SLAP 2004 - 1

Synchronous Dataflow Pattern Matching

Grégoire Hamon
Chalmers Institute of Technology
Goteborg

SLAP 2004 - 2

‘Synchronous Dataflow Languagesl

Dedicated to the design of reactive systems

And quite successfull at that! numerous industrial applications
Program close to the description of the system

Simple semantics, strong properties

Efficient compilation methods

SLAP 2004 - 3

‘Synchronous Dataflow Languagesl

(Small) complains:

e Few data structures
e No control structures
e Both are needed and asked for by users

e This need is becoming critical as reactive systems become more

and more common and grow in complexity

SLAP 2004 - 4

‘ Lucid Synchrone I

A functional extension to Lustre

A functional language (ML) over streams

Stream operations and clock mechanism similar to Lustre
Clocks expressed as types, polymorphic, infered

Created to study the link between functional and synchronous dataflow

languages

SLAP 2004 - 5

‘ Synchronous variants I

Existing solutions in functional languages? Variant types
e Key features in functional languages

e Clean and efficient way to define data structures
— code easier to write, close to the specification

— verification easier

e A control structure through the pattern matching operation

SLAP 2004 - 6

‘ Variant types I

e Defined by constructors:
type event = Left | Middle | Right
e Constructors can have arguments:

type event = Left | Middle | Right | Nbr of int

e We don’t consider recursive types

SLAP 2004 - 7

‘Lifting variants to streamsl

e We already lift basic types:
039324518 ...

is of type int (ie of type stream of int).

e Variants are lifted in the same way:

type bool = True | False

True False False True False ...
is of type bool.
Left Left Right Middle (Nbr 12) Left ...

is of type event.

SLAP 2004 - 8

‘Pattern matching - on streamsl

We want to define a control structure: only the branch matching the

argument should be executed.

So not an extension of the conditional!
if cond then el else e2

both el and e2 are computed.
Control can be expressed by means of clocks.

We are going to define a clock operator.

SLAP 2004 - 9

| Control and clocks I

The clock mechanism allows combining streams evolving at different

speed in a safe way (ie. guarantees reactivity).
The clock of a stream is its pace.
Special operators acting on clocks (when, merge).

A control structure is an operator on the pace of the computations, it

is thus a clock operator.

SLAP 2004 - 10

‘Synchronous pattern matchingl

e Each branch defines a clock.
e The right-hand side of the branch should be on this clock

e The pattern matching combines all those back to the clock of the
argument.

e those branch-clocks are:
— exclusive

— complementary

SLAP 2004 - 11
m

‘ Using branch clocks I

e Variables defined by the pattern are naturally on the branch clock.

e We need the ability to filter fast streams down to the branch clock

We introduce a way to name the branch clock in the pattern.

SLAP 2004 - 12

‘Pattern matching - examplel

type event = Left | Middle | Right | Nbr of int

let up_down event = out where
rec out = 0 -> match event with
| Left on ¢ => (pre out) when c + 1
| Middle => 0
| Right on ¢ => (pre out) when c - 1
| Nbr i => i

SLAP 2004 - 13

‘ Pattern-matching’s semantics I

R,|[v/x| e) o

R,[v/x], [v;/zi] & d; — d
Vi € {1,...,n} such that i # j, R, [v/], [[|/a:] F di > d!

r =match e with r = match ¢ with

_— | Pi(x1) on ¢ = d4 v/al | Pi(x1) on ¢ = d]

| P,(x,) on ¢, = d, | P,(x,) on ¢, = d,

SLAP 2004 - 14

‘ Pattern-matching’s clock I

H,|x:cllFe:cl
Vied{l,...n}: HH;F P, :clon¢ H,H;,|x:cl]Fd;:clonc;
¢;i & fuq(H), Dom(H;) = fup,

x = match e with

Pronc =d
H - B : : |]

| P, on ¢, = d,

SLAP 2004 - 15

‘ Compilation I

e Compiled into a similar construction (ie a control structure) in the

host language.

e Some care needs to be taken, the clock only gives the pace of the

output.

SLAP 2004 - 16

‘ Conclusion (1/2) I

Simple and strict extension to the language, integrates smoothly.
Variations can be proposed.

Very usefull in practice.

Implemented in Lucid Synchrone.

Used in a systematic encoding of mode-automata which is simple and

produces efficient code.

A simplified version is implemented in ReLuC.

SLAP 2004 - 17
m

‘ Conclusion (2/2) I

Control structure using clocks?

e Complex clocks.

e But keeps the semantics simple!

e It needs dedicated constructs, like the match to make it simple.

e Clock inference is essential.

	Synchronous Dataflow Languages
	Synchronous Dataflow Languages
	Lucid Synchrone
	Synchronous variants
	Variant types
	Lifting variants to streams
	Pattern matching - on streams
	Control and clocks
	Synchronous pattern matching
	Using branch clocks
	Pattern matching - example
	Pattern-matching's semantics
	Pattern-matching's clock
	Compilation
	Conclusion (1/2)
	Conclusion (2/2)

