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Specifying (safety) properties with synchronous
observers

Prog

Obs
tt/ff

Well-known advantages:
• maximal power
• same language for programs and properties
• specifications are “executable”
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Higher-level formalisms sometimes needed

Specification formalisms (e.g., temporal logics)

- simulation needed

- is decidability an issue?
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Decision procedures for TL

ϕ −→ Aϕ

σ ∈ L(Aϕ) ⇐⇒ σ |= ϕ

ϕ satisfiable ⇐⇒ L(Aϕ) 6= ∅

Easy if Aϕ rational



From discrete duration calculus to symbolic automata 5

Model-checking of TL

P |= ϕ ⇐⇒ L(P × A¬ϕ) = ∅
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Model-checking of TL

P |= ϕ ⇐⇒ L(P × A¬ϕ) = ∅

Rationality of Aϕ is of little practical inter-
est, since P has generally an infinite number
of states
Even in the finite-state case, the size of the
automaton can be prohibitive.
→ symbolic automata, possibly extended with
variables (counters)
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Translating high level specification languages
into symbolic automata
(synchronous observers, safety properties)

Ωϕσσ |= ϕ iff
true∗



From discrete duration calculus to symbolic automata 6

Translating high level specification languages
into symbolic automata
(synchronous observers, safety properties)

Ωϕσσ |= ϕ iff
true∗

• executable
• use in verification, runtime verification,

testing...
• no explosion
• not necessarily finite state (counters...)
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A well-known case: REGLO [Raymond96]
Translation of regular expressions into symbolic
acceptors (Lustre observers)
Strictly linear size

A new experience: QDDC [Pandya 2000-03]

→ one conclusion: there are common (safety)
properties which are surprizingly hard to express
with observers, i.e., hard to check “on the fly”
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QDDC: Quantified Discrete Duration Calculus
Examples
“Whenever p has been true continuously during
at least n steps, q holds”

2
(
(ddpee ∧ η ≥ n) ⇒ true_dqe0

)
or p

n→q

“In any interval of duration d, p holds at least
k times”

2(η ≥ d ⇒ Σp ≥ k)
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QDDC: Semantics
States: sets of basic propositions (or Boolean
valuations of propositional symbols) — models
of propositions: s |= P

Traces: finite sequences of states
σ = σ1σ2 . . . σn |σ| = n

Windows: intervals in a trace
σ[b, e] = σbσb+1 . . . σe 1 ≤ b ≤ e ≤ |σ|

Satisfaction of a formula:
by a window: σ[b, e] |= ϕ

by a trace: σ |= ϕ ⇐⇒ σ[1, n] |= ϕ
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QDDC: Semantics (cont.)

Examples:

σ[b, e] |= η ≥ d iff (e− b) ≥ d

σ[b, e] |= Σp ≥ k iff Card{i = b..e|σi |= p} ≥ k

σ |= 2(η ≥ d ⇒ Σp ≥ k)

iff ∀b, e, 1 ≤ b ≤ e ≤ n,

(σ[b, e] |= η ≥ d) =⇒ (σ[b, e] |= Σp ≥ k)
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Our extensions: (forget decidability)

- Constants c (in η op c, ΣP op c, P1
c→ P2)

can be symbolic (parameters)

- The atomic propositions can be conditions
on parameters (e.g., c1 ≥ c2)
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Observers of formulas (in Lustre)

inputs:
• σ (sequence of values for the propositions)
• a “starter” b (a Boolean, true only once)
output a=true at t iff σ, [tb, t] |= ϕ

Ωϕ

b

aσ

 p1

pk
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Example 1: ddpee
True of each interval [tb, t] where p always holds
The observer output should
- be true before the (unique) occurrence of b
- take the value of p when b
- remain true as long as p is true

a = before(b) or (if b then p else p and pre(a))

where

before(b) = not b -> (not b and pre(before(b)))
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Example 2: p c→ q

True on [tb, t] iff all subinterval of length c

where p is always true, end with q true
c

p
q

a = before(b) or
((true -> pre(a)) and (age(p)>=c => q))

where

age(p) = if p then (0-> pre(age(p))+1 else 0
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Example 3: 2(η ≥ d ⇒ Σp ≥ k)

Each interval longer than d contains at least k
occurrences of p

d
p

k=3
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Example 3: 2(η ≥ d ⇒ Σp ≥ k)

Each interval longer than d contains at least k
occurrences of p

d
p

k=3

k (or d) counters needed!
Problem if d and k are parameters...
(for testing, one could use generic arrays. Out
of reach of verification tools...)
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A solution: non-deterministic observers
Idea: non deterministically start a counter at
each instant — by means of an additional
input, say x (oracle).
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A solution: non-deterministic observers
Idea: non deterministically start a counter at
each instant — by means of an additional
input, say x (oracle).

Since a model-checker verifies that the output
is always true whatever be the inputs, it will
verify whatever be x, so, for all intervals.

x

Prog

Obs
tt/ff
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Example 3 (revisited): 2(η ≥ d ⇒ Σp ≥ k)

a = before(b) or
((true -> pre(a)) and length<d or nb p ≥ k)

length = nb since(true,x)
nb p = nb since(p,x)

where

nb since(b1,b2) =
if before(b2) then 0
else if b2 then if b1 then 1 else 0
else pre(nb since(b1,b2)) +

if b1 then 1 else 0
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An example of verification

Prove that
(
p

c→ q ∧ d ≥ c
)
=⇒ (p

d→ q)

p
q

c
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An example of verification

Prove that
(
p

c→ q ∧ d ≥ c
)
=⇒ (p

d→ q)

p
q

c

d
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An example of verification (cont.)
Prove that, whatever be p, q, c, d and x, the
output a is always true

a1 = before(x) or -- p -c-> q

((true -> pre(a1)) and (nb since(p,x)<c or q)
a2 = before(x) or -- p -d-> q

((true -> pre(a2)) and (nb since(p,x)<d or q)
-- (p -c-> q / d ≥ c) => p -d-> q

a = (a1 and d ≥ c) => a2;
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An example of verification (cont.)
Prove that, whatever be p, q, c, d and x, the
output a is always true

a1 = before(x) or -- p -c-> q

((true -> pre(a1)) and (nb since(p,x)<c or q)
a2 = before(x) or -- p -d-> q

((true -> pre(a2)) and (nb since(p,x)<d or q)
-- (p -c-> q / d ≥ c) => p -d-> q

a = (a1 and d ≥ c) => a2;

Instantly proved, both by Lesar and Nbac
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A fragment of QDDC
recognizable by non-deterministic acceptors

Why only a fragment?

• Liveness properties expressible in QDDC

• Oracles can only be universally quantified

• Formulas ∃pϕ and ϕ1
_ϕ2 need existentially

quantified oracles
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3-levels syntax

ϕ ::= ¬ψ

ψ ::= ξ | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | ∃p ψ | ψ1
_ψ2

ξ ::= dP e0 | ddP e | η op c | ΣP op c | ¬ξ
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Example: 2(η > c ⇒ Σp ≥ d)

Translation into basic QDDC:

¬ (true_(η > c ∧ Σp < d)_true)

Translation into Lustre:

a = not ( nb since(true,x) > c and
nb since(p,x) < d )
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Ok for verification (since the verification tools
universally quantify over oracles)
Not suitable for property simulation, and not
very good for testing (a test may succeed for
some values of the oracles, but fail for others)
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Prog

Obs
tt/ff

sequence
test
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Ok for verification (since the verification tools
universally quantify over oracles)
Not suitable for property simulation, and not
very good for testing (a test may succeed for
some values of the oracles, but fail for others)

Prog

Obs
tt/ff

sequence
test

???

−→ a deterministic fragment
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Conclusion

• There are common safety properties which
are not obvious to translate into symbolic
acceptors

• Non-deterministic acceptors increase the
descriptive power
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Conclusion (cont.)

• What has been done:

– Identification of a useful fragment of
QDDC which can be translated into non-
deterministic acceptors

– Identification of a more restrictive deter-
ministic fragment

– Translations into Lustre (and proof of
correctness)
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Further works. . .

• What about really complex formalisms
(SUGAR...)?


