Related works
	Adaptations
	From functional to synchronous dataflow language

	Acknowledgements
	References
	Operational semantics
	The clock calculus

