
SLAP 2004 - 1

Synchronous Dataflow Pattern Matching

Grégoire Hamon

Chalmers Institute of Technology

Göteborg

SLAP 2004 - 2

Synchronous Dataflow Languages

• Dedicated to the design of reactive systems

• And quite successfull at that! numerous industrial applications

• Program close to the description of the system

• Simple semantics, strong properties

• Efficient compilation methods

SLAP 2004 - 3

Synchronous Dataflow Languages

(Small) complains:

• Few data structures

• No control structures

• Both are needed and asked for by users

• This need is becoming critical as reactive systems become more

and more common and grow in complexity

SLAP 2004 - 4

Lucid Synchrone

• A functional extension to Lustre

• A functional language (ML) over streams

• Stream operations and clock mechanism similar to Lustre

• Clocks expressed as types, polymorphic, infered

• Created to study the link between functional and synchronous dataflow

languages

SLAP 2004 - 5

Synchronous variants

Existing solutions in functional languages? Variant types

• Key features in functional languages

• Clean and efficient way to define data structures

– code easier to write, close to the specification

– verification easier

• A control structure through the pattern matching operation

SLAP 2004 - 6

Variant types

• Defined by constructors:

type event = Left | Middle | Right

• Constructors can have arguments:

type event = Left | Middle | Right | Nbr of int

• We don’t consider recursive types

SLAP 2004 - 7

Lifting variants to streams

• We already lift basic types:

0 3 9 3 2 4 5 1 8 ...

is of type int (ie of type stream of int).

• Variants are lifted in the same way:

type bool = True | False

True False False True False ...

is of type bool.

Left Left Right Middle (Nbr 12) Left ...

is of type event.

SLAP 2004 - 8

Pattern matching - on streams

• We want to define a control structure: only the branch matching the

argument should be executed.

• So not an extension of the conditional!

if cond then e1 else e2

both e1 and e2 are computed.

• Control can be expressed by means of clocks.

• We are going to define a clock operator.

SLAP 2004 - 9

Control and clocks

• The clock mechanism allows combining streams evolving at different

speed in a safe way (ie. guarantees reactivity).

• The clock of a stream is its pace.

• Special operators acting on clocks (when, merge).

• A control structure is an operator on the pace of the computations, it

is thus a clock operator.

SLAP 2004 - 10

Synchronous pattern matching

• Each branch defines a clock.

• The right-hand side of the branch should be on this clock

• The pattern matching combines all those back to the clock of the

argument.

• those branch-clocks are:

– exclusive

– complementary

SLAP 2004 - 11

Using branch clocks

• Variables defined by the pattern are naturally on the branch clock.

• We need the ability to filter fast streams down to the branch clock

We introduce a way to name the branch clock in the pattern.

SLAP 2004 - 12

Pattern matching - example

type event = Left | Middle | Right | Nbr of int

let up_down event = out where

rec out = 0 -> match event with

| Left on c => (pre out) when c + 1

| Middle => 0

| Right on c => (pre out) when c - 1

| Nbr i => i

SLAP 2004 - 13

Pattern-matching’s semantics

R, [v/x] ` e
Pj(vj)
→ e′

R, [v/x], [vj/xj] ` dj
v
→ d′j

∀i ∈ {1, ..., n} such that i 6= j, R, [v/x], [[]/xi] ` di
[]
→ d′i

R `

x = match e with

| P1(x1) on c1 ⇒ d1

...

| Pn(xn) on cn ⇒ dn

[v/x]
→

x = match e′ with

| P1(x1) on c1 ⇒ d′1

...

| Pn(xn) on cn ⇒ d′n

SLAP 2004 - 14

Pattern-matching’s clock

H, [x : cl] ` e : cl

∀i ∈ {1, ..., n} : H,Hi ` Pi : cl on ci H,Hi, [x : cl] ` di : cl on ci

ci /∈ fvcl(H), Dom(Hi) = fvPi

H `

x = match e with

| P1 on c1 ⇒ d1

...

| Pn on cn ⇒ dn

: [x : cl]

SLAP 2004 - 15

Compilation

• Compiled into a similar construction (ie a control structure) in the

host language.

• Some care needs to be taken, the clock only gives the pace of the

output.

SLAP 2004 - 16

Conclusion (1/2)

• Simple and strict extension to the language, integrates smoothly.

• Variations can be proposed.

• Very usefull in practice.

• Implemented in Lucid Synchrone.

• Used in a systematic encoding of mode-automata which is simple and

produces efficient code.

• A simplified version is implemented in ReLuC.

SLAP 2004 - 17

Conclusion (2/2)

Control structure using clocks?

• Complex clocks.

• But keeps the semantics simple!

• It needs dedicated constructs, like the match to make it simple.

• Clock inference is essential.

	Synchronous Dataflow Languages
	Synchronous Dataflow Languages
	Lucid Synchrone
	Synchronous variants
	Variant types
	Lifting variants to streams
	Pattern matching - on streams
	Control and clocks
	Synchronous pattern matching
	Using branch clocks
	Pattern matching - example
	Pattern-matching's semantics
	Pattern-matching's clock
	Compilation
	Conclusion (1/2)
	Conclusion (2/2)

