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•Compiles Esterel into very efficient C code 

•Minimizes runtime overhead 

•Compile time

•Runtime

CEC



Input I,S ;
Output O,Q;

An Example

Modeling a shared resource
every S do

await I;
weak abort

sustain R
when immediate A;
emit O

||
loop

pause; pause;
present R then

emit A
end present

end loop
||
loop

present R then
pause; emit Q

else
pause

end present
end loop
end every
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Takes I, and passes to 
group two through R

Responds to R with A 

Makes Q delayed version of R
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The GRC Representation

Developed by Potop-Butucaru



Input I,S ;
Output O,Q;
Signal R,A in 

every S do
await I;
weak abort

sustain R
when immediate A;
emit O

||
loop

pause; pause;
present R then

emit A
end present

end loop
||

loop
present R then

pause; emit Q
else

pause
end present

end loop
end every

Control Flow Graph



Executes once per cycle from 
entry to exit

Input I,S ;
Output O,Q;
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every S do
await I;
weak abort

sustain R
when immediate A;
emit O

||
loop

pause; pause;
present R then

emit A
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loop
present R then

pause; emit Q
else
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end present

end loop
end every



Input I,S ;
Output O,Q;
Signal R,A in 

every S do
await I;
weak abort

sustain R
when immediate A;
emit O

||
loop

pause; pause;
present R then

emit A
end present

end loop
||

loop
present R then

pause; emit Q
else

pause
end present

end loop
end every



await I;
weak abort

sustain R
when immediate A;
emit O
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1. Group the GRC nodes into clusters that can 
run without interruption

2. Assign levels – Partial Ordering

Levels execute in order 

Clusters within the same level can execute in   
any order

Clustering



1. Group the GRC nodes into clusters that can 
run without interruption

2. Assign levels – Partial Ordering

Levels execute in order – Compile Time

Clusters within the same level can execute in   
any order

Clustering



1. Group the GRC nodes into clusters that can 
run without interruption

2. Assign levels – Partial Ordering

Levels execute in order – Compile Time

Clusters within the same level can execute in   
any order - Runtime

Clustering
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//Cluster0

goto *head1 ;

C1:

goto *next1 ;

C2:

goto *next2 ;

C3:

goto *next3 ;

C4:

goto *next4 ;
END_LEVEL2:

goto *head3 ;

END_LEVEL1:

goto *head2 ;

Linked list structure with nothing scheduled
Running A Cycle

Only have to run cluster 0 and jump to each level 



Schedule cluster 2 in the empty structure

next2 = head1, head1 = &&C2
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END_LEVEL1:
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Experimental Results



•Potop-Butucaru's grc2c

•Beats us on four of the five examples
•We are substantially faster on the largest 
example

•SAXO-RT compiler 

•We are faster on the three largest 
examples

Five medium sized examples



•Most closely resembles SAXO-RT 

•Basic blocks

•Sorted topologically

•Executed based on run-time scheduling decisions

•Two main differences:

•Only schedule blocks within the current cycle

•Linked list that eliminates conditional test instead of 
a scoreboard
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C/L: Clusters Per Level
The higher C/L the better

C/L
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Conclusion

• Results in improved running times over an 
existing compiler that uses a similar 
technique (SAXO-RT)

• Faster than the fastest-known compiler in 
the largest example (Potop-Butucaru's)



Source and object code for the compiler 
described in this presentation is freely 
available as part of the Columbia Esterel
Compiler distribution available from:

http://www.cs.columbia.edu/~sedwards/cec/


