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Context & Problem Systems on Chip

What are Systems on Chip ? (SoC)

@ Chips integrating all necessary electronic circuits for a
"system"

@ Applications : Cell phones, DVD, Set-top boxes, MP3
players, Automotive...
@ Key characteristics
e High level of integration
e Software and hardware parts
e Application Specific Integrated Circuits
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- >
I I Interconnect
—
DMA /0 j«——
| ———

Jérome Cornet Synchron 2006



Context & Problem Systems on Chip

Systems on Chip’s Design

@ Software: C/C++ Programming
@ Hardware: Component Description at

Register Transfert Level

@ Synchronous Circuit Description
@ Synthesisable
@ Usage: manufacture the SoC

Transaction Level Modeling

@ Clockless
@ Explicit system synchronisations

@ Usage: Embedded Software development,
System Integration, Architecture Evaluation
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TLM : example
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Context & Problem Transactional Level Modeling
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Context & Problem Transactional Level Modeling

TLM: communications

Humb bk
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Context & Problem Transactional Level Modeling

TLM: implementation

@ TL-Models implemented in SystemC

o C++ Library/“Language”
e Non-preemptive simulation kernel

e Standardised (IEEE 1666)
http://www.systemc.org

@ TLM Classes written in SystemC

e STMicroelectronics’ TAC Protocol
http://www.greensocs.com/TACPackage

e Standardisation in progress...
(OSCI TLM Working Group)
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Context & Problem PV/PVT

Transactional Levels

@ Conflicting needs at transaction-level
@ Timed/Untimed, Granularity...

TLM Programmer’s View (PV)

@ Time has no meaning

@ Coarse communications granularity TLM PVT

@ For Embedded Software Development,
System Integration

TLM Programmer’s View with Time (PVT)

@ Precise timings induced by microarchitecture
Gate level

@ Bus communications granularity

@ For Architecture Evaluation, Validation of
Timed Aspects of Embedded Software

\
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Context & Problem PV/PVT

PV/PVT : trace example

@ Memory transfer:

PV 4| Read H Write |—>
PVT —| Read |—| Write |—| Read |—| Write |—| Read |—| ‘Write |—| Read |—| Write |—>

RTL, —| Read |—| Write |—| Read |—| Write |—| Read |—| ‘Write |—| Read |—| Write |—>
Transactions

RTL

{00000000 I 00000000

1

Jérome Cornet



Context & Problem PV/PVT

PV/PVT : constraints
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Context & Problem Research approach

PV/PVT: approach

For each component:

@ Build the PV model

o Lightweight modeling effort
e Early availability in the design flow
e Simulation speed

@ Then build the PVT model:
e With unmodified PV model
e By adding “T ” informations available later on

@ Hope: retain “good” properties of the PV model
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Context & Problem Research approach

Formalizing the approach (1/3)

@ Capture the elements of the equation: PVT = PV & T

e PV :unmodified PV model of the component
e T : standalone microarchitecture model

e @ : "glue", synchronization between PV and T

@ Properties to prove:
e Functional consistency between PV and PVT

e Logical consistency betwen PV and T
(local and global)

e Matching between elementary timings and their effective
contribution
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Context & Problem Research approach

Formalizing the approach (2/3)

@ Previous work from Matthieu Moy [MMMCO05][Moy05]

e SystemC semantics using HPIOM
(synchronous automata)

e Connection to model-checkers (Lesar, SMV...):
Lussy toolchain

@ Our goals here:

o Define a more direct semantics for SystemC/TLM

Not for formal verification...

.. but for experiments with manually written models
Generic Proof for PV/PVT
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Context & Problem Research approach

Formalizing the approach (3/3)
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Context & Problem Research approach

SystemC TLM Modeling (1/3)

@ Different modules connected by “wires”

@ Communications between modules:
functions calls to communications functions

Generator RAM
PV PV
A 1] ?
Bus
[\
[«
Initiator port =
Target port MPEG
Interrupt input PV

Interrupt output
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Context & Problem

SystemC TLM Modeling (2/3)

@ Two kind of code inside modules:

Research approach

e Processes (SC_THREAD, SC_METHOD)

e Communications functions

@ Synchronizations inside a module:
@ Shared variables
e SystemC'’s events (sc_event)

Generator
PV

®d process()

{
p.writeCa, d);

it
d2 = p.read(a2);

[it ]

void

{

interrupt(...)

it = true;
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Context & Problem Research approach

SystemC TLM Modeling (3/3)

@ Non-preemptive scheduling of processes:
e Processes choose when to yield
o Atomicity
o Non-determinism

@ Yield:

e Wait for some time: wait (2, SC_NS);
e Wait for a sc_event: wait (e) ;

@ SystemC’s events are instantaneous
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Micmac Automata
Qutline

e Micmac Automata
@ Formal settings
@ SystemC TLM Modeling with Micmac automata
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Micmac Automata Formal settings

Micmac Automata (1/2)

@ A micmac automaton is a tuple [X<=5]
(Q, g, V,pi, C, L I,A T, M)where:

[X=5] X:=0

Q is a set of control points,
q;i is the initial control point,
V is a set of variables, alpha

;j is the initial valuation of the
variables,

C is a set of clocks, call(f)

L is a set of internal labels, o

l'is a set of function identifiers,

Ais a set of variable assignments, ret(f)

D {not(i=1)}

{i=1} @i:=0 ok
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Micmac Automata Formal settings

Micmac Automata (2/2)

@ A micmac automaton is a tuple

[X<=5]
(Q,qi, V, i, C, L I, A T, M) where:
[X=5] X:=0
o T is the transition relation:
T C Qx

{call, ret, begin, end} x | alpha
UP(L U {e}) _ .
xCG x G x P(A) x C (= @0 ok
xQ call(f)

e M indicates each state’s type: o

M: Q — ({true, false}

_ true if q is a Macro-state ret(f)
q false if q is a micro-state
e {not(i=1)}
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Micmac Automata Formal settings

Micmac Product (without clocks)

Binary product A = A" x A2
@ For each state g C Q' x Q2:
o M(q)=M'(q") A M?(q?)
e If M'(q"), each transition ' of q' belongs to g
e If M?(g?), each transition t? of g2 belongs to q

@ Function call semantics:

gt D gt c At 2" g2 42 = (g, ) - (g1, q2) € A
C’1 ret(f) q/1 c A, q2 eﬂ) q’2 €A% = (q17q2) —= (q/1’q/2) €A

@ Cutting: for f function identifier, remove every transition
holding call(f) or ret(f) or begin(f) or end(f)
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Micmac Automata Formal settings

Example: product

(- ) begin(f1)

end(f1)
©)

ret(f1)

beta

Jérome Cornet

call(fl) X —

beta

e
begin(fl)

end(fl)

call(fl)

end(f1)




Micmac Automata Formal settings

Example: product with cutting

@

alpha

e begin(f1) alpha

call(f1) X

&)

ret(f1)

end(f1) e

beta beta
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Micmac Automata Formal settings

Micmac Product (with clocks)

@ Two “kinds” of transition:
e Transition holding [true]: untimed transitions
e Transition with non-trivial clock guards: timed transitions

@ Untimed transitions: apply previous product

@ For each timed transitions
q1 [091]_{)91} q/1 c ./41, q2 [ng]_{gz} q/2 c ./42:
[cg1/\ﬁI'I2]{_g1>/\Q1/\Qz} (@', ) c A
1 2 1 2 1 2
[CQ Neg ] {ﬂ)g AL AQ } (q/1’q/2) c A

° (q".¢°)
° (q".¢%)
° (4", 9%

[cg?A=N"] {PAQ'AQPY
—

C RS
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Micmac Automata Formal settings

Micmac Product (with clocks)

@ For each timed transitions
C’1 [091]_{?1} C’/1 e ./417 q2 [ng_{gz} q/2 e ./42:

o (q',q2) @ " TTLHEATAY (g1 2y ¢ 4
o (q',qp) 19 TIHILTNIAYY (gt g2y ¢ 4
2 1 2 1 2
o (q',q7) [ MO (g1 g2y ¢ 4
o' = N o M2 = N o
cget! from g cg e t2 from g2
get from ¢! get2 from @2
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Micmac Automata Formal settings

Example: product with clockguards
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Micmac Automata Formal settings

Example: product with clockguard

‘ [and(X<=5,Y<=10)] {not(true)}

[and(X=5,Y!=10)] {not(true)} gammal [and(Y=10,X!=5)] {not(true)}
) [Y<=10] {not(true)} [and(X=5,Y=10)] {not(true)} (= ) [X<=5] {not(true)}
A
alpha gammal [Y=10] {not(true)} gamma2 / [X=5] {not(true)} | beta gammal

) [Y<=10] {not(true)} (cHE} @ [and(X<=5,Y<=10)] @) [X<=5] {not(true)}
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Micmac Automata Formal settings

Example: product with clockguards

[and(X<=5.Y<=10)]

[X=5] [Y=10] [and(X=5.Y!=10)]

gammal
[Y<=10] {not(true)}
@) @) e alpha

[Y<=10]
[Y=10]
gamma?2

beta

) ® ©, )

N

alpha beta
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Micmac Automata Formal settings

Logical Constraints on Micmac automata

The following states are Macro states:
@ The initial state
@ A “final” state
@ A state with at least one timed transition

@ A state pointed to by a timed transition
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Micmac Automata SystemC TLM Modeling with Micmac automata

SystemC TLM Modeling with Micmac automata

@ One micmac automaton per:

e Process
e Communication function

@ Function calls model inter-modules communications

@ Macro states represent “yielding points”

@ Shared variables between automata of the same module

@ Model classical shared variables
e Model SystemC’s events
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Micmac Automata SystemC TLM Modeling with Micmac automata

oid process()
void interrupt()

aQ); {

it_event.notify(Q);
wait(it_event); }
bO;

\4
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Micmac Automata SystemC TLM Modeling with Micmac automata

Example: product

a begin(interrupt) ) end(interrupt)

begin(interrupt)

@it_b:=1

@)D {not(it_a=1)} ><

{it_a=1}

begin(interrupt) end(interrupt)) begin(interrupt)

end(interrupt)

{it_b=1} @it_a:=1

begin(interrupt)) end(interrupt)
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Micmac Automata SystemC TLM Modeling with Micmac automata

oid processQ)
void interrupt()

a0; {

it_event.notify(Q);
wait(it_event); ¥
bO;

m A

oid process()
cO;

port.interrupt();
}
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Micmac Automata SystemC TLM Modeling with Micmac automata

Example: product

a begin(interrupt) ) end(interrupt) Cl)

e

J begin(interrupt)

- )
X — ¢

call(interrupt)

end(interrupt)) begin(interrupt)

©
b
b
ret(interrupt)
begin(interrupt)) end(interrupt) @
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Application
Qutline

Q Application
@ PV/PVT Modeling
@ Global Comparison
@ Compositional Comparison
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Application PV/PVT Modeling

Example PV

Generator IP #1
PV - PV

[k

Bus

Initiator port IP #2
Target port PV

Interrupt input

Interrupt output
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Example PVT

Application

PV/PVT Modeling

Generator IP #1
N PV 7 A PV
T 1
% Generator [ A IP #1
T A T @
I Bus - PV fiber
l Bus - PVT fiber
| |
¥ pa
Initiator port T
Target port 4![
Interrupt input \Y IP #2
Interrupt output PV
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Application PV/PVT Modeling

Generator PV

call(writel)

begin(interrupt1)
ret(writel)

Tcall(wri(eZ)

ret(write2)
?@mt 1_2:=1
T@md,Z::]

{and(not(intl_1=1).not(in2_1=1))}

end(interrupt1)

{int1_2=1} @int]_l:=1 int]_received | {not(intl_2=1)}

begin(interrupt2)

end(interrupt2)

{intl_1=1} sl_ok \_{int2_1=1} s2_ok

{not(int2_1=1)} {not(intl_1=1)}

{int2_2=1} @int2_1:=1 int2_received | {not(int2_2=1)}
{int2_1=1} s2_ok

{intl_1=1} s1_ok

finished




IP #1 PV

Application

PV/PVT Modeling

begin(writel)

end(writel)

{not(startl=1)}

{startl=1} @start]:=0 started1

ret(interrupt1)

call(interrupt1)




IP #2 PV

Application

PV/PVT Modeling

begin(write2)

end(write2)

{not(start2=1)}

{start2=1} @start2:=0 started2

ret(interrupt2)

call(interrupt2)

Al 3]

Jérome Cornet
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Application PV/PVT Modeling

PV Platform’s behavior

intl_received

int2_received

s2_oK started started2 sl_ok

int2_received started2

sl_ok int2_received

finished



Application

Generator PVT

PV/PVT Modeling

Vvl W (1] 1]

call(write]_pvt)

ret(writel_pvt)

call(write1)

ret(writel)

bcgm(w%

call(write2_pvt)

ret(write2_pvt)

end(writel)

begin(wm 1 call(write2)

ret(write2)

end(write2_)
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Application

PV/PVT Modeling

endwritel )

(startl=1) @start]:=0 stared

o

retinermuptl )

begin(write])

call(write]_)

ret(writel )

end(writel)

begin(writel_pvt)

writel_pvt_ok

end(writel_pvt)

begin(interrupt1_)

[Z<=5]

call(interrupt1)

ret(interrupt1)

ALA

end(interruptl_)

[{]
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Application PV/PVT Modeling

IP #2 PVT

o

begin(interrupt2_)

(star2=1) @star2:=0 sared)

endwrite2 ) retinermup2)

[T<=10]

[T=10] T:=0 end(interrupt2_)

begin(write2_pvt)

call(interrupt2)

begin(write2)

iR ) ret(interrupt2)

call(write2_) end(write2)

write2_pvt_ok

ret(write2_)

ALA 1]
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Application PV/PVT Modeling

PVT Platform’s behavior

W

writel_pvt_ok

©)

started

@)

write2_pvt_ok

@

started2

)

int2_received
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Application Global Comparison

Comparison

@ Functional consistency between PV and PVT ?
@ Comparison done at platform level
@ Formally:

Global functional consistency

PV: micmac automata of PV Platform
PVT: micmac automaton of PVT Platform

@ Using traces:
tr(PVT) |pv C tr(PV)

@ On automata:

PVT|py < PV
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Application Global Comparison

Comparison
| l

—_

O

writel_pvt_ok

intl_received ()

started 1
s2_oK startedl started2 sl_ok @)

write2_pvt_ok

1n12received started2 V S @) ?
(5)

started2

sl_ok ) s1_ok int2_received <5>

int2_received

©

s2_ok

int2_received




Application Global Comparison

Comparison

©)

started

int2_received intl_received

$2_oN started1 %mok

started2

1n12received started2 > <5> ’?
® '

s1_ok ) s1_ok int2_received int2_received




Application

Comparison

int2_received intl_received

s2_oK startedl started2 sl_ok

1n12received started2

finished

Global Comparison

©)

started

@

started2

int2_received

s2_ok




Application

Generator PV bug

Global Comparison

call(writel)

ret(write2)
?@mt 1_2:=1
T@md,Z::]

{and(not(intl_1=1).not(in2_1=1))}

{intl_1=1} sl_ok \_{int2_1=1} s2_ok

{not(int2_1=1)} {not(intl_1=1)}

{int2_1=1} s2_ok_~" {intl_l=1} s1_ok

finished

{intl_2=1} @int1_I:=1 intl_received

begin(interrupt1)

end(interrupt1)

{not(int1_2=1)}

begin(interrupt2)

{in2_2=1} @int2_1:=1 int2_received | {not(int2_2=1)}

end(interrupt2)




Application Global Comparison

Generator PV fixed

call(write])

ret(writel)
call(write2)

ret(write2)

begin(interrupt1)

end(interrupt1)

{int1_2=1} @int]_l:=1 int]_received | {not(intl_2=1)}

@int]_2:=1

T@le,Z::]

{and(not(int1_1=1),not(int2_1=1))}

begin(interrupt2)

end(interrupt2)

{intl_1=1} s1_ok {int2_1=1} s2_ok

{not(int2_1=1)} {not(int]_1=1)}

{in2_2=1} @in2_1:=1 int2_received

{not(int2_2=1)}

{int2_1=1} s2_ok {intl_I=1} s1_ok




Application

IP #1 PV bug...

Global Comparison

begin(writel)

end(writel)

{not(startl=1)}

{startl=1} @start]:=0 started1

ret(interrupt1)

call(interrupt1)

Al 3]
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IP #1 PV fixed

Application

Global Comparison

begin(writel)

end(writel)

{not(startl=1)}

{startl=1} @start]:=0 started1

ret(interrupt1)

call(interrupt1)

Al 3]
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Application Global Comparison

PV fixed Platform’s behavior
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Application Global Comparison

PV fixed Platform’s behavior

started2 started |

int2_received | startedl int]_received

52_ok started! started2

int2_received intl_received / int2_received \ intl_received s1_ok

int]_received intl_received
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Application Global Comparison

Comparison (fixed platform)

©)

started

@

started2

-

int2_received
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Application Compositional Comparison

Compositional Comparison

@ Rules about building PVT should be “per component”
@ Need for comparison at component level
@ Formally:

Local functional consistency
PV 5: micmac automaton of a PV Component a
PVT 5: micmac automaton of a PVT Component a
Cpy : micmac automaton of the rest of the PV platform
Cpy7 : micmac automaton of the rest of the PVT platform
@ We want to define <* such as
PVTa|PVa <*PV, —

{ Y Cpv1,Cpy / CryTlcp, <* Crv,
(PVTa x Cpy1)lPva cpy <* PVax Cpy
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Application Compositional Comparison

Compositional Comparison

@ Result: actually <* = <

Local functional consistency

PV a: micmac automaton of a PV Component a

PVT 5: micmac automaton of a PVT Component a

Cpy : micmac automaton of the rest of the PV platform
Cpy7 : micmac automaton of the rest of the PVT platform

PVTa|PVa =< PVa —

{ V Cpvr,Cry [ CpyTlcs, < Cpy,
(PVTax Cpyr)|pva,cry < PVaxCpy
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Application Compositional Comparison

Comparison for Generator (bugged version)
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Application Compositional Comparison

Comparison for Generator (bugged version)
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Application Compositional Comparison

Diagnostic analysis

@ Diagnostic gives for instance:
call(write1) ret(write1) begin(interrupt1) end(interrupt1) ...

@ — interrupt1 call not supposed to arrive before call to
write2 in bugged PV version

@ PVT transform works only on PVs following some rules...

@ Bugged PVs wrongly model reality
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Application Compositional Comparison

Comparison for Generator (fixed version)
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Conclusion

@ Micmac automata
o Reflect general semantics of SystemC

@ Non-preemption
@ Time

o Ability to encode very quickly complex behavior of the
SystemC specification

@ PV/PVT transform

o Ability to study functionality preservation on a specific
example

e Hopes for Proof Genericity:

@ Examples are sufficiently general
@ Limited set of synchronisation schemes
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@ Study remaining synchronisation schemes
@ Extend Micmac Automata function calls to return a value
@ Summarise/Formalise PV/PVT rules

@ Other properties to guarantee about the process

@ Transfer?
o Rules for writing models
e T submodels library

e TLM synchronisations library?
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