
Separating Functional and Timed Aspects in
Transactional Abstraction Levels

Jérôme Cornet, Florence Maraninchi
and Laurent Maillet-Contoz

Verimag - CNRS - STMicroelectronics

Jérôme Cornet Synchron 2006 1

Outline

1 Context & Problem

2 Micmac Automata

3 Application

Jérôme Cornet Synchron 2006 2

Context & Problem

Outline

1 Context & Problem
Systems on Chip
Transactional Level Modeling
PV/PVT
Research approach

2 Micmac Automata

3 Application

Jérôme Cornet Synchron 2006 3

Context & Problem Systems on Chip

What are Systems on Chip ? (SoC)

Chips integrating all necessary electronic circuits for a
"system"

Applications : Cell phones, DVD, Set-top boxes, MP3
players, Automotive...

Key characteristics
High level of integration
Software and hardware parts
Application Specific Integrated Circuits

CPU RAM DSP

DMA I/O

Interconnect

Jérôme Cornet Synchron 2006 4

Context & Problem Systems on Chip

Systems on Chip’s Design

Software: C/C++ Programming
Hardware: Component Description at

Register Transfert Level

Synchronous Circuit Description

Synthesisable

Usage: manufacture the SoC

Transaction Level Modeling

Clockless

Explicit system synchronisations

Usage: Embedded Software development,
System Integration, Architecture Evaluation

RTL

Gate level

Layout

TLM

Jérôme Cornet Synchron 2006 5

Context & Problem Transactional Level Modeling

TLM : example

Generator 1

1 2

1 2

Shared memory Generator 2

Timer

Bus 1

Bus 2

Jérôme Cornet Synchron 2006 6

Context & Problem Transactional Level Modeling

TLM: communications

RTL

TLM

Bus communications abstraction

Jérôme Cornet Synchron 2006 7

Context & Problem Transactional Level Modeling

TLM: implementation

TL-Models implemented in SystemC

C++ Library/“Language”
Non-preemptive simulation kernel
Standardised (IEEE 1666)
http://www.systemc.org

TLM Classes written in SystemC

STMicroelectronics’ TAC Protocol
http://www.greensocs.com/TACPackage
Standardisation in progress...
(OSCI TLM Working Group)

Jérôme Cornet Synchron 2006 8

Context & Problem PV/PVT

Transactional Levels

Conflicting needs at transaction-level
Timed/Untimed, Granularity...

TLM Programmer’s View (PV)

Time has no meaning

Coarse communications granularity

For Embedded Software Development,
System Integration

TLM Programmer’s View with Time (PVT)

Precise timings induced by microarchitecture

Bus communications granularity

For Architecture Evaluation, Validation of
Timed Aspects of Embedded Software

RTL

Gate level

Layout

TLM PVT

TLM PV

Jérôme Cornet Synchron 2006 9

Context & Problem PV/PVT

PV/PVT : trace example

RTL

RTL
Transactions

PVT

PV

Read ReadWrite Read Write WriteRead Write

Read Write

Read ReadWrite Read Write WriteRead Write

Memory transfer:

Jérôme Cornet Synchron 2006 10

Context & Problem PV/PVT

PV/PVT : constraints

RTL

TLM PVT

TLM PV

Same
functional
behavior

Same
functional
behavior

Same
timed
behavior

Jérôme Cornet Synchron 2006 11

Context & Problem Research approach

PV/PVT: approach

For each component:

Build the PV model
Lightweight modeling effort
Early availability in the design flow
Simulation speed

Then build the PVT model:
With unmodified PV model
By adding “T ” informations available later on

Hope: retain “good” properties of the PV model

Jérôme Cornet Synchron 2006 12

Context & Problem Research approach

Formalizing the approach (1/3)

Capture the elements of the equation: PVT = PV ⊕ T

PV : unmodified PV model of the component

T : standalone microarchitecture model

⊕ : "glue", synchronization between PV and T

Properties to prove:

Functional consistency between PV and PVT

Logical consistency betwen PV and T
(local and global)

Matching between elementary timings and their effective
contribution

Jérôme Cornet Synchron 2006 13

Context & Problem Research approach

Formalizing the approach (2/3)

Previous work from Matthieu Moy [MMMC05][Moy05]

SystemC semantics using HPIOM
(synchronous automata)

Connection to model-checkers (Lesar, SMV...):
Lussy toolchain

Our goals here:

Define a more direct semantics for SystemC/TLM

Not for formal verification...

.. but for experiments with manually written models

Generic Proof for PV/PVT

Jérôme Cornet Synchron 2006 14

Context & Problem Research approach

Formalizing the approach (3/3)

Generator 1

1 2

1 2

Shared memory Generator 2

Timer

Bus 1

Bus 2

Chapter 6. BISE: Semantics of SystemC and TLM Constructs in Terms of Automata

Sleeping 1

Eligible Running

?wait 2

?elect

?wait 1

[c1] !wakeup

[c2] !wakeup

Sleeping 2

Synchronizations:

elect: received from the scheduler when the process

is chosen,

wakeup: sent to the control structure,

wait 2: received from the control structure when a

wait statement is reached,

c1 and c2 correspond to the conditions the process is

waiting for in the corresponding “sleeping” control

point.

Figure 6.4: State of an SC THREAD

[c2]

[c3]

?elect

!wakeup

!wakeup

Sleeping

!wakeup

[static sensitivity]

calls to next trigger

Running

Eligible

Figure 6.5: State of an SC METHOD

96/188 Verimag/STMicroelectronics — December, 9th 2005 Matthieu Moy

Chapter 6. BISE: Semantics of SystemC and TLM Constructs in Terms of Automata

Sleeping 1

Eligible Running

?wait 2

?elect

?wait 1

[c1] !wakeup

[c2] !wakeup

Sleeping 2

Synchronizations:

elect: received from the scheduler when the process

is chosen,

wakeup: sent to the control structure,

wait 2: received from the control structure when a

wait statement is reached,

c1 and c2 correspond to the conditions the process is

waiting for in the corresponding “sleeping” control

point.

Figure 6.4: State of an SC THREAD

[c2]

[c3]

?elect

!wakeup

!wakeup

Sleeping

!wakeup

[static sensitivity]

calls to next trigger

Running

Eligible

Figure 6.5: State of an SC METHOD

96/188 Verimag/STMicroelectronics — December, 9th 2005 Matthieu Moy

6.4. Communication Mechanisms

wait_loop

wait_loop

wait_loop start

init

[no answer]

exec

fifo

ch_start

channel_is_free

ready

pop_req

! pop_req

! channel_is_free
? ch_start

! channel_is_free

? return_status

! wait(time)

desync
? elect

! start_slave

? port_rdy

! really_start

? answer
acked

Figure 6.14: Model for the TAC seq

Figure 6.14 for details.

The channel waits for a transaction, pops it from the FIFO, sends a signal to the slave and waits for the

answer. If no slave answered, it returns an exit status “no response”, otherwise, it starts the processing of

the transaction, waits for its completion, and simulates a wait statement to let other processes be executed.

One of the difficulties here is to know which process is running to execute the wait statements cor-

rectly. In the SystemC implementation, this corresponds to the context of simulation, which is global for

the simulation, and independent of the position of the control flow. In HPIOM, an automaton other than a

process automaton (for instance, the automaton for the channel) doesn’t know which process it is running.

The wait signal emitted after processing the transaction, for example, is different depending on the pro-

cess that launched this transaction. In this case, it is easy since we have a different loop for each process

able to use the channel. The wait signal emitted in each loop will therefore not be the same. In the pro-

cessing of the slave method, a wait statement is forbidden by coding guidelines and would anyway lead

to undefined behavior with the current implementation of TAC. We assume that this guideline is verified (it

could easily be checked with a lint tool).

6.4.2.2.3 Entry point for the Slave Module. The transaction will be executed in the slave module, but

the communication from the channel to the slave is not direct. We create an intermediate automaton that

will receive the transaction and call either the automaton of the read method or the one of the write method.

The automaton is represented in Figure 6.15.

Remark:
This intermediate automaton has a role similar to what is done in the C++

implementation in the method tac prim slave::transport : receive

a transaction and call the appropriate slave method depending on the type of

transaction.

6.4.2.2.4 Processing of the Transaction in the Slave Module. For the TAC slave module, we build one

automaton for each “slave method” (ReadAccess, WriteAccess, . . .). The automaton is mainly the

automaton for the body of those methods (as explained in 6.2), encapsulated in a loop (Figure 6.16). The

Matthieu Moy Ph.D Thesis 103/188

1

2

 call(write1_)

3

 ret(write1_)

4

 call(write2_)

4b

 ret(write2_)

4c

 @int1_2:=1

5

 @int2_2:=1

 {and(not(int1_1=1),not(int2_1=1))}

6

 {int1_1=1} s1_ok

7

 {int2_1=1} s2_ok

 {not(int2_1=1)}

8

 {int2_1=1} s2_ok

 {not(int1_1=1)}

 {int1_1=1} s1_ok

9

 finished

1 {not(start1=1)}

2

 {start1=1} @start1:=0 started1

3

 call(interrupt1_)

 ret(interrupt1_)

1

2

 begin(write1_)

3

 @start1:=1

 end(write1_)

Lussy

×

×
×

SMV Lesar

Manual Abstraction
and Writing

! !
Results

Jérôme Cornet Synchron 2006 15

Context & Problem Research approach

SystemC TLM Modeling (1/3)

Different modules connected by “wires”

Communications between modules:
functions calls to communications functions

Generator
PV

RAM
PV

MPEG
PV

Bus

Initiator port

Target port

Interrupt input

Interrupt output

Jérôme Cornet Synchron 2006 16

Context & Problem Research approach

SystemC TLM Modeling (2/3)

Two kind of code inside modules:
Processes (SC_THREAD, SC_METHOD)
Communications functions

Synchronizations inside a module:
Shared variables
SystemC’s events (sc_event)

Generator
PVvoid process()

{
 p.write(a, d);

 if (it)
 d2 = p.read(a2);
 ...
}

P
void interrupt(...)
{
 it = true;

 ...
}

it

Jérôme Cornet Synchron 2006 17

Context & Problem Research approach

SystemC TLM Modeling (3/3)

Non-preemptive scheduling of processes:
Processes choose when to yield
Atomicity
Non-determinism

Yield:
Wait for some time: wait(2, SC_NS);

Wait for a sc_event: wait(e);

SystemC’s events are instantaneous

Jérôme Cornet Synchron 2006 18

Micmac Automata

Outline

1 Context & Problem

2 Micmac Automata
Formal settings
SystemC TLM Modeling with Micmac automata

3 Application

Jérôme Cornet Synchron 2006 19

Micmac Automata Formal settings

Micmac Automata (1/2)

1 [X<=5]

2

 [X=5] X:=0

3

 alpha

4

 call(f)

5

 ret(f)

 {i=1} @i:=0 ok

 {not(i=1)}

A micmac automaton is a tuple
(Q, qi , V , ϕi , C, L, I, A, T , M) where:

Q is a set of control points,
qi is the initial control point,
V is a set of variables,
ϕi is the initial valuation of the
variables,
C is a set of clocks,
L is a set of internal labels,
I is a set of function identifiers,
A is a set of variable assignments,

Jérôme Cornet Synchron 2006 20

Micmac Automata Formal settings

Micmac Automata (2/2)

1 [X<=5]

2

 [X=5] X:=0

3

 alpha

4

 call(f)

5

 ret(f)

 {i=1} @i:=0 ok

 {not(i=1)}

A micmac automaton is a tuple
(Q, qi , V , ϕi , C, L, I, A, T , M) where:

T is the transition relation:

T ⊆ Q×
{call , ret , begin, end} × I
∪P(L ∪ {ε})
×CG ×G × P(A)× C
×Q

M indicates each state’s type:

M : Q → {true, false}

q 7→
{

true if q is a Macro-state
false if q is a micro-state

Jérôme Cornet Synchron 2006 21

Micmac Automata Formal settings

Micmac Product (without clocks)

Binary product A = A1 ×A2

For each state q ⊆ Q1 ×Q2:
M(q) = M1(q1) ∧M2(q2)

If M1(q1), each transition t1 of q1 belongs to q

If M2(q2), each transition t2 of q2 belongs to q

Function call semantics:

q1 call(f)−→ q′1 ∈ A1, q2 begin(f)−→ q′2 ∈ A2 ⇒ (q1, q2)
ε−→ (q′1, q′2) ∈ A

q1 ret(f)−→ q′1 ∈ A1, q2 end(f)−→ q′2 ∈ A2 ⇒ (q1, q2)
ε−→ (q′1, q′2) ∈ A

Cutting: for f function identifier, remove every transition
holding call(f) or ret(f) or begin(f) or end(f)

Jérôme Cornet Synchron 2006 22

Micmac Automata Formal settings

Example: product

1

2

 alpha

3

 call(f1)

4

 ret(f1)

×

1

2

 begin(f1)

3

 beta

 end(f1)
=

1_1

2_1

 alpha

1_2

 begin(f1)

3_2

 e

1_3

 beta

 end(f1)

2_3

 alpha

3_3

 call(f1)

 beta

4_1

 e

4_2

 begin(f1)

4_3

 beta

 end(f1)

Jérôme Cornet Synchron 2006 23

Micmac Automata Formal settings

Example: product with cutting

1

2

 alpha

3

 call(f1)

4

 ret(f1)

×∆

1

2

 begin(f1)

3

 beta

 end(f1)
=

1_1

3_2

 alpha

4_1

 beta

Jérôme Cornet Synchron 2006 24

Micmac Automata Formal settings

Micmac Product (with clocks)

Two “kinds” of transition:
Transition holding [true]: untimed transitions
Transition with non-trivial clock guards: timed transitions

Untimed transitions: apply previous product

For each timed transitions

q1 [cg1] {g1}−→ q′1 ∈ A1, q2 [cg2] {g2}−→ q′2 ∈ A2:

(q1, q2)
[cg1∧¬Π2] {g1∧Ω1∧Ω2}−→ (q′1, q2) ∈ A

(q1, q2)
[cg1∧cg2] {g1∧g2∧Ω1∧Ω2}−→ (q′1, q′2) ∈ A

(q1, q2)
[cg2∧¬Π1] {g2∧Ω1∧Ω2}−→ (q1, q′2) ∈ A

Jérôme Cornet Synchron 2006 25

Micmac Automata Formal settings

Micmac Product (with clocks)

For each timed transitions

q1 [cg1] {g1}−→ q′1 ∈ A1, q2 [cg2] {g2}−→ q′2 ∈ A2:

(q1, q2)
[cg1∧¬Π2] {g1∧Ω1∧Ω2}−→ (q′1, q2) ∈ A

(q1, q2)
[cg1∧cg2] {g1∧g2∧Ω1∧Ω2}−→ (q′1, q′2) ∈ A

(q1, q2)
[cg2∧¬Π1] {g2∧Ω1∧Ω2}−→ (q1, q′2) ∈ A

Π1 =
∧

cg ∈ t1 from q1

cg Π2 =
∧

cg ∈ t2 from q2

cg

Ω1 =
∧

g ∈ t1 from q1

¬g Ω2 =
∧

g ∈ t2 from q2

¬g

Jérôme Cornet Synchron 2006 26

Micmac Automata Formal settings

Example: product with clockguards

1 [X<=5]

2

 [X=5]

3

 alpha

×

1 [Y<=10]

2

 [Y=10]

3

 beta

×

1

2

 gamma1

3

 gamma2

=

1_1_1 [and(X<=5,Y<=10)] {not(true)}

2_1_1

 [and(X=5,Y!=10)] {not(true)}

2_2_1

 [and(X=5,Y=10)] {not(true)} 1_2_1

 [and(Y=10,X!=5)] {not(true)}

1_1_2

 gamma1

 [Y<=10] {not(true)}

 [Y=10] {not(true)}

3_1_1

 alpha

2_1_2

 gamma1

2_3_1

 beta

3_2_1

 alpha

2_2_2

 gamma1

 [X=5] {not(true)}

 [X<=5] {not(true)}

1_3_1

 beta

1_2_2

 gamma1

1_1_3

 gamma2

 [and(X<=5,Y<=10)]

2_1_3

 [and(X=5,Y!=10)]

2_2_3

 [and(X=5,Y=10)] 1_2_3

 [and(Y=10,X!=5)]

 [Y<=10] {not(true)}

 [Y=10] {not(true)}

3_1_3

 alpha

2_3_3

 beta

3_2_3

 alpha

 [X=5] {not(true)}

 [X<=5] {not(true)}

1_3_3

 beta

 [X<=5] {not(true)}

 [X=5] {not(true)}

1_3_2

 gamma1 gamma2

 [X<=5]

 [X=5]

3_3_1

 alpha

2_3_2

 gamma1 gamma2

3_3_3

 alpha

 [Y<=10] {not(true)}

 [Y=10] {not(true)}

3_1_2

 gamma1 gamma2

 [Y<=10]

 [Y=10]

 beta

3_2_2

 gamma1 gamma2

 beta

3_3_2

 gamma1 gamma2

 gamma2

 gamma2

 gamma2

Jérôme Cornet Synchron 2006 27

Micmac Automata Formal settings

Example: product with clockguards

1_1_1 [and(X<=5,Y<=10)] {not(true)}

2_1_1

 [and(X=5,Y!=10)] {not(true)}

2_2_1

 [and(X=5,Y=10)] {not(true)} 1_2_1

 [and(Y=10,X!=5)] {not(true)}

1_1_2

 gamma1

 [Y<=10] {not(true)}

 [Y=10] {not(true)}

3_1_1

 alpha

2_1_2

 gamma1

2_3_1

 beta

3_2_1

 alpha

2_2_2

 gamma1

 [X=5] {not(true)}

 [X<=5] {not(true)}

1_3_1

 beta

1_2_2

 gamma1

1_1_3

 gamma2

 [and(X<=5,Y<=10)]

2_1_3

 [and(X=5,Y!=10)]

2_2_3

 [and(X=5,Y=10)] 1_2_3

 [and(Y=10,X!=5)]

 [Y<=10] {not(true)}

 [Y=10] {not(true)}

3_1_3

 alpha

2_3_3

 beta

3_2_3

 alpha

 [X=5] {not(true)}

 [X<=5] {not(true)}

1_3_3

 beta

 [X<=5] {not(true)}

 [X=5] {not(true)}

1_3_2

 gamma1 gamma2

 [X<=5]

 [X=5]

3_3_1

 alpha

2_3_2

 gamma1 gamma2

3_3_3

 alpha

 [Y<=10] {not(true)}

 [Y=10] {not(true)}

3_1_2

 gamma1 gamma2

 [Y<=10]

 [Y=10]

 beta

3_2_2

 gamma1 gamma2

 beta

3_3_2

 gamma1 gamma2

 gamma2

 gamma2

 gamma2

Jérôme Cornet Synchron 2006 28

Micmac Automata Formal settings

Example: product with clockguards

1 [X<=5]

2

 [X=5]

3

 alpha

×

1 [Y<=10]

2

 [Y=10]

3

 beta

×

1

2

 gamma1

3

 gamma2

=

1_1_1 [and(X<=5,Y<=10)] {not(true)}

1_1_2

 gamma1

1_1_3

 gamma2

 [and(X<=5,Y<=10)]

2_1_3

 [and(X=5,Y!=10)]

 [Y<=10] {not(true)}

3_1_3

 alpha

 [Y<=10]

3_2_3

 [Y=10]

3_3_3

 beta

Jérôme Cornet Synchron 2006 29

Micmac Automata Formal settings

Logical Constraints on Micmac automata

The following states are Macro states:

The initial state

A “final” state

A state with at least one timed transition

A state pointed to by a timed transition

Jérôme Cornet Synchron 2006 30

Micmac Automata SystemC TLM Modeling with Micmac automata

SystemC TLM Modeling with Micmac automata

One micmac automaton per:
Process
Communication function

Function calls model inter-modules communications

Macro states represent “yielding points”

Shared variables between automata of the same module
Model classical shared variables
Model SystemC’s events

Jérôme Cornet Synchron 2006 31

Micmac Automata SystemC TLM Modeling with Micmac automata

Example

void process()
{
 a();

 wait(it_event);

 b();
}

P
void interrupt()
{
 it_event.notify();
}

Jérôme Cornet Synchron 2006 32

Micmac Automata SystemC TLM Modeling with Micmac automata

Example: product

1

2

 a

3

 @it_b:=1

 {not(it_a=1)}

4

 {it_a=1}

5

 b

×

1

2

 begin(interrupt)

3

 {it_b=1} @it_a:=1 {it_b=0}

 end(interrupt)

=

1_1

3_1

 a

1_3

 begin(interrupt)

3_3

 begin(interrupt)

 end(interrupt)

3_1__1

 end(interrupt) begin(interrupt)

5_1

 b

5_3

 begin(interrupt) end(interrupt)

Jérôme Cornet Synchron 2006 33

Micmac Automata SystemC TLM Modeling with Micmac automata

Example

void process()
{
 a();

 wait(it_event);

 b();
}

P
void interrupt()
{
 it_event.notify();
}

void process()
{
 c();

 port.interrupt();
}

P

Jérôme Cornet Synchron 2006 34

Micmac Automata SystemC TLM Modeling with Micmac automata

Example: product

1_1

3_1

 a

1_3

 begin(interrupt)

3_3

 begin(interrupt)

 end(interrupt)

3_1__1

 end(interrupt) begin(interrupt)

5_1

 b

5_3

 begin(interrupt) end(interrupt)

×

1

2

 c

3

 call(interrupt)

4

 ret(interrupt)

=

1_1_1

3_1_1

 a

1_1_2

 c

3_1_2

 c

3_1_4

 a

5_1_4

 b

Jérôme Cornet Synchron 2006 35

Application

Outline

1 Context & Problem

2 Micmac Automata

3 Application
PV/PVT Modeling
Global Comparison
Compositional Comparison

Jérôme Cornet Synchron 2006 36

Application PV/PVT Modeling

Example PV

Generator
PV

IP #1
PV

IP #2
PV

Bus

Initiator port

Target port

Interrupt input

Interrupt output

Jérôme Cornet Synchron 2006 37

Application PV/PVT Modeling

Example PVT

Initiator port

Target port

Interrupt input

Interrupt output

IP #1
T

IP #1
PV

Generator
T

Generator
PV

Bus - PV fiber

IP #2
PV

IP #2
T

Bus - PVT fiber

Jérôme Cornet Synchron 2006 38

Application PV/PVT Modeling

Generator PV

1

2

 call(write1)

3

 ret(write1)

4

 call(write2)

4b

 ret(write2)

4c

 @int1_2:=1

5

 @int2_2:=1

 {and(not(int1_1=1),not(int2_1=1))}

6

 {int1_1=1} s1_ok

7

 {int2_1=1} s2_ok

 {not(int2_1=1)}

8

 {int2_1=1} s2_ok

 {not(int1_1=1)}

 {int1_1=1} s1_ok

9

 finished

1

2

 begin(interrupt1)

3

 {int1_2=1} @int1_1:=1 int1_received {not(int1_2=1)}

 end(interrupt1)

1

2

 begin(interrupt2)

3

 {int2_2=1} @int2_1:=1 int2_received {not(int2_2=1)}

 end(interrupt2)

Jérôme Cornet Synchron 2006 39

Application PV/PVT Modeling

IP #1 PV

1 {not(start1=1)}

2

 {start1=1} @start1:=0 started1

3

 call(interrupt1)

 ret(interrupt1)

1

2

 begin(write1)

3

 @start1:=1

 end(write1)

Jérôme Cornet Synchron 2006 40

Application PV/PVT Modeling

IP #2 PV

1 {not(start2=1)}

2

 {start2=1} @start2:=0 started2

3

 call(interrupt2)

 ret(interrupt2)

1

2

 begin(write2)

3

 @start2:=1

 end(write2)

Jérôme Cornet Synchron 2006 41

Application PV/PVT Modeling

PV Platform’s behavior

1

2

 started1

13

 started2

3

 int1_received

14

 int2_received

8

10

11

 started2

12

 int2_received

6

7

 s2_ok

 finished

 s2_ok

15

16

 started1

17

 int1_received

9

 s1_ok

 s1_ok

 s1_ok

4

 started2

18

19

 int1_received

 s1_ok s2_ok

 5

 int2_received

 s1_ok s2_ok

 s2_ok started1

Jérôme Cornet Synchron 2006 42

Application PV/PVT Modeling

Generator PVT

1

2

 begin(write1_)

3

 call(write1_pvt)

4

 ret(write1_pvt)

5

 call(write1)

6

 ret(write1)

 end(write1_)

1

2

 begin(write2_)

3

 call(write2_pvt)

4

 ret(write2_pvt)

5

 call(write2)

6

 ret(write2)

 end(write2_)

1

2

 call(write1_)

3

 ret(write1_)

4

 call(write2_)

4b

 ret(write2_)

4c

 @int1_2:=1

5

 @int2_2:=1

 {and(not(int1_1=1),not(int2_1=1))}

6

 {int1_1=1} s1_ok

7

 {int2_1=1} s2_ok

 {not(int2_1=1)}

8

 {int2_1=1} s2_ok

 {not(int1_1=1)}

 {int1_1=1} s1_ok

9

 finished

1

2

 begin(interrupt1)

3

 {int1_2=1} @int1_1:=1 int1_received {not(int1_2=1)}

 end(interrupt1)

1

2

 begin(interrupt2)

3

 {int2_2=1} @int2_1:=1 int2_received {not(int2_2=1)}

 end(interrupt2)

Jérôme Cornet Synchron 2006 43

Application PV/PVT Modeling

IP #1 PVT

1 {not(start1=1)}

2

 {start1=1} @start1:=0 started1

3

 call(interrupt1_)

 ret(interrupt1_)

1

2

 begin(write1_)

3

 @start1:=1

 end(write1_)

1

2

 begin(interrupt1_)

3

 Z:=0

 [Z<=5]

4

 [Z=5]

5

 call(interrupt1)

6

 ret(interrupt1)

 end(interrupt1_)

1

2

 begin(write1)

3

 call(write1_)

4

 ret(write1_)

 end(write1)

1

2

 begin(write1_pvt)

3

 X:=0

 [X<=2]

4

 [X=2]

5

 write1_pvt_ok

 end(write1_pvt)

Jérôme Cornet Synchron 2006 44

Application PV/PVT Modeling

IP #2 PVT

1 {not(start2=1)}

2

 {start2=1} @start2:=0 started2

3

 call(interrupt2_)

 ret(interrupt2_)

1

2

 begin(write2_)

3

 @start2:=1

 end(write2_)

1

2

 begin(interrupt2_)

3

 T:=0

 [T<=10]

4

 [T=10] T:=0

5

 call(interrupt2)

6

 ret(interrupt2)

 end(interrupt2_)

1

2

 begin(write2)

3

 call(write2_)

4

 ret(write2_)

 end(write2)

1

2

 begin(write2_pvt)

3

 Y:=0

 [Y<=30]

4

 [Y=30]

5

 write2_pvt_ok

 end(write2_pvt)

Jérôme Cornet Synchron 2006 45

Application PV/PVT Modeling

PVT Platform’s behavior

1

2

 write1_pvt_ok

6

7

 s2_ok

5

 int2_received

4

 started2

3

 write2_pvt_ok

 started1

Jérôme Cornet Synchron 2006 46

Application Global Comparison

Comparison

Functional consistency between PV and PVT ?
Comparison done at platform level
Formally:

Global functional consistency
PV : micmac automata of PV Platform
PVT : micmac automaton of PVT Platform

Using traces:

tr(PVT) |PV ⊆ tr(PV)

On automata:

PVT |PV ≺ PV

Jérôme Cornet Synchron 2006 47

Application Global Comparison

Comparison

1

2

 started1

13

 started2

3

 int1_received

14

 int2_received

8

10

11

 started2

12

 int2_received

6

7

 s2_ok

 finished

 s2_ok

15

16

 started1

17

 int1_received

9

 s1_ok

 s1_ok

 s1_ok

4

 started2

18

19

 int1_received

 s1_ok s2_ok

 5

 int2_received

 s1_ok s2_ok

 s2_ok started1

vs

1

2

 write1_pvt_ok

6

7

 s2_ok

5

 int2_received

4

 started2

3

 write2_pvt_ok

 started1

?

Jérôme Cornet Synchron 2006 48

Application Global Comparison

Comparison

1

2

 started1

13

 started2

3

 int1_received

14

 int2_received

8

10

11

 started2

12

 int2_received

6

7

 s2_ok

 finished

 s2_ok

15

16

 started1

17

 int1_received

9

 s1_ok

 s1_ok

 s1_ok

4

 started2

18

19

 int1_received

 s1_ok s2_ok

 5

 int2_received

 s1_ok s2_ok

 s2_ok started1

�

2

4

 started1

5

 started2

6

 int2_received

7

 s2_ok

?

Jérôme Cornet Synchron 2006 49

Application Global Comparison

Comparison

1

2

 started1

13

 started2

3

 int1_received

14

 int2_received

8

10

11

 started2

12

 int2_received

6

7

 s2_ok

 finished

 s2_ok

15

16

 started1

17

 int1_received

9

 s1_ok

 s1_ok

 s1_ok

4

 started2

18

19

 int1_received

 s1_ok s2_ok

 5

 int2_received

 s1_ok s2_ok

 s2_ok started1

�

2

4

 started1

5

 started2

6

 int2_received

7

 s2_ok

Jérôme Cornet Synchron 2006 50

Application Global Comparison

Generator PV bug...

1

2

 call(write1)

3

 ret(write1)

4

 call(write2)

4b

 ret(write2)

4c

 @int1_2:=1

5

 @int2_2:=1

 {and(not(int1_1=1),not(int2_1=1))}

6

 {int1_1=1} s1_ok

7

 {int2_1=1} s2_ok

 {not(int2_1=1)}

8

 {int2_1=1} s2_ok

 {not(int1_1=1)}

 {int1_1=1} s1_ok

9

 finished

1

2

 begin(interrupt1)

3

 {int1_2=1} @int1_1:=1 int1_received {not(int1_2=1)}

 end(interrupt1)

1

2

 begin(interrupt2)

3

 {int2_2=1} @int2_1:=1 int2_received {not(int2_2=1)}

 end(interrupt2)

Jérôme Cornet Synchron 2006 51

Application Global Comparison

Generator PV fixed

1

2

 call(write1)

3

 ret(write1)

4

 call(write2)

4b

 ret(write2)

4c

 @int1_2:=1

5

 @int2_2:=1

 {and(not(int1_1=1),not(int2_1=1))}

6

 {int1_1=1} s1_ok

7

 {int2_1=1} s2_ok

 {not(int2_1=1)}

8

 {int2_1=1} s2_ok

 {not(int1_1=1)}

 {int1_1=1} s1_ok

9

 finished

1

2

 begin(interrupt1)

3

 {int1_2=1} @int1_1:=1 int1_received {not(int1_2=1)}

 end(interrupt1)

1

2

 begin(interrupt2)

3

 {int2_2=1} @int2_1:=1 int2_received {not(int2_2=1)}

 end(interrupt2)

Jérôme Cornet Synchron 2006 52

Application Global Comparison

IP #1 PV bug...

1 {not(start1=1)}

2

 {start1=1} @start1:=0 started1

3

 call(interrupt1)

 ret(interrupt1)

1

2

 begin(write1)

3

 @start1:=1

 end(write1)

Jérôme Cornet Synchron 2006 53

Application Global Comparison

IP #1 PV fixed

1 {not(start1=1)}

2

 {start1=1} @start1:=0 started1

3

 call(interrupt1)

 ret(interrupt1)

1

2

 begin(write1)

3

 @start1:=1

 end(write1)

Jérôme Cornet Synchron 2006 54

Application Global Comparison

PV fixed Platform’s behavior

1

2

 started2

19

 started1

3

 started1

16

 int2_received

20

 int1_received

22

 started2

8

21

10

 started2

11

 int2_received

6

7

 s2_ok

 finished

 s2_ok

 9

 s1_ok

17

14

 started1

15

 int1_received

24

 s1_ok

18

 s2_ok

13

 int1_received

 s1_ok s2_ok

 s1_ok

4

 started2

 int1_received

23

 int2_received

 s1_ok

5

 int2_received

 s1_ok s2_ok

 s2_ok s2_ok int1_received

 int1_received

12

 int2_received

 s2_ok int1_received

 s2_ok started1

Jérôme Cornet Synchron 2006 55

Application Global Comparison

PV fixed Platform’s behavior

1

2

 started2

19

 started1

3

 started1

16

 int2_received

20

 int1_received

22

 started2

8

21

10

 started2

11

 int2_received

6

7

 s2_ok

 finished

 s2_ok

 9

 s1_ok

17

14

 started1

15

 int1_received

24

 s1_ok

18

 s2_ok

13

 int1_received

 s1_ok s2_ok

 s1_ok

4

 started2

 int1_received

23

 int2_received

 s1_ok

5

 int2_received

 s1_ok s2_ok

 s2_ok s2_ok int1_received

 int1_received

12

 int2_received

 s2_ok int1_received

 s2_ok started1

Jérôme Cornet Synchron 2006 56

Application Global Comparison

Comparison (fixed platform)

1

2

 started2

19

 started1

3

 started1

16

 int2_received

20

 int1_received

22

 started2

8

21

10

 started2

11

 int2_received

6

7

 s2_ok

 finished

 s2_ok

 9

 s1_ok

17

14

 started1

15

 int1_received

24

 s1_ok

18

 s2_ok

13

 int1_received

 s1_ok s2_ok

 s1_ok

4

 started2

 int1_received

23

 int2_received

 s1_ok

5

 int2_received

 s1_ok s2_ok

 s2_ok s2_ok int1_received

 int1_received

12

 int2_received

 s2_ok int1_received

 s2_ok started1

�

2

4

 started1

5

 started2

6

 int2_received

7

 s2_ok

Jérôme Cornet Synchron 2006 57

Application Compositional Comparison

Compositional Comparison

Rules about building PVT should be “per component”
Need for comparison at component level
Formally:

Local functional consistency
PV a: micmac automaton of a PV Component a
PVT a: micmac automaton of a PVT Component a
CPV : micmac automaton of the rest of the PV platform
CPVT : micmac automaton of the rest of the PVT platform

We want to define ≺∗ such as

PVT a|PV a ≺∗ PV a =⇒{
∀ CPVT , CPV / CPVT |CPV ≺∗ CPV ,
(PVT a × CPVT)|PV a, CPV ≺∗ PV a × CPV

Jérôme Cornet Synchron 2006 58

Application Compositional Comparison

Compositional Comparison

Result: actually ≺∗ ≡ ≺

Local functional consistency
PV a: micmac automaton of a PV Component a
PVT a: micmac automaton of a PVT Component a
CPV : micmac automaton of the rest of the PV platform
CPVT : micmac automaton of the rest of the PVT platform

PVT a|PV a ≺ PV a =⇒{
∀ CPVT , CPV / CPVT |CPV ≺ CPV ,
(PVT a × CPVT)|PV a, CPV ≺ PV a × CPV

Jérôme Cornet Synchron 2006 59

Application Compositional Comparison

Comparison for Generator (bugged version)
1

2

 call(write1)

93

 begin(interrupt1)

95

 begin(interrupt2)

91

 begin(interrupt2)

87

 begin(interrupt1)3

 ret(write1)

 end(interrupt1)

94

 begin(interrupt2)

 call(write1)

 end(interrupt2)

 call(write1)

 begin(interrupt1)

 end(interrupt2)

89

 begin(interrupt1)

92

 ret(write1)

 end(interrupt2)

 end(interrupt1)

 call(write1)

 end(interrupt1)

 begin(interrupt2)

88

 ret(write1)

 end(interrupt1)

 end(interrupt2)

90

 ret(write1)

4

 call(write2)

85

 call(write2)

64

 call(write2)

74

 call(write2)

 begin(interrupt2)

 begin(interrupt1)

5

 ret(write2)

 end(interrupt2)

 begin(interrupt1)

86

 ret(write2)

 end(interrupt1)

 begin(interrupt2)

65

 ret(write2)

 end(interrupt1)

 end(interrupt2)

75

 ret(write2)

6

 begin(interrupt1)

53

 begin(interrupt2)

77

 begin(interrupt1)

66

 end(interrupt2) end(interrupt1)

67

 begin(interrupt2)

76

 end(interrupt1)

84

 end(interrupt2)

7

 int1_received

54

 int2_received

78

 int1_received begin(interrupt1) begin(interrupt2)

68

 int2_received

 begin(interrupt1) end(interrupt2) end(interrupt1) begin(interrupt2)

61

57

 s2_ok

62

 begin(interrupt1)

63

 begin(interrupt2)

58

 begin(interrupt1)

59

 begin(interrupt2)

47

 int1_received

 int2_received 48

27

 s1_ok

41

 s2_ok

49

 begin(interrupt1)

50

 begin(interrupt2)

28

 s2_ok

29

 begin(interrupt1)

30

 begin(interrupt2)

 s1_ok

42

 begin(interrupt1)

43

 begin(interrupt2)

 int1_received

36

 int2_received

33

9

 s1_ok

34

 begin(interrupt1)

35

 begin(interrupt2)

10

 begin(interrupt1)

11

 begin(interrupt2)

 int1_received

 int2_received

 end(interrupt2)

55

 s2_ok

60

 begin(interrupt1)

 end(interrupt2)

12

 s1_ok

37

 s2_ok

45

 begin(interrupt1)

 end(interrupt2)

56

 begin(interrupt1)

46

 int1_received

 end(interrupt2)

13

 s2_ok

22

 begin(interrupt1)

 end(interrupt2)

 s1_ok

38

 begin(interrupt1)

 int1_received

82

 end(interrupt2)

80

 s1_ok

83

 begin(interrupt1)

 end(interrupt2)

81

 begin(interrupt1)

 int1_received

 end(interrupt1)

25

 s1_ok

40

 s2_ok

51

 begin(interrupt2)

 end(interrupt1)

8

 s1_ok

52

 begin(interrupt2)

 end(interrupt1)

 end(interrupt2)

23

 s1_ok

39

 s2_ok

 end(interrupt1) end(interrupt2)

79

 s1_ok

72

 end(interrupt1)

70

 s2_ok

73

 begin(interrupt2)

 end(interrupt1)

71

 begin(interrupt2)

 int2_received

 end(interrupt1)

26

 s2_ok

31

 begin(interrupt2)

 end(interrupt1)

 s1_ok

44

 begin(interrupt2) int2_received

 end(interrupt1)

32

 begin(interrupt2) int2_received

 end(interrupt1) end(interrupt2)

69

 s2_ok

 end(interrupt1)

 end(interrupt2)

 end(interrupt1)

 end(interrupt2)

24

 s2_ok end(interrupt1)

 end(interrupt2)

 s1_ok

 end(interrupt1)

 end(interrupt2)

18

 finished int1_received

 int2_received

 int1_received

 int2_received

14

 finished

 int1_received

 int1_received

17

 finished

 int2_received

 int2_received

16

 finished

 int1_received

 int2_received

 int1_received int2_received

 int1_received

 int1_received int2_received

 int2_received

19

 begin(interrupt1)

20

 begin(interrupt2)

 end(interrupt2)

15

 begin(interrupt1)

 end(interrupt1)

21

 begin(interrupt2)

 end(interrupt1)

 end(interrupt2)

 int1_received

 int2_received

 int1_received

 int2_received

�

1

2

 call(write1)

97

 begin(interrupt1)

99

 begin(interrupt2)

64

65

 begin(interrupt1)

66

 begin(interrupt2)

45

 int1_received

67

 int2_received

74

70

 s2_ok

75

 begin(interrupt1)

76

 begin(interrupt2)

71

 begin(interrupt1)

72

 begin(interrupt2)

60

 int1_received

 int2_received 58

33

 s1_ok

51

 s2_ok

59

 begin(interrupt1)

62

 begin(interrupt2)

34

 s2_ok

35

 begin(interrupt1)

39

 begin(interrupt2)

 s1_ok

52

 begin(interrupt1)

55

 begin(interrupt2)

 int1_received

56

 int2_received

43

16

 s1_ok

44

 begin(interrupt1)

63

 begin(interrupt2)

17

 begin(interrupt1)

40

 begin(interrupt2)

 int1_received

 int2_received

 end(interrupt2)

68

 s2_ok

73

 begin(interrupt1)

 end(interrupt2)

30

 s1_ok

49

 s2_ok

57

 begin(interrupt1)

 end(interrupt2)

69

 begin(interrupt1)

47

 int1_received

 end(interrupt2)

31

 s2_ok

32

 begin(interrupt1)

 end(interrupt2)

 s1_ok

50

 begin(interrupt1)

 int1_received

10

 end(interrupt2)

11

 begin(interrupt1)

12

 int1_received

41

 end(interrupt2)

14

 s1_ok

42

 begin(interrupt1)

 end(interrupt2)

15

 begin(interrupt1)

 int1_received

25

 finished

36

 int1_received

 int2_received

18

 int1_received

 int2_received

23

 finished

20

 int1_received

13

 int1_received

26

 begin(interrupt1)

29

 begin(interrupt2)

 end(interrupt2)

24

 begin(interrupt1)

27

 int1_received

 int2_received

22

 int1_received

 end(interrupt1)

28

 begin(interrupt2)

 end(interrupt1)

 end(interrupt2)

 int2_received

 end(interrupt1)

37

 s2_ok

38

 begin(interrupt2)

 end(interrupt1)

19

 begin(interrupt2)

 end(interrupt1)

 end(interrupt2)

21

 s2_ok

 end(interrupt1)

 end(interrupt2)

 finished

 int2_received

 int2_received

 finished

95

 begin(interrupt2)

91

 begin(interrupt1)

3

 ret(write1)

 end(interrupt1)

100

 end(interrupt1)

106

 begin(interrupt2)

101

 begin(interrupt2)

103

 end(interrupt1)

98

 begin(interrupt2)

 call(write1)

 end(interrupt2)

 begin(interrupt1)

 end(interrupt2)

 call(write1)

 begin(interrupt1)

 call(write1)

 begin(interrupt1)

 begin(interrupt2)

105

 end(interrupt2)

 begin(interrupt1)

 begin(interrupt1)

 end(interrupt2)

 call(write1)

 end(interrupt1)

104

 end(interrupt2)

102

 end(interrupt1)

93

 call(write1)

107

 end(interrupt2)

 end(interrupt2)

 end(interrupt1)

 call(write1)

 call(write1)

 begin(interrupt1)

 begin(interrupt2)

 end(interrupt2)

 begin(interrupt1)

96

 ret(write1)

 end(interrupt2)

 end(interrupt1)

 end(interrupt1)

 end(interrupt2)

 end(interrupt1)

 call(write1)

 end(interrupt2)

53

 int1_received

 int2_received

 int1_received int2_received

48

 int1_received

 int1_received

 end(interrupt1)

 s1_ok

54

 begin(interrupt2)

 end(interrupt1) s1_ok

 end(interrupt2)

 int2_received

81

 end(interrupt1)

82

 begin(interrupt2)

80

 int2_received

 end(interrupt1)

 end(interrupt2)

 end(interrupt1)

 s1_ok

 s2_ok

61

 begin(interrupt2)

 end(interrupt1)

 s1_ok

46

 begin(interrupt2)

 end(interrupt1)

 s1_ok s2_ok

 end(interrupt2)

 end(interrupt1)

 s1_ok

 end(interrupt2)

 int2_received

 int2_received

77

 end(interrupt1)

78

 begin(interrupt2)

79

 int2_received

83

 end(interrupt1) s2_ok

84

 begin(interrupt2)

 int2_received

 end(interrupt1) s2_ok end(interrupt2)

89

90

 ret(write2)

87

 end(interrupt1)

8

 begin(interrupt2)

 end(interrupt1) begin(interrupt2)

 begin(interrupt1)

85

 begin(interrupt2)

88

 ret(write2)

 end(interrupt2)

9

 ret(write2)

 end(interrupt1)

 end(interrupt1) end(interrupt2)

 end(interrupt2)

 begin(interrupt1)

86

 ret(write2)

 begin(interrupt2)

 end(interrupt1)

 call(write1)

 begin(interrupt1)

 end(interrupt2)

 call(write1)

4

 call(write2)

5

 end(interrupt1)

7

 begin(interrupt2)

 call(write2)

 begin(interrupt1)

6

 begin(interrupt2)

 call(write2)

 end(interrupt2)

 end(interrupt1)

 call(write2)

 end(interrupt2)

 begin(interrupt1)

 end(interrupt1)

92

 ret(write1)

 begin(interrupt2)

 call(write2)

 end(interrupt1)

 begin(interrupt2)

 end(interrupt1)

 end(interrupt2)

94

 ret(write1)

 call(write2)

 end(interrupt2)

 end(interrupt1)

 end(interrupt1)

 begin(interrupt2)

 begin(interrupt2)

 end(interrupt1)

 call(write1)

 call(write2)

 begin(interrupt1)

 begin(interrupt2) call(write2)

 end(interrupt2)

 begin(interrupt1)

 begin(interrupt1) begin(interrupt2)

 end(interrupt2) begin(interrupt1) ?

Jérôme Cornet Synchron 2006 60

Application Compositional Comparison

Comparison for Generator (bugged version)
1

2

 call(write1)

93

 begin(interrupt1)

95

 begin(interrupt2)

91

 begin(interrupt2)

87

 begin(interrupt1)3

 ret(write1)

 end(interrupt1)

94

 begin(interrupt2)

 call(write1)

 end(interrupt2)

 call(write1)

 begin(interrupt1)

 end(interrupt2)

89

 begin(interrupt1)

92

 ret(write1)

 end(interrupt2)

 end(interrupt1)

 call(write1)

 end(interrupt1)

 begin(interrupt2)

88

 ret(write1)

 end(interrupt1)

 end(interrupt2)

90

 ret(write1)

4

 call(write2)

85

 call(write2)

64

 call(write2)

74

 call(write2)

 begin(interrupt2)

 begin(interrupt1)

5

 ret(write2)

 end(interrupt2)

 begin(interrupt1)

86

 ret(write2)

 end(interrupt1)

 begin(interrupt2)

65

 ret(write2)

 end(interrupt1)

 end(interrupt2)

75

 ret(write2)

6

 begin(interrupt1)

53

 begin(interrupt2)

77

 begin(interrupt1)

66

 end(interrupt2) end(interrupt1)

67

 begin(interrupt2)

76

 end(interrupt1)

84

 end(interrupt2)

7

 int1_received

54

 int2_received

78

 int1_received begin(interrupt1) begin(interrupt2)

68

 int2_received

 begin(interrupt1) end(interrupt2) end(interrupt1) begin(interrupt2)

61

57

 s2_ok

62

 begin(interrupt1)

63

 begin(interrupt2)

58

 begin(interrupt1)

59

 begin(interrupt2)

47

 int1_received

 int2_received 48

27

 s1_ok

41

 s2_ok

49

 begin(interrupt1)

50

 begin(interrupt2)

28

 s2_ok

29

 begin(interrupt1)

30

 begin(interrupt2)

 s1_ok

42

 begin(interrupt1)

43

 begin(interrupt2)

 int1_received

36

 int2_received

33

9

 s1_ok

34

 begin(interrupt1)

35

 begin(interrupt2)

10

 begin(interrupt1)

11

 begin(interrupt2)

 int1_received

 int2_received

 end(interrupt2)

55

 s2_ok

60

 begin(interrupt1)

 end(interrupt2)

12

 s1_ok

37

 s2_ok

45

 begin(interrupt1)

 end(interrupt2)

56

 begin(interrupt1)

46

 int1_received

 end(interrupt2)

13

 s2_ok

22

 begin(interrupt1)

 end(interrupt2)

 s1_ok

38

 begin(interrupt1)

 int1_received

82

 end(interrupt2)

80

 s1_ok

83

 begin(interrupt1)

 end(interrupt2)

81

 begin(interrupt1)

 int1_received

 end(interrupt1)

25

 s1_ok

40

 s2_ok

51

 begin(interrupt2)

 end(interrupt1)

8

 s1_ok

52

 begin(interrupt2)

 end(interrupt1)

 end(interrupt2)

23

 s1_ok

39

 s2_ok

 end(interrupt1) end(interrupt2)

79

 s1_ok

72

 end(interrupt1)

70

 s2_ok

73

 begin(interrupt2)

 end(interrupt1)

71

 begin(interrupt2)

 int2_received

 end(interrupt1)

26

 s2_ok

31

 begin(interrupt2)

 end(interrupt1)

 s1_ok

44

 begin(interrupt2) int2_received

 end(interrupt1)

32

 begin(interrupt2) int2_received

 end(interrupt1) end(interrupt2)

69

 s2_ok

 end(interrupt1)

 end(interrupt2)

 end(interrupt1)

 end(interrupt2)

24

 s2_ok end(interrupt1)

 end(interrupt2)

 s1_ok

 end(interrupt1)

 end(interrupt2)

18

 finished int1_received

 int2_received

 int1_received

 int2_received

14

 finished

 int1_received

 int1_received

17

 finished

 int2_received

 int2_received

16

 finished

 int1_received

 int2_received

 int1_received int2_received

 int1_received

 int1_received int2_received

 int2_received

19

 begin(interrupt1)

20

 begin(interrupt2)

 end(interrupt2)

15

 begin(interrupt1)

 end(interrupt1)

21

 begin(interrupt2)

 end(interrupt1)

 end(interrupt2)

 int1_received

 int2_received

 int1_received

 int2_received

�

1

2

 call(write1)

97

 begin(interrupt1)

99

 begin(interrupt2)

95

 begin(interrupt2)

91

 begin(interrupt1)

3

 ret(write1)

 end(interrupt1)

100

 end(interrupt1)

101

 begin(interrupt2)

103

 end(interrupt1)

 call(write1)

106

 begin(interrupt2)

98

 begin(interrupt2)

 end(interrupt2)

 begin(interrupt1)

 end(interrupt2)

 call(write1)

 begin(interrupt1)

10

11

 begin(interrupt1)

64

 end(interrupt2)

12

 int1_received

65

 begin(interrupt1)

66

 begin(interrupt2)

 call(write1)

 begin(interrupt1)

 begin(interrupt2)

102

 end(interrupt1)

104

 end(interrupt2)

93

 call(write1)

 begin(interrupt1)

 end(interrupt2)

 call(write1)

 begin(interrupt2)

 end(interrupt1)

 call(write1)

 end(interrupt1)

 end(interrupt2)

94

 ret(write1)

 call(write1)

 begin(interrupt2)

 begin(interrupt1)

 end(interrupt2)

 begin(interrupt1)

96

 ret(write1)

 end(interrupt1)

 begin(interrupt2)

92

 ret(write1)

105

 end(interrupt2)

 begin(interrupt1)

 end(interrupt2)

 call(write1)

 begin(interrupt1) end(interrupt1)

 end(interrupt2)

 call(write1)

 end(interrupt1)

107

 end(interrupt2)

 end(interrupt1)

 begin(interrupt2)

 end(interrupt1)

 call(write1)

 begin(interrupt2)

13

 s1_ok

41

 end(interrupt1)

45

 end(interrupt2)

14

 end(interrupt1)

18

 end(interrupt2) s1_ok

42

 begin(interrupt1)

43

 end(interrupt2) s1_ok end(interrupt1)

46

 begin(interrupt2)

15

 begin(interrupt1)

16

 end(interrupt2) end(interrupt1)

19

 begin(interrupt2)

 int1_received

17

 begin(interrupt1)

40

 begin(interrupt2)

 int1_received

30

 int2_received

20

 int2_received

21

 s2_ok

 end(interrupt1)

36

 end(interrupt2)

4

 begin(interrupt1)

6

 begin(interrupt2)

87

 call(write2)

22

 finished

31

 s2_ok

32

 begin(interrupt1)

33

 end(interrupt2)

 end(interrupt1)

37

 s2_ok

38

 begin(interrupt2)

23

 end(interrupt1)

27

 end(interrupt2)

24

 begin(interrupt1)

25

 end(interrupt2)

 end(interrupt1)

28

 begin(interrupt2)

 int1_received

26

 begin(interrupt1)

29

 begin(interrupt2)

 int1_received

 int2_received

 int2_received

5

 end(interrupt1)

7

 begin(interrupt2)

89

 call(write2) end(interrupt2)

 begin(interrupt1)

85

 call(write2)

 begin(interrupt1)

 begin(interrupt2)

88

 ret(write2)

 finished int1_received

34

 s2_ok

35

 begin(interrupt1)

39

 begin(interrupt2)

 finished

 int1_received

 int2_received

 finished

 int2_received

 begin(interrupt1)

 begin(interrupt2) call(write2) end(interrupt2)

 end(interrupt1)

8

 call(write2)

 end(interrupt1)

 begin(interrupt2)

90

 ret(write2)

 int1_received

 s1_ok

44

 begin(interrupt1)

63

 begin(interrupt2)

 int1_received

56

 int2_received

47

 int2_received

 s1_ok

48

 s2_ok

 end(interrupt1)

60

 end(interrupt2)

 s1_ok

49

 end(interrupt1)

53

 end(interrupt2)

 s1_ok s2_ok

57

 begin(interrupt1)

58

 end(interrupt2)

 s1_ok s2_ok end(interrupt1)

61

 begin(interrupt2)

 s1_ok

50

 begin(interrupt1)

51

 end(interrupt2)

 s1_ok end(interrupt1)

54

 begin(interrupt2)

 int1_received

 s1_ok

52

 begin(interrupt1)

55

 begin(interrupt2)

 int1_received

 int2_received

 int2_received

 int1_received

 s1_ok s2_ok

59

 begin(interrupt1)

62

 begin(interrupt2)

 int1_received

 int2_received

 end(interrupt2)

 begin(interrupt1)

86

 ret(write2)

 int2_received

 int1_received

67

 int2_received

68

 s2_ok

73

 begin(interrupt1)

74

 end(interrupt2)

69

 begin(interrupt1)

70

 end(interrupt2) int1_received s2_ok

75

 begin(interrupt1)

76

 begin(interrupt2)

 int1_received

71

 begin(interrupt1)

72

 begin(interrupt2)

 end(interrupt2)

 end(interrupt1)

9

 ret(write2)

 int1_received

 int2_received

 int1_received

 int2_received

77

 end(interrupt1)

78

 begin(interrupt2)

79

 int2_received

 end(interrupt1)

80

 s2_ok

83

 end(interrupt2)

 end(interrupt1)

81

 end(interrupt2) end(interrupt1) s2_ok

84

 begin(interrupt2)

 end(interrupt1) end(interrupt2)

 end(interrupt1)

82

 begin(interrupt2)

 int2_received

 int2_received

 begin(interrupt1) end(interrupt2)

 begin(interrupt1) begin(interrupt2)

 end(interrupt1) begin(interrupt2)

 end(interrupt1)

 begin(interrupt2) call(write2) end(interrupt2)

 end(interrupt1)

 call(write2)

 end(interrupt2)

 begin(interrupt1)

 call(write2)

 end(interrupt2)

 end(interrupt1)

 end(interrupt1)

 end(interrupt2)

 call(write1)

 end(interrupt1)

 end(interrupt2)

Jérôme Cornet Synchron 2006 61

Application Compositional Comparison

Diagnostic analysis

Diagnostic gives for instance:
call(write1) ret(write1) begin(interrupt1) end(interrupt1) ...

→ interrupt1 call not supposed to arrive before call to
write2 in bugged PV version

PVT transform works only on PVs following some rules...

Bugged PVs wrongly model reality

Jérôme Cornet Synchron 2006 62

Application Compositional Comparison

Comparison for Generator (fixed version)
1

2

 call(write1)

93

 begin(interrupt1)

95

 begin(interrupt2)

92

 begin(interrupt2)

90

 begin(interrupt1)

3

 ret(write1)

 end(interrupt1)

94

 begin(interrupt2)

 call(write1)

 end(interrupt2)

 call(write1)

 begin(interrupt1)

 end(interrupt2)

91

 begin(interrupt1)

89

 ret(write1)

 end(interrupt2)

 end(interrupt1)

 call(write1)

 end(interrupt1)

 begin(interrupt2)

87

 ret(write1)

 end(interrupt1)

 end(interrupt2)

88

 ret(write1)

 begin(interrupt2)

 begin(interrupt1)

4

 call(write2)

 end(interrupt2)

 begin(interrupt1)

85

 call(write2) end(interrupt1)

 begin(interrupt2)

64

 call(write2)

 end(interrupt1)

 end(interrupt2)

74

 call(write2)

 begin(interrupt2)

 begin(interrupt1)

5

 ret(write2)

 end(interrupt2)

 begin(interrupt1)

86

 ret(write2)

 end(interrupt1)

 begin(interrupt2)

65

 ret(write2)

 end(interrupt1)

 end(interrupt2)

75

 ret(write2)

6

 begin(interrupt1)

53

 begin(interrupt2)

77

 begin(interrupt1)

66

 end(interrupt2) end(interrupt1)

67

 begin(interrupt2)

76

 end(interrupt1)

84

 end(interrupt2)

7

 int1_received

54

 int2_received

78

 int1_received begin(interrupt1) begin(interrupt2)

68

 int2_received

 begin(interrupt1) end(interrupt2) end(interrupt1) begin(interrupt2)

61

57

 s2_ok

62

 begin(interrupt1)

63

 begin(interrupt2)

58

 begin(interrupt1)

59

 begin(interrupt2)

47

 int1_received

 int2_received

48

27

 s1_ok

41

 s2_ok

49

 begin(interrupt1)

50

 begin(interrupt2)

28

 s2_ok

29

 begin(interrupt1)

30

 begin(interrupt2) s1_ok

42

 begin(interrupt1)

43

 begin(interrupt2) int1_received

36

 int2_received

33

9

 s1_ok

34

 begin(interrupt1)

35

 begin(interrupt2)

10

 begin(interrupt1)

11

 begin(interrupt2) int1_received

 int2_received

 end(interrupt2)

55

 s2_ok

60

 begin(interrupt1)

 end(interrupt2)

12

 s1_ok

37

 s2_ok

45

 begin(interrupt1)

 end(interrupt2)

56

 begin(interrupt1)

46

 int1_received

 end(interrupt2)

13

 s2_ok

22

 begin(interrupt1)

 end(interrupt2)

 s1_ok

38

 begin(interrupt1)

 int1_received

82

 end(interrupt2)

80

 s1_ok

83

 begin(interrupt1)

 end(interrupt2)

81

 begin(interrupt1)

 int1_received

 end(interrupt1)

25

 s1_ok

40

 s2_ok

51

 begin(interrupt2)

 end(interrupt1)

8

 s1_ok

52

 begin(interrupt2)

 end(interrupt1)

 end(interrupt2)

23

 s1_ok

39

 s2_ok

 end(interrupt1)

 end(interrupt2)

79

 s1_ok

 end(interrupt1)

26

 s2_ok

31

 begin(interrupt2)

 end(interrupt1)

 s1_ok

44

 begin(interrupt2)

 int2_received

 end(interrupt1)

32

 begin(interrupt2) int2_received

72

 end(interrupt1)

70

 s2_ok

73

 begin(interrupt2)

 end(interrupt1)

71

 begin(interrupt2)

 int2_received

 end(interrupt1) end(interrupt2)

69

 s2_ok

 end(interrupt1)

 end(interrupt2)

24

 s2_ok

 end(interrupt1)

 end(interrupt2)

 s1_ok

 end(interrupt1)

 end(interrupt2)

 end(interrupt1)

 end(interrupt2)

18

 finished int1_received

 int2_received

 int1_received

 int2_received

14

 finished

 int1_received

 int1_received

17

 finished

 int2_received

 int2_received

16

 finished

 int1_received

 int2_received

 int1_received

 int2_received

 int1_received

 int1_received

 int2_received

 int2_received

19

 begin(interrupt1)

20

 begin(interrupt2)

 end(interrupt2)

15

 begin(interrupt1)

 end(interrupt1)

21

 begin(interrupt2)

 end(interrupt1)

 end(interrupt2)

 int1_received

 int2_received

 int1_received

 int2_received

�

1

2

 call(write1)

101

 begin(interrupt1)

103

 begin(interrupt2)

100

 begin(interrupt2)

98

 begin(interrupt1)

3

 ret(write1)

 end(interrupt1)

 call(write1)

102

 begin(interrupt2)

104

 end(interrupt1)

107

 end(interrupt1)

105

 begin(interrupt2)

110

 begin(interrupt2)

 call(write1)

 begin(interrupt1)

 end(interrupt2) end(interrupt2)

 begin(interrupt1)

10

8

 int1_received

32

 begin(interrupt2)

9

 end(interrupt1)

 end(interrupt2)

96

 ret(write1)

99

 begin(interrupt1)

85

 call(write2)

88

 begin(interrupt1)

90

 end(interrupt2)

 end(interrupt1)

 end(interrupt2)

95

 ret(write1)

 end(interrupt1)

 begin(interrupt2)

97

 ret(write1)

 end(interrupt2)

 end(interrupt1)

 call(write1)

106

 end(interrupt1)

108

 end(interrupt2)

109

 end(interrupt1)

111

 end(interrupt2)

 call(write1)

 begin(interrupt1)

 begin(interrupt2)

 call(write1)

 begin(interrupt2)

 begin(interrupt1)

 call(write1)

 end(interrupt1)

 end(interrupt2)

 call(write1)

 end(interrupt1)

 end(interrupt2)

 end(interrupt1) end(interrupt2)

 call(write1)

 end(interrupt2)

 begin(interrupt1)

 call(write1)

 end(interrupt1)

 begin(interrupt2)

 end(interrupt2)

 call(write1)

 end(interrupt2)

 begin(interrupt1)

 begin(interrupt1)

 end(interrupt1)

 call(write1)

 end(interrupt1)

 begin(interrupt2)

 begin(interrupt2)

11

12

 int2_received

13

 s2_ok

22

 begin(interrupt1)

27

 end(interrupt2)

14

 finished

23

 int1_received

28

 s2_ok

29

 begin(interrupt1)

30

 begin(interrupt2)

15

 begin(interrupt1)

18

 end(interrupt2) 16

 int1_received

19

 begin(interrupt1)

20

 begin(interrupt2)

 end(interrupt1)

17

 end(interrupt2)

 end(interrupt1)

21

 begin(interrupt2)

 int2_received

 int1_received

 int2_received

4

 call(write2)

87

 begin(interrupt1)

89

 begin(interrupt2)

 end(interrupt1)

24

 s2_ok

25

 end(interrupt2)

 finished end(interrupt1)

26

 s2_ok

31

 begin(interrupt2)

 finished

 int2_received

 finished

 int1_received

 int2_received

5

 ret(write2)

64

 begin(interrupt1)

 begin(interrupt2)

 call(write2)

 begin(interrupt2)

 end(interrupt1)

92

 end(interrupt1)

94

 begin(interrupt2)

 end(interrupt2)

 call(write2)

 begin(interrupt1)

 end(interrupt2)

 end(interrupt2)

 begin(interrupt1)

 begin(interrupt1)

 int2_received

33

 s1_ok

34

 begin(interrupt1)

35

 begin(interrupt2)

 begin(interrupt1) begin(interrupt2)

7

 int1_received

36

 int2_received

 s1_ok end(interrupt1)

52

 begin(interrupt2)

 s1_ok

37

 s2_ok

45

 begin(interrupt1)

48

 end(interrupt2)

 s1_ok

38

 begin(interrupt1)

41

 end(interrupt2)

46

 int1_received

 s1_ok s2_ok

49

 begin(interrupt1)

50

 begin(interrupt2)

39

 int1_received

 s1_ok

42

 begin(interrupt1)

43

 begin(interrupt2)

 s1_ok

 end(interrupt1)

40

 end(interrupt2)

 s1_ok

 end(interrupt1)

44

 begin(interrupt2)

6

 begin(interrupt1)

53

 begin(interrupt2)

 end(interrupt1)

65

 ret(write2)

74

 begin(interrupt2) end(interrupt2)

 begin(interrupt1)

86

 ret(write2)

 int2_received

 int1_received

 int2_received

 s1_ok

 end(interrupt1)

 s2_ok

47

 end(interrupt2)

 s1_ok

 end(interrupt1) s2_ok

51

 begin(interrupt2)

 int2_received

 int1_received

 int2_received

 int1_received

54

 int2_received

 int2_received

55

 s2_ok

60

 begin(interrupt1)

61

 end(interrupt2)

56

 begin(interrupt1)

57

 end(interrupt2) int1_received s2_ok

62

 begin(interrupt1)

63

 begin(interrupt2)

 int1_received

58

 begin(interrupt1)

59

 begin(interrupt2)

 int1_received

 int2_received

 int1_received

 int2_received

66

 end(interrupt1)

67

 begin(interrupt2)

 end(interrupt2)

 end(interrupt1)

75

 ret(write2)

 begin(interrupt1) begin(interrupt2)

68

 int2_received

 end(interrupt1)

69

 s2_ok

72

 end(interrupt2)

 end(interrupt1)

70

 end(interrupt2) end(interrupt1) s2_ok

73

 begin(interrupt2)

 end(interrupt1)

71

 begin(interrupt2)

 int2_received

 int2_received

76

 end(interrupt1)

84

 end(interrupt2)

 end(interrupt2)

77

 begin(interrupt1) end(interrupt1) begin(interrupt2)

78

 int1_received

 end(interrupt2)

79

 s1_ok

82

 end(interrupt1)

 end(interrupt2)

80

 end(interrupt1) end(interrupt2) s1_ok

83

 begin(interrupt1)

 end(interrupt2)

81

 begin(interrupt1)

 int1_received

 int1_received

 end(interrupt2) begin(interrupt1)

 end(interrupt1)

 end(interrupt2)

 end(interrupt1)

 call(write2)

93

 end(interrupt1)

91

 end(interrupt2)

 end(interrupt2)

 call(write2)

 begin(interrupt1)

 begin(interrupt2)

 begin(interrupt2)

 begin(interrupt1)

 call(write2) begin(interrupt2)

 begin(interrupt1)

 call(write2)

 end(interrupt1)

 end(interrupt2)

 call(write2)

 end(interrupt2)

 begin(interrupt1)

 call(write2) end(interrupt1)

 begin(interrupt2)

 call(write2)

 begin(interrupt2)

 end(interrupt1)

 end(interrupt2)

 end(interrupt1)

 call(write2)

Jérôme Cornet Synchron 2006 63

Conclusion

Micmac automata
Reflect general semantics of SystemC

Non-preemption
Time

Ability to encode very quickly complex behavior of the
SystemC specification

PV/PVT transform
Ability to study functionality preservation on a specific
example

Hopes for Proof Genericity:

Examples are sufficiently general
Limited set of synchronisation schemes

Jérôme Cornet Synchron 2006 64

Future work

Study remaining synchronisation schemes

Extend Micmac Automata function calls to return a value

Summarise/Formalise PV/PVT rules

Other properties to guarantee about the process

Transfer?

Rules for writing models

T submodels library

TLM synchronisations library?

Jérôme Cornet Synchron 2006 65

Bibliography

Matthieu Moy, Florence Maraninchi, and Laurent Maillet-Contoz.
LusSy: an open Tool for the Analysis of Systems-on-a-Chip at
the Transaction Level.
Design Automation for Embedded Systems, 10(2-3):73–104,
September 2005.

Matthieu Moy.
Techniques and Tools for the Verification of Systems-on-a-Chip
at the Transaction Level.
PhD thesis, Institut National Polytechnique de Grenoble,
December 2005.

Jérôme Cornet Synchron 2006 66

	Context & Problem
	Systems on Chip
	Transactional Level Modeling
	PV/PVT
	Research approach

	Micmac Automata
	Formal settings
	SystemC TLM Modeling with Micmac automata

	Application
	PV/PVT Modeling
	Global Comparison
	Compositional Comparison

	Appendix

