
Compiling Esterel into
Static Discrete-Event Code

Vimal Kapadia and Michael Halas
IBM

Poughkeepsie
NY USA

vimal@kapadia.us michael@halas.us

Stephen A. Edwards
Columbia University

Computer Science Department
New York, USA

sedwards@cs.columbia.edu

Presented by

Michael Halas
SLAP 2004

•Compiles Esterel into very efficient C code

•Minimizes runtime overhead

•Compile time

•Runtime

CEC

Input I,S ;
Output O,Q;

An Example

Modeling a shared resource
every S do

await I;
weak abort

sustain R
when immediate A;
emit O

||
loop

pause; pause;
present R then

emit A
end present

end loop
||
loop

present R then
pause; emit Q

else
pause

end present
end loop
end every

await I;
weak abort

sustain R
when immediate A;
emit O

||
loop

pause; pause;
present R then

emit A
end present

end loop
||
loop

present R then
pause; emit Q

else
pause

end present
end loop
end every

Takes I, and passes to
group two through R

Responds to R with A

Makes Q delayed version of R

2

1

3

Takes I, and passes to
group two through R

Responds to R with A

Makes Q delayed version of R

2

1

3

await I;
weak abort

sustain R
when immediate A;
emit O

||
loop

pause; pause;
present R then

emit A
end present

end loop
||
loop

present R then
pause; emit Q

else
pause

end present
end loop
end every

Takes I, and passes to
group two through R

Responds to R with A

Makes Q delayed version of R

2

1

3

await I;
weak abort

sustain R
when immediate A;
emit O

||
loop

pause; pause;
present R then

emit A
end present

end loop
||
loop

present R then
pause; emit Q

else
pause

end present
end loop
end every

Takes I, and passes to
group two through R

Responds to R with A

Makes Q delayed version of R

2

1

3

await I;
weak abort

sustain R
when immediate A;
emit O

||
loop

pause; pause;
present R then

emit A
end present

end loop
||
loop

present R then
pause; emit Q

else
pause

end present
end loop
end every

The GRC Representation

Developed by Potop-Butucaru

Input I,S ;
Output O,Q;
Signal R,A in

every S do
await I;
weak abort

sustain R
when immediate A;
emit O

||
loop

pause; pause;
present R then

emit A
end present

end loop
||

loop
present R then

pause; emit Q
else

pause
end present

end loop
end every

Control Flow Graph

Executes once per cycle from
entry to exit

Input I,S ;
Output O,Q;
Signal R,A in

every S do
await I;
weak abort

sustain R
when immediate A;
emit O

||
loop

pause; pause;
present R then

emit A
end present

end loop
||

loop
present R then

pause; emit Q
else

pause
end present

end loop
end every

Input I,S ;
Output O,Q;
Signal R,A in

every S do
await I;
weak abort

sustain R
when immediate A;
emit O

||
loop

pause; pause;
present R then

emit A
end present

end loop
||

loop
present R then

pause; emit Q
else

pause
end present

end loop
end every

await I;
weak abort

sustain R
when immediate A;
emit O

����

1. Group the GRC nodes into clusters that can
run without interruption

2. Assign levels – Partial Ordering

Levels execute in order

Clusters within the same level can execute in
any order

Clustering

1. Group the GRC nodes into clusters that can
run without interruption

2. Assign levels – Partial Ordering

Levels execute in order – Compile Time

Clusters within the same level can execute in
any order

Clustering

1. Group the GRC nodes into clusters that can
run without interruption

2. Assign levels – Partial Ordering

Levels execute in order – Compile Time

Clusters within the same level can execute in
any order - Runtime

Clustering

every S do
await I;
weak abort

sustain R
when immediate A;
emit O

||
loop

pause; pause;
present R then

emit A
end present

end loop
||
loop

present R then
pause; emit Q

else
pause

end present
end loop
end every

every S do
await I;
weak abort

sustain R
when immediate A;
emit O

||
loop

pause; pause;
present R then

emit A
end present

end loop
||
loop

present R then
pause; emit Q

else
pause

end present
end loop
end every

every S do
await I;
weak abort

sustain R
when immediate A;
emit O

||
loop

pause; pause;
present R then

emit A
end present

end loop
||
loop

present R then
pause; emit Q

else
pause

end present
end loop
end every

every S do
await I;
weak abort

sustain R
when immediate A;
emit O

||
loop

pause; pause;
present R then

emit A
end present

end loop
||
loop

present R then
pause; emit Q

else
pause

end present
end loop
end every

Level 0

Level 1

Level 2

Running A Cycle

Level 0

Level 1

Level 2

Running A Cycle

Level 0

Level 1

Level 2

Running A Cycle

Level 0

Level 1

Level 2

Running A Cycle

Level 0

Level 1

Level 2

Running A Cycle

Level 0

Level 1

Level 2

Running A Cycle

Level 0

Level 1

Level 2

Running A Cycle

Level 0

Level 1

Level 2

Running A Cycle

Level 0

Level 1

Level 2

Running A Cycle

Level 0

Level 1

Level 2

Running A Cycle

Level 0

Level 1

Level 2

Running A Cycle

Level 0

Level 1

Level 2

Running A Cycle

//Cluster0

goto *head1 ;

C1:

goto *next1 ;

C2:

goto *next2 ;

C3:

goto *next3 ;

C4:

goto *next4 ;
END_LEVEL2:

goto *head3 ;

END_LEVEL1:

goto *head2 ;

Linked list structure with nothing scheduled
Running A Cycle

Only have to run cluster 0 and jump to each level

Schedule cluster 2 in the empty structure

next2 = head1, head1 = &&C2

//Cluster0

goto *head1 ;

C1:

goto *next1 ;

C2:

goto *next2 ;

C3:

goto *next3 ;

C4:

goto *next4 ;
END_LEVEL2:

goto *head3 ;

END_LEVEL1:

goto *head2 ;

//Cluster0

goto *head1 ;

C1:

goto *next1 ;

C2:

goto *next2 ;

C3:

goto *next3 ;

C4:

goto *next4 ;
END_LEVEL2:

goto *head3 ;

END_LEVEL1:

goto *head2 ;

Schedule cluster 2 to the empty structure

next2 = head1, head1 = &&C2

//Cluster0

goto *head1 ;

C1:

goto *next1 ;

C2:

goto *next2 ;

C3:

goto *next3 ;

C4:

goto *next4 ;
END_LEVEL2:

goto *head3 ;

END_LEVEL1:

goto *head2 ;

Schedule cluster 2 to the empty structure

next2 = head1, head1 = &&C2

Experimental Results

•Potop-Butucaru's grc2c

•Beats us on four of the five examples
•We are substantially faster on the largest
example

•SAXO-RT compiler

•We are faster on the three largest
examples

Five medium sized examples

•Most closely resembles SAXO-RT

•Basic blocks

•Sorted topologically

•Executed based on run-time scheduling decisions

•Two main differences:

•Only schedule blocks within the current cycle

•Linked list that eliminates conditional test instead of
a scoreboard

0

0.5

1

1.5

2

2.5

3

at
ds

Cho
ru

s

m
ca

20
0

tci
nt

W
ris

tw
at

ch

CEC

(switch)

grc2c

SAXO

(fast)

EC

V3

Time in seconds to execute 1 000 000 iterations of the
generated code on a 1.7 GHz Pentium 4.

The height of the bars indicates the time in seconds. (Shorter is better)

C/L: Clusters Per Level
The higher C/L the better

C/L

0

5

10

15

20

25

30

35

atds Chorus mca200 tcint Wristwatch

C/L

Conclusion

• Results in improved running times over an
existing compiler that uses a similar
technique (SAXO-RT)

• Faster than the fastest-known compiler in
the largest example (Potop-Butucaru's)

Source and object code for the compiler
described in this presentation is freely
available as part of the Columbia Esterel
Compiler distribution available from:

http://www.cs.columbia.edu/~sedwards/cec/

