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Abstract
We describe the translation of Esterel-like programs with delayed actions to equivalent
equation systems. Potential schizophrenia problems arising from local declarations are
solved by (1) generating copies of the surface of the statement and (2) renaming the local
variables in one of the copied surfaces generated a loop. The translation runs in quadratic
time and has been formally verified with the HOL theorem prover.

1 Introduction

Synchronous languages [1] like Esterel [2,4] and its variants [12,16] offer a conve-
nient programming paradigm for the design of reactive real-time systems. Several
success stories have been reported [8] from safety-critical applications like avionic
and automotive industries, transportation, and many others. The clear formal se-
mantics of these languages allows us to apply formal methods not only to verify
particular programs, but also to reason about the semantics itself, e.g., to verify
program transformations [18,17].

The common paradigm of these languages is the perfect synchrony [1], which
means that most of the statements are executed as micro steps in zero time. Con-
sumption of time is explicitly programmed by partitioning the micro steps into
macro steps. As a consequence, all threads of the program run in lockstep: they
execute the micro steps of the current macro step in zero time, and automatically
synchronize at the end of the macro step. As the micro steps of a macro step are
executed at the same point of time, their ordering within the macro step is irrele-
vant (provided that dependency cycles have been eliminated). Therefore, values of
variables are determined with respect to macro steps instead of micro steps.

The abstraction to macro steps simplifies the semantics of synchronous lan-
guages and yields a clear programming model for multithreaded programs and

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Schneider, Brandt, and Schuele

hardware circuits. However, this abstraction is not for free: Causality cycles and
schizophrenic statements are the two major problems that must be solved by the
compilers. Causality cycles arise when the condition for executing an action is in-
fluenced by this action. Algorithms for causality analysis, that check if such cyclic
dependencies have unique solutions, are related with the analysis of combinational
feedback loops of hardware circuits [13,11,6,19,5,3]. Usually, causality analysis is
performed as a second step after the compilation to an equation system.

Schizophrenia problems [14,3,18] are usually solved before causality analysis.
In general, a statement is schizophrenic if some of its micro steps are executed more
than once in a macro step. This may happen only if the statement belongs to a loop
body that is left and (re)entered at the same time (in the same macro step). If the
scope of a local declaration is thereby left and (re)entered, then the compiler must
carefully distinguish between different incarnations of local variables that exist at
the same time. To this end, the compiler has to generate copies (incarnations) of
the locally declared variables. In general, several copies may be necessary since
nesting of abort and loop statements may enforce several executions of the local
declaration. Referring to the right incarnations of local variables poses a difficult
problem for the compilers [3], since all variables must have a uniquely determined
value at each point of time.

In this paper, we present a new algorithm to translate synchronous programs
of the Esterel-family into a simple intermediate format: The control flow is given
as an equation system [9,3,15] and the data flow is given as a set of guarded com-
mands [16]. Schizophrenia problems are solved by computing control and data flow
representations separately for the surface and the depth of a program [3,16,18]. In-
tuitively, the surface consists of the micro steps that are executed when the program
is started, i.e., when the control enters the program. The depth contains the micro
steps that are executed when the program resumes execution after a macro step, i.e.,
when the control is already inside the program. Overlapping of surface and depth
parts of local declarations can lead to schizophrenia problems. Hence, computing
control and data flow separately for the surface and depth allows us to generate
copies of the overlapping parts (at least of the entire surface). Moreover, we can
rename the local variables in the surfaces that are generated by loop bodies to cure
schizophrenia problems.

We have embedded [16] our Esterel variant Quartz in the HOL theorem prover
[10]. This embedding allows us to reason not only about particular Quartz pro-
grams, but also about the semantics of Quartz. In previous work, we have already
proved the correctness of the synthesis of equation systems [15] and the equiva-
lence to SOS rules [17]. The latter enables us to reason about micro steps, which is
necessary to prove the correctness of the translation presented in this paper.

The paper is organized as follows: in the next section, we briefly describe
differences between Esterel and Quartz [15,16,17,18]. In particular, we consider
schizophrenia problems that occur in Quartz programs in Section 2.2. In Section
3, we consider previous solutions to solve schizophrenic statements, and finally
present our translation in Section 4.
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2 Schizophrenia Problems in Quartz

2.1 Syntax and Semantics of Quartz

Quartz [15,16,17] is a variant of Esterel [2,4,8] that extends classic Esterel by
delayed assignments and emissions, asynchronous concurrency, nondeterministic
choice, and inline assertions. The basic statements of Quartz are given below:

Definition 2.1 [Basic Statements of Quartz] The set of basic statements of Quartz
is the smallest set that satisfies the following rules, provided that S, S1, and S2 are
also basic statements of Quartz, � is a location variable, x is an event variable, y
is a state variable, σ is a Boolean expression, and α a type:

• nothing (empty statement)
• emit x and emit next(x) (immediate/delayed emission)
• y := τ and next(y) := τ (immediate/delayed assignment)
• � : pause (consumption of time)
• if σ then S1 else S2 end (conditional)
• S1; S2 (sequential composition)
• S1 ‖ S2 (synchronous concurrency)
• S1 � S2 (asynchronous concurrency)
• choose S1 � S2 end (nondeterministic choice)
• do S while σ (iteration)
• suspend S when σ (suspension)
• weak suspend S when σ (weak suspension)
• abort S when σ (abortion)
• weak abort S when σ (weak abortion)
• local x in S end (local event variable)
• local y : α in S end (local state variable)
• now σ (instantaneous assertion)
• during S holds σ (invariant assertion)

In contrast to Esterel 1 , Quartz distinguishes between two kinds of variables, namely
event variables and state variables, which are manipulated by emissions and as-
signments, respectively. State variables y are ‘sticky’, i.e., they store the current
value until an assignment changes it. Executing a delayed assignment next(y) := τ
means to evaluate τ in the current macro step (environment) and to assign the ob-
tained value to y in the following macro step. Immediate assignments update y in
the current macro step and are therefore rather equations than assignments.

Event variables have Boolean values, i.e., they can be either 1 or 0. An event
variable x is 1 at a point of time if and only if either an immediate emission emit x

1 Event variables of Quartz are called pure signals in Esterel, and state variables of Quartz resemble
valued Esterel signals without a status (however, while emit x(2); emit x(2) is a problem in Esterel,
x := 2;x := 2 is no problem in Quartz). There are no variables in the sense of Esterel’s variables
(they can be easily eliminated with local (Quartz) variables with delayed assignments).

3



Schneider, Brandt, and Schuele

is executed in the current macro step or a delayed emission emit next(x) has been
executed in the previous macro step. Hence, event variables do not store their value
(unless this is explicitely programmed with delayed emissions).

In the following, assignments and emissions are called actions which can be
delayed or immediate. Delayed actions are now also available in Esterel (v7) [8].
In particular, they are useful to describe hardware circuits. The additional pre
operator of Esterel for accessing previous values is, however, not used in Quartz.

Nondeterministic choice and asynchronous concurrency (which also introduces
nondeterminism) is implemented by new inputs that are not observable [16]. Im-
mediate assertions now σ require that σ currently holds, and during S holds σ re-
quires that σ holds whenever the control is inside S [16]. The semantics of the
other statements is essentially the same as in Esterel. Due to lack of space, we
do not describe their semantics in detail, and refer instead to [16,15,17] and to the
Esterel primer [4], which is an excellent introduction to synchronous programming.

In general, a statement S may be started at a certain point of time t1 and may
terminate at time t2 ≥ t1, but it may also never terminate. If S immediately termi-
nates when it is started (t2 = t1), it is called instantaneous, otherwise the control
flow enters S, and will resume the execution from somewhere inside S at the next
point of time. Whether a statement is instantaneous or not depends on the input
variables.

There is only one basic statement where the control can rest for the next macro
step, namely the pause statement. For this reason, we endow pause statements with
unique Boolean valued location variables � that are true iff the control is currently
at location � : pause. Using these location variables, the control flow of statements
S is defined by the control flow predicates in (S), inst (S), enter (S), term (S),
and move (S), and the data flow of S is defined by the set of guarded commands
guardcmd (ϕ, S) [16]:

in (S) is the disjunction of the pause labels occurring in S. Therefore, in (S) holds
at some point of time iff the control flow is currently at some location inside S.

inst (S) holds iff the control flow can not stay in S when S would now be started.
This means that the execution of S would be instantaneous at this point of time.

enter (S) describes where the control flow will be at the next point of time when
S would now be started. Clearly, inst (S) → ¬enter (S) holds.

term (S) describes all conditions where the control flow is currently somewhere
inside S (hence, term (S) → in (S) holds) and wants to leave S. Note, however,
that the control flow might still be in S at the next point of time since S may be
(re)entered at the same time, e.g., by a surrounding loop statement.

move (S) describes all internal moves, i.e., all possible transitions from somewhere
inside S to another location inside S without temporarily leaving S.

guardcmd (ϕ, S) is a set of pairs of the form (γ, C), where C is an action or an
immediate assertion now σ. The meaning of (γ, C) is that C is immediately
executed whenever its guard γ holds.
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The above control flow predicates as well as the guarded commands can be defined
by primitive recursion [16,17] over the statement. The definition of these predicates
only requires Boolean operators and the temporal next operator. Given a statement
S and a start location st (often called the boot register), the transition relation of
the control flow Rcf(st, S) is defined as follows:

Rcf(st, S) :≡

⎛
⎜⎜⎜⎜⎝

(¬in (S) ∨ term (S)) ∧ st ∧ inst (S) ∧ ¬next(in (S))∨
(¬in (S) ∨ term (S)) ∧ st ∧ enter (S)∨
(¬in (S) ∨ term (S)) ∧ ¬st ∧ ¬next(in (S))∨
move (S)

⎞
⎟⎟⎟⎟⎠ ∧ ¬next(st)

The transition relation describes the behavior for instantaneous execution, entering
the statement, terminating the execution, and moving the control inside the state-
ment. The initial condition Icf(st, S) is simply defined as Icf(st, S) :≡ ¬in (S)∧st.

Besides the control flow, the guarded commands have to be computed for con-
structing an initial condition and a transition relation for the data flow. Details on
the computation are given in [16,18] and in the appendix.

2.2 Schizophrenia Problems in Quartz

It is well-known in the synchronous programming language community that subtle
problems may arise when local declarations are nested within loop statements. The
problem is hereby that the local declaration can be left and (re)entered at the same
macro step. The micro steps of such a macro step must refer to the right incarnation
of the local variable, depending on whether they belong to the old or the new scope
of the local declaration. Local declarations that yield different incarnations of a
local variable at the same point of time are called schizophrenic ([3], Chapter 12).

As an example, consider the program given on the left hand side of Figure 1.
The right hand side of Figure 1 shows a corresponding control-data-flow graph.
The circle nodes of this graph are control flow states that are labeled with those
location variables that are currently active (including the start location st). Besides
these control flow states, there are two other kinds of nodes: boxes with shadowed
frames contain actions that are executed when an arc towards this node is traversed.
The remaining boxes represent conditions that influence the following computation,
i.e., conditional branches. The outgoing arcs of such a conditional node correspond
to the ‘then’ and ‘else’ branch of the condition. For example, if the program is
executed from state {�} and we have ¬k ∧ j ∧ ¬i, then we execute the two action
boxes beneath control state {�} and additionally the one below condition node j?.

As can be seen, the condition k ∧ j ∧ ¬i executes all possible action nodes
while traversing from control node {�} to itself. The first one belongs to the depth
of all local declarations, the second one (re)enters the local declaration of c, but
remains inside the local declarations of b and a. A new incarnation c3 is thereby
created. The node below condition node k? (re)enters the local declarations of b
and c, but remains in the one of a. Hence, it creates new incarnations b2 and c2 of
b and c, respectively. Finally, the remaining node, (re)enters all local declarations,
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module Schizophrenia:
input i, j, k;
output x : integer;
weak abort
do

local a : integer in
a := 0;
weak abort
do
local b : integer in
b := a;
weak abort
do

local c : integer in
c := b;
next(c) := f(a, b, c);
� : pause;
x := a;
next(a) := g(a, b, c);
next(b) := h(a, b, c)

end local
while 1

when k
end local

while 1
when j

end local
while 1

when i
end module

{st}

a := 0
b := a
c := b
next(c) := f(a, b, c)

{�}

x := a
next(a) := g(a, b, c)
next(b) := h(a, b, c)

c3 := b
next(c) := f(a, b, c3)

k?

b2 := a
c2 := b2

next(c) := f(a, b2, c2)

j?

a1 := 0
b1 := a1

c1 := b1

next(c) := f(a1, b1, c1)

i?

{}

1

1

1

0

0

0

Figure 1. Local declarations with delayed actions.
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and therefore generates three incarnations a1, b1, and c1. Note that these four action
boxes can be executed at the same point of time, and therefore the reincarnations
a1, b1, c1, b2, c2, and c3 may all exist in one macro step.

For software generation, one could implement the incarnations simply by shad-
owing the incarnations of the old scope. However, this is not possible for hardware
circuit generation, since in a synchronous hardware circuit every wire has exactly
one value per clock cycle. Therefore, we have to generate several copies of the
locally declared variables according to the number of the possible ‘(re)enterings’.

Delayed actions add further difficulties to the reincarnation of locally declared
variables: If a delayed action that changes the value of the locally declared variable
is executed at termination time of the local declaration, then we have to disable its
execution (at least when the local declaration is (re)entered at the same time). This
must be done even if the reason for the termination is a weak abortion, since the
scope is left, and therefore the next value of this incarnation is lost. If we (re)enter
the local declaration at the same point of time, we must not transfer the delayed
value to the depth of the new scope.

We must also disable delayed actions on local variables in those surfaces of
local declarations that do not directly proceed to their depth. Note that the surface
of a local declaration can be executed more than once (see Figure 1), but at most
one of these surface instances can proceed to the depth without leaving the scope.
Only delayed actions of this instance of the surface are executed. For example, in
Figure 1, at most one of the actions next(c) := f(a, b, c), next(c) := f(a, b, c3),
next(c) := f(a, b2, c2), and next(c) := f(a1, b1, c1) must be executed.

Finally, note that we have to rename all local variables, and not only the out-
ermost ones: Abortion statements can terminate the statement from every loca-
tion, and suitable conditions for entering the statement could lead to reincarnations.
Hence, it may be the case that surfaces of the nested local declarations overlap.

3 Previous Solutions to Cure Schizophrenia

Several solutions have already been proposed for the solution of schizophrenic
statements [14,3,18]. In general, these solutions can be classified into those work-
ing at the source code level [18] and those working on the equation system [14,3].

3.1 Poigné and Holenderski’s Solution

Poigné and Holenderski defined a translation of pure Esterel programs to Boolean
equation systems [14]. Their translation also solved schizophrenia problems of
local declarations without delayed actions. Given a statement S with locations
(i.e., pause statements) �1, . . . , �l, inputs x1,. . . ,xm, and outputs y1, . . . , yn, they
compute equations next(�i) = ϕi and yi = ψi, where ϕi and ψi are propositional
formulas in the variables xi, yi, and �i. For the remainder, the following definition
is required, where we use again st as a special start location. Moreover, [τ ]ex means
replacement of all occurrences of x in τ by e:
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Definition 3.1 Given a term τ containing potential occurrences of the Boolean
variables st, �1, . . . , �n, we define the α-part αL(τ) as αL(τ) :≡ [τ ]0...0

�1...�n
with

L := {�1, . . . , �n}. Moreover, we define the η-part ηst(τ) of τ as ηst(τ) :≡ [τ ]0st.

The intuition is thereby that αL(τ) equals to τ under the assumption that the con-
trol flow is currently not inside S. In particular, αL(τ) equals to τ when the control
flow enters τ for the first time. Analogously, ηst(τ) equals to τ under the assump-
tion that st = 0, i.e., when the statement is currently not started. In particular,
ηst(τ) equals to τ when the control flow moves inside S, since we have the in-
variant that statements must not be (re)started if they are currently active and do
not terminate. Note that the α- and η-parts of a term are not disjoint, which is the
source of schizophrenia problems. For example, the α- and η-parts of the transition
relation of the control flow Rcf(st, S) are as follows:

• αL(Rcf(st, S)) :≡

⎛
⎜⎝ st ∧ inst (S) ∧ ¬next(in (S))∨

st ∧ enter (S)∨
¬st ∧ ¬next(in (S))

⎞
⎟⎠ ∧ ¬next(st)

• ηst(Rcf(st, S)) :≡

⎛
⎜⎝¬in (S) ∧ ¬next(in (S))∨

term (S) ∧ ¬next(in (S))∨
move (S)

⎞
⎟⎠ ∧ ¬next(st)

Although st is set to 0 in ηst(τ), we can not conclude from ηst(τ) that st is false,
since st simply does not occur in ηst(τ). Moreover, it is easily seen that the
case distinction made by αL(Rcf(st, S)) and ηst(Rcf(st, S)) is complete, i.e., that
Rcf(st, S) ⇔ ¬in (S)∧αL(Rcf(st, S))∨¬st∧ ηst(Rcf(st, S)) holds. Simply note
that st ∧ ¬in (S) holds at starting time, and afterwards, we have ¬st.

The α- and η-parts of a term τ correspond to different views on τ that are
made in the surface and the depth of a statement. Poigné and Holenderski’s used
this to rename locally declared variables in the surface part, i.e., in the α-parts of
the right hand sides of their equation systems. Hence, they compute new equations
next(�i) = [αL(ϕi)]

x′
x ∨ηst(ϕi) and yi = [αL(ψi)]

x′
x ∨ηst(ψi), respectively, when the

equation system of a local declaration has to be computed. As mentioned above,
this renaming must be done for all local variables occurring in S, so that deeply
nested local variables yield multiple copies.

The advantage of the approach is that it is remarkably simple and clear. How-
ever, the extensions to non-Boolean data types and delayed actions is unclear.
Moreover, variables are even renamed if the local declaration is not nested in a
loop, and therefore the procedure generates more copies than necessary.

3.2 Berry’s Solution

Of course, the public domain Esterel compiler [4] and commercial tools like Esterel
Studio [8] are also able to solve schizophrenia problems. Due to the different set
of basic statements (traps instead of aborts), Berry also considers schizophrenic
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parallel statements (which has also been done in [14]). The solution given in [3]
defines for every statement its ‘incarnation level’, which is intuitively the number
of necessary copies of its surface. This duplication of code segments is necessary
to distinguish between different incarnations, and can not be circumvented. On the
other hand, the procedure described in [3] is quite complicated, and therefore it is
hard to extend it with optimizations, or to check its correctness, e.g., with a theorem
prover. Moreover, similar to Poigné and Holenderski’s approach it is described only
at the Boolean level and does not consider delayed actions.

3.3 Surface-Depth Splitting of Statements

In [18] a new approach to solve schizophrenia problems has been presented. Its
main idea is to define for every statement S corresponding statements surface (S)
and depth (S) such that surface (S) is that part of S that is executed when S is
entered, and depth (S) is the remaining part of S. Both statements are defined in
[18] by a simple primitive recursion over the statements, and can be computed in
time O(|S|2). The reason for the quadratic blow-up is that sequences and loops
generate copies of surface statements [18]. We do not consider the definitions of
surface (S) and depth (S) here, but list the following result of [18]:

Theorem 3.2 (Surface and Depth) For every statement S, we have:

• surface (S) is instantaneous for all inputs
• S and depth (S) have the same control flow
• S and surface (S) ; depth (S) have the same control flow
• S and surface (S) ; depth (S) have the same data flow
• no actions of depth (S) are executed when entering depth (S)

The idea proposed in [18] is then roughly as follows: we replace a local declaration
local x in S end by the following statement, where x(1) is a copy of x with the
same type:

local x, x(1) in [surface (S)]x
(1)

x ; depth (S) end

The splitting of S into its surface and depth generates new occurrences of actions
that definitely belong to either the surface or the depth, while in S, there may be
actions that belong both to the surface and the depth. Hence, this splitting allows
one to rename the local variable in the surface.

However, the above transformation is not sufficient. The splitting into surface
and depth extracts all actions that are executed in the surface. However, if depth (S)
contains a conditional statement whose condition is evaluated at starting time, then
this evaluation should also refer to the surface values. However, simply renam-
ing conditions of conditional statements is clearly wrong. Even more, there are
statements with schizophrenic conditional statements, i.e., where one and the same
condition is evaluated twice at one point of time, a first time with the surface values,
and a second time with the depth values.

9



Schneider, Brandt, and Schuele

It has been proposed in [18] to replace such conditions ϕ by ψ∧ϕ∨¬ψ∧ [ϕ]x
(1)

x

using an expression ψ that holds exactly when S is entered. However, a condition
may have several incarnations and hence, we must apply this transformation ac-
cording to the number of possible incarnations.

In [18], it has moreover been erroneously stated that one copy of a local variable
would be sufficient. In general, this is true, since only one surface proceeds to the
depth and the other surface values are hidden, and can therefore be eliminated by
the compiler. Nevertheless, the procedure listed in [18] is not correct, which has
been pointed out by Edwards [7]. A correction of this procedure is possible, but
due to different copies, the replacement of if-conditions as outlined above becomes
quite complex.

As an alternative, one could define a new statement goto L, where L is a list
of control flow locations. The semantics is that the control directly moves to the
listed locations L to wait for the next macro step. Using such a statement, one
could generate copies of the conditionals in the surface, so that their schizophrenia
is also cured. A similar extension of Esterel with goto statements has been recently
presented in [20]. Combining [18] and [20] gives another solution to schizophrenia
at the statement level (see [20]).

4 The New Solution

Our new solution is based on various prerequisites that we have developed in pre-
vious work [15,16,18,17]. The main idea of the translation is to compute the con-
trol flow predicates inst (S), in (S), enter (S), move (S), term (S), and the guarded
commands of a statement S, as defined in [16], in one recursion over S.

To this end, the translation has to forward starting conditions goη and goα during
the recursive descent. The starting condition goη enforces the control to enter the
considered statement (if possible). The other condition goα differs due to weak
abortion: consider weak abort S1; S2 when kl, and assume the control is currently
at a position in S1 where S1 terminates and assume that kl holds, so that the abortion
takes place. As the abortion is weak, we still have to execute the actions of the
surface of S2, but the control must not enter S2. Hence, the start condition goα of
S2 holds, but its starting condition goη is false. In general, we have goη → goα,
but not vice versa. Moreover, the translation maintains conditions kl and sp for
keeping track of surrounding abortion and suspension conditions.

The translation yields a tuple (C,L, I, A, T, Eα, Eη, Gα, Gη, Rα, Rη). C is
thereby a set of new input variables that are used to mimic nondeterminism for
choice and asynchronous concurrency (that can be controlled by a scheduler). L is
the set of variables that are locally declared in S. We assume that all local variables
have different names, hence, there is no shadowing. Moreover, names of local vari-
ables are different from names of input and output variables. I , A, and T are simply
equivalent to inst (S), in (S), and term (S), respectively.
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The main idea to solve schizophrenia problems is to split statements into their
surface and depth. Hence, we have to split the control flow predicates and the
guarded commands into surface and depth parts, respectively. However, it is easily
seen that inst (S) and enter (S) refer to the surface and that term (S) and move (S)
refer to the depth. Hence, there is no need to distinguish surface and depth parts of
these components. In contrast, the guarded commands and the transition equations
have to be split into surface parts Gα, Rα and depths parts Gη, Rη, respectively.

Therefore, the control flow is computed in form of two equation systems Rα

and Rη that contain for every location variable �i a unique equation of the form
next(�i) = ϕi. In principle, this is the same as hardware circuit generation, since
hardware circuits are Boolean equation systems. Hence, we use similar templates
as presented in [15] to this end (we use, however, some optimizations). As ex-
pected, Rα and Rη correspond to the surface and the depth of the control flow.
Moreover, there is no (explicit) computation of enter (S) and move (S), since both
are more or less the conjunction over Rα and Rη, respectively.

We made the experience that a lot of common subterms are generated by the
translation. To obtain a translation that runs in quadratic time, we have to abbrevi-
ate common subterms. To this end, the translation maintains further equation sys-
tems Eα and Eη that contain the abbreviations made for the surface and the depth,
respectively. Note that we have to distinguish between these equation systems due
to possible renaming in the surface (see the discussion below). To summarize, our
translation given in the appendix works as follows:

Theorem 4.1 (Correctness of Compile) Given a Quartz statement S, a starting
condition goη, a precondition goα, a suspension condition sp, and an abortion con-
dition kl, the function call Compile (goη, goα, sp, kl, S) of the function Compile im-
plemented in Figures A.1-A.4 yields a tuple (C,L, I, A, T, Eα, Eη, Gα, Gη, Rα, Rη)
with the following meaning:

• C is the set of added control variables 2 to eliminate nondeterministic statements
(nondeterministic choice and asynchronous concurrency)

• L is the set of variables that are locally declared in S
• I = inst (S)
• A = in (S)
• T = term (S)
• Eα are abbreviations to share common subterms of the surface
• Eη are abbreviations to share common subterms of the depth
• Gα = guardcmd (goα, surface (S))
• Gη = guardcmd (goα, depth (S))

• αL(Rcf(goη, S)) ⇔
∧

τ∈Rα

τ

• ηgoη(Rcf(goη, S)) ⇔
∧

τ∈Rη

τ

2 These are added as new inputs to mimic nondeterminism.
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Initially, we use goη := goα := st, sp = kl = 0 with the start location st whose
transition equations init(st) := 1 and next(st) := 0 are furthermore added to the
result. As Compile (goη, goα, sp, kl, S) computes equation systems Rα and Rη that
implement the control flow of the surface and the depth, respectively, we have to
combine them at the end:

Definition 4.2 Given two transition systems Rα and Rη for the same state vari-
ables, we define the combined transition system (Rα�Rη) as follows:

(Rα�Rη) :≡ {[next(�) = τα ∨ τη] | [next(�) = τα] ∈ Rα ∨ [next(�) = τη] ∈ Rη}

Simple set unions for the abbreviations Eα, Eη and the guarded commands Gα, Gη

complete the translation: E := Eα ∪ Eη and G := Gα ∪ Gη.
Finally, consider the translation of local declarations: We want to rename local

variables in those surfaces of their local declaration that can be executed at the
same time with their depth. Hence, we have to keep track of surfaces that contain
surfaces of local declarations. To this end, the function Compile returns the set of
locally declared variables. However, we still have to find the surfaces that must be
renamed. Hence, consider how loops and sequences generate copies of surfaces
[18] (the lines separates surface and depth of the entire statement):

• S1; S2 :≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

surface (S1) ;
if inst (S1) then surface (S2) end;

depth (S1) ;
if in (S1) then surface (S2) end;
depth (S2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

• do S while σ :≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

surface (S)

do
depth (S) ;
if σ then surface (S) end

while σ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Hence, a sequence S1; S2 generates two instances of surface (S2), and a loop gen-
erates two instances of the surface of its body. Note that these instances can not be
shared, since we may have to rename variables in one of them. In the algorithms
of the appendix, we use a special function CompileSurface (Figure A.4) that works
essentially like Compile, but only computes the surface parts (and therefore its run-
time is linear). The reason for using this extra function is that the two instances of
the surfaces have different start conditions that can be easily forwarded by a new
function call.

Recall now that the reason for a schizophrenia problem is that the depth of a
local declaration is executed at the same time with one of its surfaces. This may
only happen when the local declaration is contained in a loop body. Hence, we
only have to consider the two surfaces of a loop body above. Clearly, only the one
in the if-statement can overlap with the depth (unless there is another surrounding

12
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loop whose translation solves this additional overlapping problem). Hence, if a
loop is compiled whose body contains local declarations of the variables L, then
we rename these variables in the surface parts that belong to the surface of the
if-statement above: Having compiled the body statement with a recursive call to
Compile, the function Rename in Figure A.3 generates new variable names for the
locally declared variables. The result is a substitution 	 that maps old variables to
new ones. Using this substitution 3 , the local variables are renamed in the abbre-
viations Eα and the entering transitions Rα. Then, the guarded commands of the
surface Gα are renamed by the following function RenameGuards:

• RenameGuards(�, (γ, now σ)) := (�(γ), now �(σ))
• RenameGuards(�, (γ, emit x)) := (�(γ), emit �(x))
• RenameGuards(�, (γ, emit next(x)) := (�(γ), emit next(x))
• RenameGuards(�, (γ, x := τ)) := (�(γ), �(x) := �(τ))
• RenameGuards(�, (γ, next(x) := τ)) := (�(γ), next(x) := �(τ))

Hence, only current values are substituted by this function, and delayed actions
transfer the computed values to the depth. For this reason, the renaming is not
sufficient: Additionally, we have to disable delayed actions on the local variables
that would take place when the depth of the loop body is left. Otherwise, these
action would transfer values to the next macro step of the new scope, which would
contradict the semantics. This ‘disabling’ is done in the code for the loop with the
function DisableDelayedLocals that is defined as DisableDelayedLocals(L, d,G) :=
{DisableDL(L, d, (γ, α)) | (γ, α) ∈ G}, where:

• DisableDL(L, d, (γ, emit next(x)) :=

{
(γ, emit next(x)) : x 
∈ L

(γ ∧ ¬d, emit next(x)) : x ∈ L

• DisableDL(L, d, (γ, next(x) := τ)) :=

{
(γ, next(x) := τ) : x 
∈ L

(γ ∧ ¬d, next(x) := τ) : x ∈ L

• DisableDL(L, d, (γ, C) := (γ, C) for all immediate actions C
However, this is still not sufficient: Due to an abortion, it is possible that both in-
stances of surface (S) are executed at the same time with the depth (S). Inspecting
this situation shows that only one of these surfaces proceeds to the depth without
being aborted, namely the boxed instance above. Hence, we additionally disable
the delayed actions on local variables in the other instance if the boxed instance is
also active. This is done by the first call to DisableDelayedLocals in the translation
of loops.

This completes the translation. Note that we only rename when loops are en-
countered, in contrast to [14,18], where renaming is made in the translation of local
declarations. Clearly, the algorithms in the appendix are not optimal, since they
generate copies of all contained local variables when a loop is passed. A refined
version should check if a reincarnation is possible by examining the satisfiability
of the start and termination condition of the local declaration.
3 We write �(τ) for the expression that is obtained by replacing all occurrences of old variables by
new ones according to �.
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A Implementation

function Compile (goη, goα, sp, kl, P )
case P of
nothing :
return ({}, {}, 1, 0, 0, {}, {}, {}, {}{}, {});

emit x, emit next(x), now σ, y := τ , next(y) := τ :
return ({}, {}, 1, 0, 0, {}, {}, {(goα, P )}, {}, {}, {});

� : pause :
return ({}, {}, 0, �, �, {}, {}, {}, {}, {next(�) = goη}, {next(�) = sp ∧ �});

if σ then S1 else S2 end :
return cond_Compile (goη, goα, sp, kl, σ, S1, S2);

choose S1 � S2 end :
c := newvar();
(C,L, I, A, T, Eα, Eη, Gα, Gη, Rα, Rη)
:= cond_Compile (goη, goα, sp, kl, c, S1, S2);
return (C ∪ {c}, L, I, A, T, Eα, Eη, Gα, Gη, Rα, Rη);

S1; S2 : return seq_Compile (goη, goα, sp, kl, S1, S2);
S1 ‖ S2 : return par_Compile (goη, goα, sp, kl, S1, S2);
S1 � S2 :
c1 := newvar(); P1 := mk_suspend(0, S1,¬c1);
c2 := newvar(); P2 := mk_suspend(0, S2,¬c2);
σ := [in (S1) ∧ c1] ∨ [in (S2) ∧ c2];
P := mk_during(mk_par(P1, P2), σ);
(C,L, I, A, T, Eα, Eη, Gα, Gη, Rα, Rη) := Compile (goη, goα, sp, kl, P );
return (C ∪ {c1, c2}, L, I, A, T, Eα, Eη, Gα, Gη, Rα, Rη);

do S while σ : return dowhile_Compile (goη, goα, sp, kl, σ, S);
suspend S when σ : return susp_Compile (goη, goα, sp, kl, σ, S, 0);
weak suspend S when σ : return susp_Compile (goη, goα, sp, kl, σ, S, 1);
abort S when σ : return abort_Compile (goη, goα, sp, kl, σ, S, 0);
weak abort S when σ : return abort_Compile (goη, goα, sp, kl, σ, S, 1);
local x in S end, local x : α in S end :
(C,L, I, A, T, Eα, Eη, Gα, Gη, Rα, Rη) := Compile (goη, goα, sp, kl, S);
return (C,L ∪ {x}, I, A, T, Eα, Eη, Gα, Gη, Rα, Rη);

during S holds σ :
(C,L, I, A, T, Eα, Eη, Gα, Gη, Rα, Rη) := Compile (goη, goα, sp, kl, S);
return (C,L, I, A, T, Eα, Eη, Gα, Gη ∪ {(A, now σ), Rα, Rη);

end case ;
end function

Figure A.1. Translation of Quartz Statements (part I)
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function seq_Compile (goη, goα, sp, kl, S1, S2)
(C1, L1, I1, A1, T1, E

α
1 , Eη

1 , Gα
1 , Gη

1, R
α
1 , Rη

1) := Compile (goη, goα, sp, kl, S1);
goη

2 := newvar(); goα
2 := newvar();

Eα := {(goη
2 := goη ∧ I1), (goα

2 := goα ∧ I1)};
(I2, E

α
2 , Gα

2 , Rα
2 ) := CompileSurface (goη

2, goα
2 , S2);

goη
3 := newvar();

Eη := {goη
3 := T1 ∧ ¬(sp ∨ kl)};

(C3, L3, I3, A3, T3, E
α
3 , Eη

3 , Gα
3 , Gη

3, R
α
3 , Rη

3) := Compile (goη
3, T1, sp, kl, S2);

Eα := Eα
2 ∪ Eα

1 ∪ Eα; Eη := Eα
3 ∪ Eη

3 ∪ Eη
1 ∪ Eη;

Gα := Gα
2 ∪ Gα

1 ; Gη := Gη
1 ∪ Gα

3 ∪ Gη
3;

Rα := Rα
2 ∪ Rα

1 ; Rη := Rη
1 ∪ (Rα

3 �Rη
3);

I := newvar(); A := newvar(); T := newvar();
Eα := {I := I1 ∧ I2} ∪ Eα;
Eη := {(A := A1 ∨ A2), (T := T1 ∧ I2 ∨ T2)} ∪ Eη;
return (C1 ∪ C2, L1 ∪ L2, I, A, T, Eα, Eη, Gα, Gη, Rα, Rη);

end function

function par_Compile (goη, goα, sp, kl, σ, S1, S2)
(C1, L1, I1, A1, T1, E

α
1 , Eη

1 , Gα
1 , Gη

1, R
α
1 , Rη

1) := Compile (goη, goα, sp, kl, S1);
(C2, L2, I2, A2, T2, E

α
2 , Eη

2 , Gα
2 , Gη

2, R
α
2 , Rη

2) := Compile (goη, goα, sp, kl, S2);
I := newvar(); A := newvar(); T := newvar();
Eα := {I := I1 ∧ I2} ∪ Eα

1 ∪ Eα
2 ;

Eη := {A := A1 ∨ A2} ∪ Eη
1 ∪ Eη

2 ;
Eη := {T := T1 ∧ ¬A2 ∨ T2 ∧ ¬A1 ∨ T1 ∧ T2} ∪ Eη;
Gα := Gα

1 ∪ Gα
2 ; Gη := Gη

1 ∪ Gη
2;

Rα := Rα
1 ∪ Rα

2 ; Rη := Rη
1 ∪ Rη

2;
return (C1 ∪ C2, L1 ∪ L2, I, A, T, Eα, Eη, Gα, Gη, Rα, Rη)

end function

function dowhile_Compile (goη, goα, sp, kl, σ, S)
(I1, E

α
1 , Gα

1 , Rα
1 ) := CompileSurface (goη, goα, S);

goη
2 := newvar(); goα

2 := newvar(); T := newvar();
(C,L2, I2, A2, T2, E

β
2 , Eη

2 , Gβ
2 , G

η
2, R

β
2 , Rη

2) := Compile (goη
2, goα

2 , sp, kl, S);
Gβ

2 := DisableDelayedLocals(L2, goα, Gβ
2 );

Gη
2 := DisableDelayedLocals(L2, goα, Gη

2);
(	,Eβ

2 , Gβ
2 , R

β
2 ) := Rename(L2, E

β
2 , Gβ

2 , R
β
2 );

Eη := {goη
2 := goα

2 ∧ ¬(sp ∨ kl), goα
2 := T2 ∧ σ} ∪ Eβ

2 ∪ Eη
2 ;

Gη := Gβ
2 ∪ Gη

2;

Rη :=
(
Rβ

2�Rη
2

)
;

T := newvar(); Eη := {T := T1 ∧ ¬σ} ∪ Eη;
return (C,L2, 0, A2, T, Eα

1 , Eη, Gα
1 , Gη, Rα

1 , Rη);
end function

Figure A.2. Translation of Quartz Statements (part II)16
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function Rename(L,Eα, Gα, Rα)
	 := {(x, newvar()) | x ∈ L};
Eα := {	(τ) | τ ∈ Eα};
Rα := {	(τ) | τ ∈ Rα};
Gα := {RenameGuards(	, (γ, α)) | (γ, α) ∈ Gα};
return (	,Eα, Gα, Rα);

end function

function susp_Compile (goη, goα, sp, kl, σ, S, wk)
sp1 := newvar(); Eβ := {sp1 := sp ∨ σ ∧ ¬kl};
(C,L, I, A, T1, E

α, Eη, Gα, Gη, Rα, Rη) := Compile (goη, goα, sp1, kl, S);
T := newvar(); Eβ := {T := T1 ∧ ¬sp1} ∪ Eβ;
if ¬wk then Gη := {(γ ∧ ¬σ, α) | (γ, α) ∈ Gη} end;
return (C,L, I, A, T, Eα, Eη ∪ Eβ, Gα, Gη, Rα, Rη);

end function

function abort_Compile (goη, goα, sp, kl, σ, S, wk)
kl1 := newvar(); Eβ := {kl1 := kl ∨ σ};
(C,L, I, A, T1, E

α, Eη, Gα, Gη, Rα, Rη) := Compile (goη, goα, sp, kl1, S);
T := newvar(); Eβ := {T := T1 ∨ A ∧ kl1} ∪ Eβ;
if ¬wk then Gη := {(γ ∧ ¬σ, α) | (γ, α) ∈ Gη} end;
return (C,L, I, A, T, Eα, Eη ∪ Eβ, Gα, Gη, Rα, Rη);

end function

function cond_Compile (goη, goα, sp, kl, σ, S1, S2)
goη

1 := newvar(); goα
1 := newvar(); goη

2 := newvar(); goα
2 := newvar();

Eα := {(goη
1 := goη ∧ σ), (goα

1 := goα ∧ σ)};
Eα := {(goη

2 := goη ∧ ¬σ), (goα
2 := goα ∧ ¬σ)} ∪ Eα;

(C1, L1, I1, A1, T1, E
α
1 , Eη

1 , Gα
1 , Gη

1, R
α
1 , Rη

1) := Compile (goη
1, goα

1 , sp, kl, S1);
(C2, L2, I2, A2, T2, E

α
2 , Eη

2 , Gα
2 , Gη

2, R
α
2 , Rη

2) := Compile (goη
2, goα

2 , sp, kl, S2);
A := newvar(); T := newvar(); I := newvar();
Eα := {I := σ ∧ I1 ∨ ¬σ ∧ I2} ∪ Eα ∪ Eα

1 ∪ Eα
2 ;

Eη := {(A := A1 ∨ A2), (T := T1 ∨ T2)} ∪ Eη
1 ∪ Eη

2 ;
Gα := Gα

1 ∪ Gα
2 ; Gη := Gη

1 ∪ Gη
2;

Rα := Rα
1 ∪ Rα

2 ; Rη := Rη
1 ∪ Rη

2;
return (C1 ∪ C2, L1 ∪ L2, goη, goα, I, A, T, Eα, Eη, Gα, Gη, Rα, Rη);

end function

Figure A.3. Translation of Quartz Statements (part III)
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function CompileSurface (goη, goα, P )
case P of

nothing :
return (1, {}, {}, {});

emit x, emit next(x):
return (1, {}, {(goα, P )}, {});

y := τ , next(y) := τ :
return (1, {}, {(goα, P )}, {});

now σ :
return (1, {}, {(goα, P )}, {});

� : pause :
return (0, {}, {}, {next(�) = goη});

if σ then S1 else S2 end :
goη

1 := newvar(); goα
1 := newvar(); goη

2 := newvar(); goα
2 := newvar();

Eα := {(goη
1 := goη ∧ σ), (goα

1 := goα ∧ σ)};
Eα := {(goη

2 := goη ∧ ¬σ), (goα
2 := goα ∧ ¬σ)} ∪ Eα;

(I1, E
α
1 , Gα

1 , Rα
1 ) := CompileSurface (goη

1, goα
1 , S1);

(I2, E
α
2 , Gα

2 , Rα
2 ) := CompileSurface (goη

2, goα
2 , S2);

I := newvar(); Eα := {I := I1 ∧ σ ∨ I2 ∧ ¬σ} ∪ Eα;
return (I, Eα

1 ∪ Eα
2 ∪ Eα, Gα

1 ∪ Gα
2 , Rα

1 ∪ Rα
2 );

S1; S2 :
(I1, E

α
1 , Gα

1 , Rα
1 ) := CompileSurface (goη, goα, S1);

goη
2 := newvar(); goα

2 := newvar();
Eα := {(goη

2 := goη ∧ I1), (goα
2 := goα ∧ I1)};

(I2, E
α
2 , Gα

2 , Rα
2 ) := CompileSurface (goη

2, goα
2 , S2);

I := newvar(); Eα := {I := I1 ∧ I2} ∪ Eα;
return (I, Eα

1 ∪ Eα
2 ∪ Eα, Gα

1 ∪ Gα
2 , Rα

1 ∪ Rα
2 );

S1 ‖ S2 :
(I1, E

α
1 , Gα

1 , Rα
1 ) := CompileSurface (goη, goα, S1);

(I2, E
α
2 , Gα

2 , Rα
2 ) := CompileSurface (goη, goα, S2);

I := newvar(); Eα := {I := I1 ∧ I2};
return (I, Eα

1 ∪ Eα
2 ∪ Eα, Gα

1 ∪ Gα
2 , Rα

1 ∪ Rα
2 );

do S while σ : return CompileSurface (goη, goα, S);
suspend S when σ : return CompileSurface (goη, goα, S);
weak suspend S when σ : return CompileSurface (goη, goα, S);
abort S when σ : return CompileSurface (goη, goα, S);
weak abort S when σ : return CompileSurface (goη, goα, S);
local x in S end, local x : α in S end : return CompileSurface (goη, goα, S);
during S holds σ : return CompileSurface (goη, goα, S);

end case ;
end function

Figure A.4. Computing only the Surface Parts
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