
From Discrete Duration Calculus
to Synchronous Observers

Laure Gonnord
Nicolas Halbwachs
Pascal Raymond

Vérimag, Grenoble

From discrete duration calculus to symbolic automata 2

Specifying (safety) properties with synchronous
observers

Prog

Obs
tt/ff

Well-known advantages:
• maximal power
• same language for programs and properties
• specifications are “executable”

From discrete duration calculus to symbolic automata 3

Higher-level formalisms sometimes needed

Specification formalisms (e.g., temporal logics)

- simulation needed

- is decidability an issue?

From discrete duration calculus to symbolic automata 4

Decision procedures for TL

ϕ −→ Aϕ

σ ∈ L(Aϕ) ⇐⇒ σ |= ϕ

ϕ satisfiable ⇐⇒ L(Aϕ) 6= ∅

Easy if Aϕ rational

From discrete duration calculus to symbolic automata 5

Model-checking of TL

P |= ϕ ⇐⇒ L(P × A¬ϕ) = ∅

From discrete duration calculus to symbolic automata 5

Model-checking of TL

P |= ϕ ⇐⇒ L(P × A¬ϕ) = ∅

Rationality of Aϕ is of little practical inter-
est, since P has generally an infinite number
of states

From discrete duration calculus to symbolic automata 5

Model-checking of TL

P |= ϕ ⇐⇒ L(P × A¬ϕ) = ∅

Rationality of Aϕ is of little practical inter-
est, since P has generally an infinite number
of states
Even in the finite-state case, the size of the
automaton can be prohibitive.

From discrete duration calculus to symbolic automata 5

Model-checking of TL

P |= ϕ ⇐⇒ L(P × A¬ϕ) = ∅

Rationality of Aϕ is of little practical inter-
est, since P has generally an infinite number
of states
Even in the finite-state case, the size of the
automaton can be prohibitive.
→ symbolic automata, possibly extended with
variables (counters)

From discrete duration calculus to symbolic automata 6

Translating high level specification languages
into symbolic automata
(synchronous observers, safety properties)

Ωϕσσ |= ϕ iff
true∗

From discrete duration calculus to symbolic automata 6

Translating high level specification languages
into symbolic automata
(synchronous observers, safety properties)

Ωϕσσ |= ϕ iff
true∗

• executable
• use in verification, runtime verification,

testing...
• no explosion
• not necessarily finite state (counters...)

From discrete duration calculus to symbolic automata 7

A well-known case: REGLO [Raymond96]
Translation of regular expressions into symbolic
acceptors (Lustre observers)
Strictly linear size

A new experience: QDDC [Pandya 2000-03]

→ one conclusion: there are common (safety)
properties which are surprizingly hard to express
with observers, i.e., hard to check “on the fly”

From discrete duration calculus to symbolic automata 8

QDDC: Quantified Discrete Duration Calculus
Examples
“Whenever p has been true continuously during
at least n steps, q holds”

2
(
(ddpee ∧ η ≥ n) ⇒ true_dqe0

)
or p

n→q

“In any interval of duration d, p holds at least
k times”

2(η ≥ d ⇒ Σp ≥ k)

From discrete duration calculus to symbolic automata 9

QDDC: Semantics
States: sets of basic propositions (or Boolean
valuations of propositional symbols) — models
of propositions: s |= P

Traces: finite sequences of states
σ = σ1σ2 . . . σn |σ| = n

Windows: intervals in a trace
σ[b, e] = σbσb+1 . . . σe 1 ≤ b ≤ e ≤ |σ|

Satisfaction of a formula:
by a window: σ[b, e] |= ϕ

by a trace: σ |= ϕ ⇐⇒ σ[1, n] |= ϕ

From discrete duration calculus to symbolic automata 10

QDDC: Semantics (cont.)

Examples:

σ[b, e] |= η ≥ d iff (e− b) ≥ d

σ[b, e] |= Σp ≥ k iff Card{i = b..e|σi |= p} ≥ k

σ |= 2(η ≥ d ⇒ Σp ≥ k)

iff ∀b, e, 1 ≤ b ≤ e ≤ n,

(σ[b, e] |= η ≥ d) =⇒ (σ[b, e] |= Σp ≥ k)

From discrete duration calculus to symbolic automata 11

Our extensions: (forget decidability)

- Constants c (in η op c, ΣP op c, P1
c→ P2)

can be symbolic (parameters)

- The atomic propositions can be conditions
on parameters (e.g., c1 ≥ c2)

From discrete duration calculus to symbolic automata 12

Observers of formulas (in Lustre)

inputs:
• σ (sequence of values for the propositions)
• a “starter” b (a Boolean, true only once)
output a=true at t iff σ, [tb, t] |= ϕ

Ωϕ

b

aσ

 p1

pk

From discrete duration calculus to symbolic automata 13

Example 1: ddpee
True of each interval [tb, t] where p always holds
The observer output should
- be true before the (unique) occurrence of b
- take the value of p when b
- remain true as long as p is true

a = before(b) or (if b then p else p and pre(a))

where

before(b) = not b -> (not b and pre(before(b)))

From discrete duration calculus to symbolic automata 14

Example 2: p c→ q

True on [tb, t] iff all subinterval of length c

where p is always true, end with q true
c

p
q

a = before(b) or
((true -> pre(a)) and (age(p)>=c => q))

where

age(p) = if p then (0-> pre(age(p))+1 else 0

From discrete duration calculus to symbolic automata 15

Example 3: 2(η ≥ d ⇒ Σp ≥ k)

Each interval longer than d contains at least k
occurrences of p

d
p

k=3

From discrete duration calculus to symbolic automata 15

Example 3: 2(η ≥ d ⇒ Σp ≥ k)

Each interval longer than d contains at least k
occurrences of p

d
p

k=3

From discrete duration calculus to symbolic automata 15

Example 3: 2(η ≥ d ⇒ Σp ≥ k)

Each interval longer than d contains at least k
occurrences of p

d
p

k=3

From discrete duration calculus to symbolic automata 15

Example 3: 2(η ≥ d ⇒ Σp ≥ k)

Each interval longer than d contains at least k
occurrences of p

d
p

k=3

From discrete duration calculus to symbolic automata 15

Example 3: 2(η ≥ d ⇒ Σp ≥ k)

Each interval longer than d contains at least k
occurrences of p

d
p

k=3

From discrete duration calculus to symbolic automata 15

Example 3: 2(η ≥ d ⇒ Σp ≥ k)

Each interval longer than d contains at least k
occurrences of p

d
p

k=3

From discrete duration calculus to symbolic automata 15

Example 3: 2(η ≥ d ⇒ Σp ≥ k)

Each interval longer than d contains at least k
occurrences of p

d
p

k=3

From discrete duration calculus to symbolic automata 15

Example 3: 2(η ≥ d ⇒ Σp ≥ k)

Each interval longer than d contains at least k
occurrences of p

d
p

k=3

From discrete duration calculus to symbolic automata 15

Example 3: 2(η ≥ d ⇒ Σp ≥ k)

Each interval longer than d contains at least k
occurrences of p

d
p

k=3

k (or d) counters needed!
Problem if d and k are parameters...
(for testing, one could use generic arrays. Out
of reach of verification tools...)

From discrete duration calculus to symbolic automata 16

A solution: non-deterministic observers
Idea: non deterministically start a counter at
each instant — by means of an additional
input, say x (oracle).

From discrete duration calculus to symbolic automata 16

A solution: non-deterministic observers
Idea: non deterministically start a counter at
each instant — by means of an additional
input, say x (oracle).

Since a model-checker verifies that the output
is always true whatever be the inputs, it will
verify whatever be x, so, for all intervals.

x

Prog

Obs
tt/ff

From discrete duration calculus to symbolic automata 17

Example 3 (revisited): 2(η ≥ d ⇒ Σp ≥ k)

a = before(b) or
((true -> pre(a)) and length<d or nb p ≥ k)

length = nb since(true,x)
nb p = nb since(p,x)

where

nb since(b1,b2) =
if before(b2) then 0
else if b2 then if b1 then 1 else 0
else pre(nb since(b1,b2)) +

if b1 then 1 else 0

From discrete duration calculus to symbolic automata 18

An example of verification

Prove that
(
p

c→ q ∧ d ≥ c
)
=⇒ (p

d→ q)

p
q

c

From discrete duration calculus to symbolic automata 18

An example of verification

Prove that
(
p

c→ q ∧ d ≥ c
)
=⇒ (p

d→ q)

p
q

c

d

From discrete duration calculus to symbolic automata 19

An example of verification (cont.)
Prove that, whatever be p, q, c, d and x, the
output a is always true

a1 = before(x) or -- p -c-> q

((true -> pre(a1)) and (nb since(p,x)<c or q)
a2 = before(x) or -- p -d-> q

((true -> pre(a2)) and (nb since(p,x)<d or q)
-- (p -c-> q / d ≥ c) => p -d-> q

a = (a1 and d ≥ c) => a2;

From discrete duration calculus to symbolic automata 19

An example of verification (cont.)
Prove that, whatever be p, q, c, d and x, the
output a is always true

a1 = before(x) or -- p -c-> q

((true -> pre(a1)) and (nb since(p,x)<c or q)
a2 = before(x) or -- p -d-> q

((true -> pre(a2)) and (nb since(p,x)<d or q)
-- (p -c-> q / d ≥ c) => p -d-> q

a = (a1 and d ≥ c) => a2;

Instantly proved, both by Lesar and Nbac

From discrete duration calculus to symbolic automata 20

A fragment of QDDC
recognizable by non-deterministic acceptors

Why only a fragment?

• Liveness properties expressible in QDDC

• Oracles can only be universally quantified

• Formulas ∃pϕ and ϕ1
_ϕ2 need existentially

quantified oracles

From discrete duration calculus to symbolic automata 21

3-levels syntax

ϕ ::= ¬ψ

ψ ::= ξ | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | ∃p ψ | ψ1
_ψ2

ξ ::= dP e0 | ddP e | η op c | ΣP op c | ¬ξ

From discrete duration calculus to symbolic automata 22

Example: 2(η > c ⇒ Σp ≥ d)

Translation into basic QDDC:

¬ (true_(η > c ∧ Σp < d)_true)

Translation into Lustre:

a = not (nb since(true,x) > c and
nb since(p,x) < d)

From discrete duration calculus to symbolic automata 23

Ok for verification (since the verification tools
universally quantify over oracles)
Not suitable for property simulation, and not
very good for testing (a test may succeed for
some values of the oracles, but fail for others)

From discrete duration calculus to symbolic automata 23

Ok for verification (since the verification tools
universally quantify over oracles)
Not suitable for property simulation, and not
very good for testing (a test may succeed for
some values of the oracles, but fail for others)

Prog

Obs
tt/ff

sequence
test

From discrete duration calculus to symbolic automata 23

Ok for verification (since the verification tools
universally quantify over oracles)
Not suitable for property simulation, and not
very good for testing (a test may succeed for
some values of the oracles, but fail for others)

Prog

Obs
tt/ff

sequence
test

???

−→ a deterministic fragment

From discrete duration calculus to symbolic automata 24

Conclusion

• There are common safety properties which
are not obvious to translate into symbolic
acceptors

• Non-deterministic acceptors increase the
descriptive power

From discrete duration calculus to symbolic automata 25

Conclusion (cont.)

• What has been done:

– Identification of a useful fragment of
QDDC which can be translated into non-
deterministic acceptors

– Identification of a more restrictive deter-
ministic fragment

– Translations into Lustre (and proof of
correctness)

From discrete duration calculus to symbolic automata 26

Further works. . .

• What about really complex formalisms
(SUGAR...)?

