
SLAP’04 Preliminary Version

synERJY
- an Object-oriented Synchronous Language -

Reinhard Budde 1 Axel Poigné 2 Karl-Heinz Sylla 3

Fraunhofer Institute “Autonomous Intelligent Systems”
Schloß Birlinghoven

D-53754 Sankt-Augustin

Abstract

The programming language synERJY is presented. It integrates object-orientation
and synchronous formalisms in the spirit of Esterel, Lustre, and Statecharts.

Key words: synchronous programming, object-oriented design,
hierarchical state machines, data flow

1 Introduction

synERJY is a programming language and a design environment for embedded
systems. It combines two paradigms:

• Object-oriented modelling for a robust and flexible designs.

• Synchronous execution for precise modelling of reactive behaviour.

Highlights are that

• synERJY provides a deep embedding of reactive behaviour into an object-
oriented data model.

• synERJY offers fine-grained integration of synchronous formalisms such as
Esterel [4], Lustre [7], Signal [2], and Statecharts [6]. 4

The programming environment supports compilation, configuration, simula-
tion, and testing, as it provides input to model checkers. Behavioural de-
scriptions may be edited in graphical or in textual form. Code generators for
efficient and compact code in C and several hardware formats are available.

This paper sketches the language, its design decisions, and its semantics.

1 Email:reinhard.budde@ais.fraunhofer.de
2 Email:axel.poigne@ais.fraunhofer.de
3 Email:karl-heinz.sylla@ais.fraunhofer.de
4 We assume familiarity with both, object-oriented design and synchronous programming.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Budde, Poigné, Sylla

2 Reactive Classes, Sensors, and Signals

Reactive classes. synERJY extends (a subset of) JavaTM by reactive classes.
A class is reactive if its constructor ends with the statement

active { ... }

that embeds the synchronous reactive code. This code is executed at every
instant. A simple reactive class is

class Signals {
Sensor<int> sensor = new Sensor<int>(new SimInput());

Signal<int> actuator = new Signal<int>(new SimOutput());

public Signals() {
active {
if (?sensor) { emit actuator($sensor + 1); };

};
};

}

Sensors and signals. Reactive objects communicate by sensors and signals.
Sensors may only be updated by the environment. Signals may be updated
by the program.

Both sensors and signals may be present or absent. A sensor or signal is
present at an instant if and only if it is updated at an instant. Otherwise it
is absent. In the example above, there is one sensor sensor and one signal
actuator. The reactive statement if (?sensor) { emit actuator($sensor +

1); }; checks for the presence of the sensor sensor. If sensor is present the
signal actuator is emitted with a new value being the value $sensor of the
sensor increased by one.

The types

Sensor<T> and Signal<T>

are a new kind of built-in reference types where T is a primitive or class type.
There are pure sensors and signals of type Sensor resp. Signal that do not
have a value. Operators related to a sensors are

?s : checks whether the sensor s is present or absent.
$s : yields the value of the sensor s.
@s : yields a time stamp (in terms of the system clock) of when the sensor

s has been present for the last time.

Signals can be updated using the statement

emit s(v) : The signal s is emitted to be present at an instant, and the
value of s is updated to be v. emit s is used for pure signals.

Hence, Signal<T> may be considered as a subtype of Sensor<T>.

2

Budde, Poigné, Sylla

Interfacing. Signals are always private, as are all fields and methods of an
reactive object. However, sensors or signals may interface to the environment.
We distinguish input sensors, output signals, and local signals. The kind of
signal is determined by its constructor. If the constructor has no argument the
signal is local. It is an output signal if the signal constructor has a parameter of
interface type Output. Constructors of sensors must always have an argument
of interface type Input.

The interface types Input and Output are so-called marker interfaces mean-
ing that they act as a place holder lacking any semantic content. Implemen-
tations, however, must provide appropriate callback methods.

• input sensors: a method new val, and a method get val with result type T

if the sensor is valued.

• output signals a method put val with a parameter of type T if the signal is
valued.

According to the synchronous execution model, input sensors are set at the
beginning of an instant: the method new val is called. If it returns the value
true, the sensor is set to be present, and, in case it is valued, its value is
updated by the value obtained as a result of get val. Output signals are
communicated to the environment at the end of an instant: if an output
signal is present the method put val will be called with the actual value of
the signal, in case that the signal is valued. 5

3 Reactive Control

Reactive statements. The reactive statements of synERJY are 6

assignment x = E; method call m(E1, ..., En);

emittance emit s(v); nothing nothing;

sequential composition P1 ... Pn

parallel composition [[P1 || ... || Pn]];

conditional if (E) { P } else { Q };

loop loop { P };

(weak) preemption cancel { P } when (E);

activate activate { P } when (E);

A method call may either be the call of a void data method, or the call of a reactive

5 The classes SimInput and SimOutput are builtin for convenience. They organize the
interaction with the synERJY simulator. “Real” applications need “real” adaptors to the
environment.
6 The notation differ from that of Esterel on purpose since operators differ in meaning.
For instance, the various preemption operators of Esterel are combined in the cancel

operator.

3

Budde, Poigné, Sylla

method. A method is reactive if its body contains a reactive statement. Reactive
method are expanded in-line, i.e. the method call is replaced by its body.

The next statement is the only statement to consume time: if started it termi-
nates only in the next instant. Sequential composition, parallel composition, loop,
and conditional behave as to be expected in a synchronous language.

Preemption is the most prominent reactive statement. The format is

cancel [strongly] [next] {
P

} when (E1) [{ P1 }]
[else when (E1) [{ P1 }]

...

[else when (En) [{ Pn }];

with the clauses enclosed by [. . .] being optional. We distinguish weak and strong
preemption: for weak preemption, the body P is executed at an instant before
the conditions E1,. . . ,En are evaluated successively. If Ei is the first condition to
hold, the statement Pi is evaluated if defined. Further evaluation of the body P

is cancelled. For strong preemption the conditions are evaluated before executing
the body. The latter is indicated by the modifier strongly. Preemption may only
start to be effective in the next instant after starting to execute a cancel statement.
This is indicated by the modifier next 7

A simple example may illustrate the style of presentation (where await E is a
shorthand for cancel {halt;} when (E);)).

class Counter {
Sensor start = new Sensor(new SimInput());

Sensor incr = new Sensor(new SimInput());

Signal elapsed = new Signal(new SimOutput());

public Counter (int d) {
latch = d;

active {
loop {

await ?start; // wait for start being present

reset(); // reset the counter

cancel { // increment the counter when ..

loop { // .. signal incr is present

await (?incr);

increment();

next;

}; // incrementing is cancelled, when ..

} when (isElapsed());// .. isElapsed() is true ..

emit elapsed; // .. until the counter is elapsed

next;

};
};

};

// data fields and data methods

7 In that “cancel strongly next P when (E)”, for instance, corresponds to Esterel’s
“do P watching E”.

4

Budde, Poigné, Sylla

int latch;

int counter;

void reset() { counter = 0; };
void increment() { counter++; };
boolean isElapsed() { return (counter >= latch); };

}

Processes for semantics. The semantics corresponds – with minor modifications
– to that specified in [9]. The general idea is that each reactive statement P denotes
a semantic entity p we refer to as a synchronous process. A synchronous process is
presented in terms of “assembler” statements of the form

s <= φ (set the wire s if φ holds)

s <= φ { f } (set the wire s and execute f if φ holds)

r <- φ (set the register r if φ holds)

The distinction of wires and registers is that, if the condition φ evaluates to true,
the wire s is set to be “up” (and f is executes) at the present instant. In contrast,
the register r is set for the next instant.

The translation of statements is denotational, i.e. the behaviour of a statement
is synthesised from that of its sub-statements within an environment. Consider, for
instance, the loop statement:

[[loop {P}]] α β τ = let γ = new wire() and p = [[P]] γ β τ in

γ <= α | p.ω

p

The environment consists of the “system wires” α, β, and τ . The wire α is up only
at the instant when the process is started, β in all later instants. The wire τ is used
for preemption.

This is the interpretation of the denotational equation above: the process p is
obtained by translating the loop body P within the new environment γ, β, and
τ . The new wire γ is set if either the wire α, or the wire p.ω is up. The latter is
a particular (synthesised) wire that is up if and only if the process p terminates.
The denotational semantics of the loop statement is comprised of the process p

together with the definition of the wire γ. Hence, if the loop statement is started,
the process p is started. If p terminates it is restarted instantaneously. This scheme
for the loop is used in the compiler but the actual implementation additionally
takes care of reincarnation [4]. In general, the compiler exactly mimics this kind of
denotational semantics.

If translated the compiler generates the following intermediate code for the
counter example above: 8

signals:

Sensor I10 is Counter.start

Sensor I11 is Counter.incr

Signal S1 is Counter.elapsed

equations:

G1 <= ((Beta & R4) | Alpha)

G3 <= (((Beta & R1) | G1) & I10)

8 where & stands for logical and, and | for logical or.

5

Budde, Poigné, Sylla

A1 <= G3 { reset() }
G5 <= (CC(A1) | G3)

G7 <= ((Beta & R3) | G5)

G9 <= (((Beta & R2) | G7) & I11)

A2 <= G9 { increment() }
G6 <= (CC(A2) | (Beta & (R3 | R2)) | G5)

A3 <= G6 { D1 <= isElapsed() }
G13 <= (CC(A3) | (G6 & (CC(A3) | D1)))

A4 <= G13: Sv1 <= Val: null

S1 <= G13

memorisations:

R4 <- (CC(A4) | G13)

R3 <- ((CC(A2) | G9) & not(G13))

R2 <- ((R2 | G7) & not((G9 | G13)))

R1 <- ((R1 | G1) & not(G3))

At every instant, this sequential code is executed. The wire Alpha is up only in
the very first instant of, the wire Beta at all later instants. One should note that
execution of actions links the reactive with data code. A data action may affect
the reactive behaviour in that, for instance, the wire D1 is set if the data action
isElapsed() executes to true.

Wavefront Computation and causality. The translation scheme sketched above
generates a sequence of assembler statements which need to be sorted according
to the “write-before-read” strategy of the synchronous paradigm. This strategy
guarantees that signals have a consistent status – being either being present with a
certain value, or being absent – at an instant. synERJY uses topological sorting.

One should note that the control structure of the synERJY program is encoded
in the generated assembler code. This applies as well to data actions. The control
dependencies of data actions are encoded using the CC operator. For instance,
tracing the example above one can see that the data action increment() must take
place before the data action isElapsed() since the wire G6, which triggers the
latter, depends on A2. This correctly implements weak preemption.

In that topological sorting is only an approximation of the constructive seman-
tics of [3]. But we believe that detecting any kind of cycle within the control and
signal flow is a simple and reasonable criterion for the user to decide whether a
program features a causality cycle or not.

Time Races and precedences. Execution of data actions may be conflicting, for
instance, if two data actions access the same variable for reading or writing at an
instant. synERJY checks for such conflicts we refer to as time races. Whenever
a time race is possible at an instant, The compiler raises an error message since a
time race may possibly cause non-deterministic behaviour. As with causality the
analysis is on syntactical level. Typically time races occur between actions that are
called in different branches of a parallel statement. Otherwise potential conflicts
are resolved by the control flow.

synERJY offers several facilities to schedule conflicting actions using a prece-
dence statement such as

precedence {

6

Budde, Poigné, Sylla

isElapsed() < increment();

};

This implies that, at an instant, any call of the data action isElapsed() must be
scheduled before a call of the data action increment().

Scheduling actions by name is a rather coarse strategy. synERJY provides a
finer-grained scheduling mechanism using labels. Labels refer to individual state-
ments within a reactive program. Labels are used for resolving time races as follows:
consider a fragment of code such as

[[... l1:: emit x(1); ... || ... l2:: emit x(2); ...]];

...

precedence {
l1:: < l2:: ;

};

The labels l1:: and l2:: in the precedence statement quite neatly express that
emit x(1); should be executed before emit x(2);. Hence the value of x will be 2
after executing the code above.

Actually, the example shows that labels may be used to resolve a second source
of non-determinism: multiple emits. synERJY has abandoned using combinators
as in Esterel since users in practice tend to resolve multiple emits by some ad-hoc
combinator, e.g. by projecting to – typically – the first argument. This often results
in unforeseen behaviour.

4 State Machines

Textual Presentation The textual syntax for automata is very simple. The state-
ment

automaton { P };

indicates that the process P is presented by an automaton. The specification of a
state is of the form

state name

[do { P }]
[entry { Pentry }]
[during { Pduring }]
[exit { Pexit }]

when (C1) [{ P1 }]
[else when C2 { P2 }]
...

[else when Cn { Pn }];

All the clauses in square brackets are optional. The processes Pentry, Pduring, and
Pexit must be instantaneous.

The behaviour is as follows. When entering a state the processes P and Pentry

are started. The processes P and Pduring are active as long as the state is active.
When a condition Ci becomes true, the process P is weakly preempted and the
process Pexit is executed. Finally the process Pi are started when Pexit terminates.
At each instant, the process P executes before checking the conditions Ci that are
checked in the obvious order.

7

Budde, Poigné, Sylla

The initial transition is of the form init {P} with P being instantaneous. Fi-
nally, the statement next state state name ; denotes the (instantaneous) jump
to the next state.

An example. The example demonstrates how a hierarchical automaton can be
specified.

automaton {
init { next state off; };
state off

when (?start) { next state on; };
state on

do {
[[automaton {

init { next state down1; };
state down1

when (?incr) { next state up1; };
state up1

when (?incr) { emit carry; next state down1; };
};

|| automaton {
init { next state down2; };
state down2

when (?carry) { next state up2; };
state up2

when (?carry) { emit reset; next state down2; };
};

]];

}
when (?stop || ?reset) { emit elapsed; next state off; };

};

Note that each “branch” should end with a next state statement. Note further that
the do clause can hold any reactive statement. Here the parallel statement and the
automaton statement are used to generate a typical hierarchical state machine. 9

5 Embedding Data Flow - Hybrid Systems

Flow equations and modes. synERJY supports a Lustre-like sub-language for
presenting data flow. Flow equations are of the form, e.g.,

count := 0 -> pre(count) + 1;

with count being a signal.

Flow equations are allowed to occur within a variant of the sustain statement

sustain {| ...|};

Its body consists of a sequence of flow equations (and of local signal declarations).
When started, the sustain statement never terminates; the flow equations are
applied forever. We shall speak of a mode (of operation). The idea is that modes
persist, usually for a long interval, but modes may be changed if necessary, for

9 synERJY provides an equivalent graphical notation as well as a graphical editor.

8

Budde, Poigné, Sylla

instance from a start-up mode to a working mode, or from a working mode to an
error mode or maintenance mode.

Being a process like any other, the sustain statement may be preempted and
(re-) started as in the following rather artificial example (which is similar to the
automaton discussed earlier)

class CountingUpAndDown {
Sensor reverse = new Sensor(new SimInput());

Signal<int> count = new Signal<int>(new SimOutput());

public CountingUpAndDown () {
active {
emit count(0);

next;

cancel {
sustain {| count := pre(count) + 1; |}; counting up mode

} when (?reverse);

next;

cancel {
sustain {| count := pre(count) - 1; |}; counting down mode

} when (?reverse);

};
};

}

There are two modes: counting up and down. The modes are switched when the
signal reverse is present. 10

Signals revisited. One may have noted that the signal count is emitted as well
as constrained by a flow equation. synERJY promotes a uniform view of signals:
signals may be updated either by using the emit statement or by applying a flow
constraint. Both statements behave equivalently as far as signals are concerned:

• if a signal is updated, either by emitting or by applying a flow equation, it is
present with a new value.

Both emit statements and flow equations are different means to specify the seman-
tics of signals which is given in terms of traces

i 0 1 2 3 4 5 6 7 8 . . .

reverse . . . ∗ . . ∗

count 0 1 2 3 2 1 0 0 0 . . .

where the index i ranges over instants. The convention is that boldface indicates
value and presence while italics indicate the value and absence. 11 Note that signals
have a value even if absent.

Of course, there are conceptual differences between using the emit statement or
a flow equation, one being more appropriate for control, the other signal processing.

10 Since the sustain statement may be used in automata we achieve the effect of mode
automata as defined in [8].
11 For pure signals, we just use an asterisk for presence.

9

Budde, Poigné, Sylla

We assume the reader to be aware of these differences, hence skip a discussion.

Clocks, flow types, and signal types. Flow expressions (those used on the right
hand side of a flow equation) follow the syntax of Lustre [7] using operators

pre (previous) when (down-sampling)

-> (initialisation) current (up-sampling)

Clocks are considered as part of the type information. Flow expressions have
clocks as defined in Lustre. Sensor and signal types are enhanced to have the
general format

Sensor{C}<T> resp. Signal{C}<T>

where the “clock” C is a Boolean flow expression. Signals that are “emitted” always
have clock true. Hence the type Sensor<T> is a shorthand for Sensor{true}<T>,
and Signal<T> for Signal{true}<T>.

The only difference between the emit statement and a flow equation is that only
for a flow equations clocks are checked according to the rules of Lustre. In that
flow equations are more restricted, the reason being that, in case of down-sampling
and up-sampling, the restriction provides better semantic control.

Note that, in contrast to traditional data flow languages, updating of a signal is
not restricted to a single flow equation. In case of signals of clock true in particu-
lar, the signals may be both, emitted and constrained by data flow equations. Note
further that, at an instant, a signal may be neither, nor emitted nor constrained.
This is the very basis of of the unification of synchronous formalisms supported by
synERJY.

Hybrid systems. Hybrid systems switch between modes where each mode is
governed by its own characteristic dynamic laws. Mode transitions are, for instance,
triggered by variables crossing specific thresholds (state events), by the elapse of
certain time periods (time events), or by external inputs (input events). Further it
is usually required that each mode starts operating with defined initial conditions
specified by a reset relation.

As a typical presentation of a hybrid system we consider a bouncing ball:

• Motion is characterised by height (x1) and vertical velocity (x2),

• Continuous changes between bounces.

• Discrete change at bounce time.

• Dynamics summarised by

· one mode q with a continuous behaviour specified by the equations

ẋ1 = x2

ẋ2 =−g

· one transition from q to q guarded by the condition h ≤ 0,
· a reset relation that keeps the height but reverses the direction of velocity and

decreases it by a factor in that x2 is set to −c ∗ x2.

This behaviour is captured by the automaton

10

Budde, Poigné, Sylla

automaton {
init { emit x1(height);

emit x2(0.0);

next state move; };
state move

during {| x1 := pre(x1) + x2*((double)dt);

x2 := -c*pre(x2) -> pre(x2) - g *((double)dt);

|}
when ($x1 <= 0.0) { next state move; };

};

We comment on the program:

• An equation such as ẋ = e is replaced by an integral x = x0 +
∫

edx, and the
integral is computed by the difference equation xn = xn−1 + e(n) ∗ dt with initial
condition x0.

• dt is a predefined signal of primitive type time the value of which is the amount
of “real time” passed between two instants. 12

• The during { ...} is a second pattern in which flows may occur. The flow
equations are only executed if control is in the respective states (not when jumping
into it).

• The initialization -> operator is defined relative to a flow context: initialization
always takes place at the instant the flow context is started. Hence, in case of the
example, whenever the value x1 is smaller than 0.0, control reenters the state,
and in the next instant the value of x2 is initialized by the previous value of x2
reduced by the factor c. Then the dynamic law ẋ2 = −g applies upto the next
bounce.

This “localized” version of initialisation exceeds the standard semantics as defined
in Lustre where initialisation refers to the very first instant of running a system.
Local (re-) initialisation, however, comes handy for hybrid systems. 13

In synERJY, all “continuous” modes are encapsulated by flow context, while all
the other language constructs specify the discrete parts resp. the transitions. Now
having local initialisation by the arrow operators provides the means to specify a
reset relation. The initial condition can depend on the status of (globally declared)
signals at a previous instant that is accessed by using the operator pre. This is the
sort of rationale for our “localised” interpretation of the operators -> and pre. 14

12 “Real time” is specified in terms of the system clock. synERJY sports several other
useful features related to real time, for instance a statement await 3sec with the obvious
connotation. This is handled within the framework of the synchrony paradigm since “time”
is handled like an input signal, always being updated at the beginning of an instant. Hence
the resolution of real time is determined by the frequency of instants.
13 There is a similar effect for the pre operator; it is set to the default value at the instant
when entering a flow context except if its argument is a signal field as in case of the example.
14 Note that this generalises the use of these operators in Lustre. Lustre programs have
– in our terminology – only one mode. Hence initialisation by the arrow operator can take
place only in the very first instant, as well as the operator pre has a default value only in
the first instant .

11

Budde, Poigné, Sylla

6 Signal Bus for Interfacing Reactive Objects

Parameterizing reactive classes. Sensors and signals are passed to reactive ob-
ject by calling its constructor. Note that reactive objects have only one constructor.
To give an example, we modify the class Counter of above: the sensors and signals
become parameters of the constructor

class Counter {
public Counter (int d,Sensor start,Sensor clock,Signal elapsed) {
latch = d;

active {
...

};
};
...

}

Instances of reactive classes are created using the operator new as usual. Counters
are, for instance, used in the class PulseWidthModulation to modulate a signal
wave to be “up” and “down” for a specified number of instants.

class PulseWidthModulation {
static final int high = 5; // constants for counting

static final int low = 15;

Sensor start = new Sensor(new SimInput());

Sensor clock = new Sensor(new SimInput());

Signal<boolean> wave = new Signal<boolean>(new SimOutput());

Signal toHighPhase = new Signal(); // local signals

Signal toLowPhase = new Signal();

// two counters as subojects

Counter highTimer = new Counter(high,toHighPhase,clock,toLowPhase);

Counter lowTimer = new Counter(low ,toLowPhase ,clock,toHighPhase);

public PulseWidthModulation () { // run the pulse width modulation

active {
await ?start;

emit toHighPhase;

loop {
await ?toHighPhase;

emit wave(true);

next;

await ?toLowPhase;

emit wave(false);

next;

};
};

};
}

The signal wave is emitted with value true if the value toLowPhase is present, and
emits the signal wave with value false if the value toHighPhase is present. The
counter highTimer counts the instants of the high phase, as specified by the actual

12

Budde, Poigné, Sylla

value of the variable high, and the counter lowTimer counts the instants of the low
phase, as specified by the actual value of the variable low.

The semantics of object composition is that, when generating an instance of
class PulseWidthModulation,

• signal parameters are substituted by arguments, e.g. the signal parameter start
of a counter is substituted by the signal argument toHighTimer when initialising
of the variable highTimer.

• the reactive code of the object PulseWidthModulation and of all its reactive sub-
objects – here the two counters highTimer and lowTimer – are put in parallel.

In terms of pictures. Let an instance of the class Counter be sketched by

?

start

?

clock 6
elapsed

reactive code

Its reactive code is indicated by the dashed box, and the object itself by the framed
box. The parameter signals are presented by arrows going from the framed box to
the dashed box and vice versa.

The reactive structure of an instance of class PulseWidthModulation may then
be presented by

-

-

- clock
start

wave
toHighPhase

toLowPhase

???

6

? ?

6

? ?

6

PulseWidthModulation

reactive code reactive code

highTimer

reactive code

lowTimer

The picture suggests that the reactive codes of the objects involved are executed in
parallel and that the different fragments of code communicate via a bundle of signals.
We speak of a signal bus to refer to this bundle. The signal bus is comprised of all
signal (fields) specified in a class. We distinguish local signals such as toHighPhase
and toLowPhase, input signals such as clock and start, and output signals such
as wave. In general

• reactive objects and signal busses form a static hierarchy

• if signals of different busses are ”wired” together, it is sufficient to generate only
one signal (we refer to as principal signal) and to replace every signal by its
principal signal.

Input and output signals reconsidered. We like to stress that every reactive
object may specify input sensors and output signals. This is in contrast to the

13

Budde, Poigné, Sylla

more usual idea that input and output signals are defined only top-level by the
configuration object.

There are good reasons: imagine an application with some component being a
key pad for submitting a personal identification number. The design of such pads
may vary, even in terms of the number of inputs. However, the number of inputs
usually is irrelevant with regard to the overall application that may only depend on
whether a correct pin has been submitted (information hiding in other terms).

A schematic view of the key pad control in terms of the interface may be

accept
-

bn
-

. . .
b1

-

receipt
-

reset

?

pin6

??? 6

reactive code

Here pin is meant to be a integer valued signal. The box/reactive object analyses
the sequence of pressed keys if an accept is submitted. If the sequence is submitted
the pin is communicated to the application, and the receipt signal is emitted with
an OK message, otherwise only the receipt signal is emitted with a reject message.
The number of keys is irrelevant for the overall application. It depends on the actual
pad. Typically it will have ten keys, for instance, for an electronic bank till but
there might be other builds.

If input and output signals can only be specified at top-level one may have
to touch many components of an application to pass the key signals down to the
pin analyser and to pass the receipt signal back to top-level. In synERJY, these
variations have only a local impact in that the component and the connectors have
to be redesigned. In that the rationale of synERJY is component oriented in that
reactive objects behave the same within an application even if the interface to the
environment may differ.

7 Related Work

synERJY inherits its reactive concepts from Esterel and Lustre. Argos [8]
has been the first language to integrate data flow with automata, while SyncCha-

rts [1] has added automata to Esterel. There are several approaches of adding
“synchronous behaviour” to standard programming languages. Typically add-ons
are provided in terms of libraries that allow to specify the notion of an instant (e.g.
[5]). In general the embedding is more shallow in that, for instance, a compile time
analysis of causality and time races is not provided. Causality if often avoided by
changing the synchronous model. In comparison synERJY faithfully implements
the synchronous execution model.

14

Budde, Poigné, Sylla

8 Concluding Remarks

Designing synERJY we have spent much effort on a smooth integration of the
concepts presented. It took many iteration to achieve a presentation that – we
hope – is acceptable to both, JavaTMprogrammers as well as adepts of synchronous
programming.

Since synERJY in particular targets micro controllers, efficiency of code is a
major aim. The compiler generates standard C as an intermediate code that can
be deployed using a cross compiler. Libraries are provided for some standard micro
controllers that encapsulate the operations of the controller. In that case all the
development up to register and bit level using the interrupts and timers can be done
in synERJY. Future work will focus on extending the number of target architectures,
and on further improving efficiency.

The language has been used in several student courses, and in in-house applica-
tions in robotics. It is freely available at www.ais.fraunhofer.de/∼budde.

References

[1] André, C.. “Representation and analysis of reactive behaviours: A synchronous
approach,” in: Proc. CESA’96, Lille, France, July 1996.

[2] Benveniste, A., P. Le Guernic, and C. Jaquemot, “Synchronous Programming
with Events and Relations: the SIGNAL Language,” Science of Computer
Programming 16(2) (1991), 103 – 149.

[3] Berry, G., The Constructive Semantics of Pure Esterel, Draft book,
www-sop.inria.fr/meije/esterel/doc/main-papers.html, 1999

[4] Berry, G. and G. Gonthier. “The Esterel synchronous programming language:
design, semantics, implementation,” Science of Computer Programming 19(2)
(1992), 87–152.

[5] Boussinot, F., and J.-F. Susini, “Java threads and SugarCubes,” Software -
Practice and Experience 30(5) (2000), 545-566.

[6] Harel, D., “Statecharts: A visual approach to complex systems,” Science of
Computer Programming, 8 (1987),231–274.

[7] Halbwachs, N., P. Caspi, P. Raymond, and D. Pilaud. “The synchronous dataflow
programming language Lustre,” Proceedings of the IEEE 79(9) (1991), 1305–
1320.

[8] Maranchini, F., Y. Rémond. “Mode-Automata: About Modes and States in
Reactive Systems,” Proc. European Symposium on Programming, Lisbon,
Portugal, 1998

[9] A. Poigné, and L. Holenderski, “On the Combination of Synchronous
Languages,” in: W.P. de Roever (ed.), “Workshop on Compositionality, The
Significant difference,” Lecture Notes in Computer Science 1536 , Springer,
Heidelberg, 1998, 490 – 514.

15

http://www.ais.fraunhofer.de/$sim $budde
http://www-sop.inria.fr/meije/esterel/doc/main-papers.html

	Introduction
	Reactive Classes, Sensors, and Signals
	Reactive Control
	State Machines
	Embedding Data Flow - Hybrid Systems
	Signal Bus for Interfacing Reactive Objects
	Related Work
	Concluding Remarks
	References

