Separating Functional and Timed Aspects in
Transactional Abstraction Levels

Jérome Cornet, Florence Maraninchi
and Laurent Maillet-Contoz

Verimag - CNRS - STMicroelectronics

vV

Jérome Cornet Synchron 2006

0 Context & Problem

© Micmac Automata

e Application

Jérome Cornet Synchron 2006

Context & Problem
Qutline

0 Context & Problem
@ Systems on Chip
@ Transactional Level Modeling
@ PV/PVT
@ Research approach

Jérome Cornet Synchron 2006

Context & Problem Systems on Chip

What are Systems on Chip ? (SoC)

@ Chips integrating all necessary electronic circuits for a
"system"

@ Applications : Cell phones, DVD, Set-top boxes, MP3
players, Automotive...
@ Key characteristics
e High level of integration
e Software and hardware parts
e Application Specific Integrated Circuits

CPU RAM DSP
- >
I I Interconnect
—
DMA /0 j«——
| ———

Jérome Cornet Synchron 2006

Context & Problem Systems on Chip

Systems on Chip’s Design

@ Software: C/C++ Programming
@ Hardware: Component Description at

Register Transfert Level

@ Synchronous Circuit Description
@ Synthesisable
@ Usage: manufacture the SoC

Transaction Level Modeling

@ Clockless
@ Explicit system synchronisations

@ Usage: Embedded Software development,
System Integration, Architecture Evaluation

Jérome Cornet Synchron 2006

Gate level

i

TLM : example

[1

Context & Problem Transactional Level Modeling

[1]

k]

Generator 1

\4

11y] 214

Shared memory

ki

Generator 2

Bus 1

Bus 2

Timer

Jérome Cornet Synchron 20

Context & Problem Transactional Level Modeling

TLM: communications

Humb bk

TLM

Context & Problem Transactional Level Modeling

TLM: implementation

@ TL-Models implemented in SystemC

o C++ Library/“Language”
e Non-preemptive simulation kernel

e Standardised (IEEE 1666)
http://www.systemc.org

@ TLM Classes written in SystemC

e STMicroelectronics’ TAC Protocol
http://www.greensocs.com/TACPackage

e Standardisation in progress...
(OSCI TLM Working Group)

Jérome Cornet Synchron 2006

Context & Problem PV/PVT

Transactional Levels

@ Conflicting needs at transaction-level
@ Timed/Untimed, Granularity...

TLM Programmer’s View (PV)

@ Time has no meaning

@ Coarse communications granularity TLM PVT

@ For Embedded Software Development,
System Integration

TLM Programmer’s View with Time (PVT)

@ Precise timings induced by microarchitecture
Gate level

@ Bus communications granularity

@ For Architecture Evaluation, Validation of
Timed Aspects of Embedded Software

\

Jérome Cornet Synchron 2006

Context & Problem PV/PVT

PV/PVT : trace example

@ Memory transfer:

PV 4| Read H Write |—>
PVT —| Read |—| Write |—| Read |—| Write |—| Read |—| ‘Write |—| Read |—| Write |—>

RTL, —| Read |—| Write |—| Read |—| Write |—| Read |—| ‘Write |—| Read |—| Write |—>
Transactions

RTL

{00000000 I 00000000

1

Jérome Cornet

Context & Problem PV/PVT

PV/PVT : constraints

1
'
'
'
'
'
'

y

Same
functional
behavior

TLM PVT

Jérome Cornet

Same
functional
behavior

Same
timed
behavior

Context & Problem Research approach

PV/PVT: approach

For each component:

@ Build the PV model

o Lightweight modeling effort
e Early availability in the design flow
e Simulation speed

@ Then build the PVT model:
e With unmodified PV model
e By adding “T ” informations available later on

@ Hope: retain “good” properties of the PV model

Jérome Cornet Synchron 2006

Context & Problem Research approach

Formalizing the approach (1/3)

@ Capture the elements of the equation: PVT = PV & T

e PV :unmodified PV model of the component
e T : standalone microarchitecture model

e @ : "glue", synchronization between PV and T

@ Properties to prove:
e Functional consistency between PV and PVT

e Logical consistency betwen PV and T
(local and global)

e Matching between elementary timings and their effective
contribution

Jérome Cornet Synchron 2006

Context & Problem Research approach

Formalizing the approach (2/3)

@ Previous work from Matthieu Moy [MMMCO05][Moy05]

e SystemC semantics using HPIOM
(synchronous automata)

e Connection to model-checkers (Lesar, SMV...):
Lussy toolchain

@ Our goals here:

o Define a more direct semantics for SystemC/TLM

Not for formal verification...

.. but for experiments with manually written models
Generic Proof for PV/PVT

Jérome Cornet Synchron 2006

Context & Problem Research approach

Formalizing the approach (3/3)

L]

Generator |

Manual Abstraction
and Writing

"——> Results

Context & Problem Research approach

SystemC TLM Modeling (1/3)

@ Different modules connected by “wires”

@ Communications between modules:
functions calls to communications functions

Generator RAM
PV PV
A 1] ?
Bus
[\
[«
Initiator port =
Target port MPEG
Interrupt input PV

Interrupt output

Jérome Cornet Synchron 2006

Context & Problem

SystemC TLM Modeling (2/3)

@ Two kind of code inside modules:

Research approach

e Processes (SC_THREAD, SC_METHOD)

e Communications functions

@ Synchronizations inside a module:
@ Shared variables
e SystemC'’s events (sc_event)

Generator
PV

®d process()

{
p.writeCa, d);

it
d2 = p.read(a2);

[it]

void

{

interrupt(...)

it = true;

Jérome Cornet

Synchron 2006

Context & Problem Research approach

SystemC TLM Modeling (3/3)

@ Non-preemptive scheduling of processes:
e Processes choose when to yield
o Atomicity
o Non-determinism

@ Yield:

e Wait for some time: wait (2, SC_NS);
e Wait for a sc_event: wait (e) ;

@ SystemC’s events are instantaneous

Jérome Cornet Synchron 2006

Micmac Automata
Qutline

e Micmac Automata
@ Formal settings
@ SystemC TLM Modeling with Micmac automata

Jérome Cornet Synchron 2006

Micmac Automata Formal settings

Micmac Automata (1/2)

@ A micmac automaton is a tuple [X<=5]
(Q, g, V,pi, C, L I,A T, M)where:

[X=5] X:=0

Q is a set of control points,
q;i is the initial control point,
V is a set of variables, alpha

;j is the initial valuation of the
variables,

C is a set of clocks, call(f)

L is a set of internal labels, o

l'is a set of function identifiers,

Ais a set of variable assignments, ret(f)

D {not(i=1)}

{i=1} @i:=0 ok

Jérome Cornet Synchron 2006

Micmac Automata Formal settings

Micmac Automata (2/2)

@ A micmac automaton is a tuple

[X<=5]
(Q,qi, V, i, C, L I, A T, M) where:
[X=5] X:=0
o T is the transition relation:
T C Qx

{call, ret, begin, end} x | alpha
UP(L U {e}) _ .
xCG x G x P(A) x C (= @0 ok
xQ call(f)

e M indicates each state’s type: o

M: Q — ({true, false}

_ true if q is a Macro-state ret(f)
q false if q is a micro-state
e {not(i=1)}

Jérome Cornet Synchron 2006

Micmac Automata Formal settings

Micmac Product (without clocks)

Binary product A = A" x A2
@ For each state g C Q' x Q2:
o M(q)=M'(q") A M?(q?)
e If M'(q"), each transition ' of q' belongs to g
e If M?(g?), each transition t? of g2 belongs to q

@ Function call semantics:

gt D gt c At 2" g2 42 = (g,) - (g1, q2) € A
C’1 ret(f) q/1 c A, q2 eﬂ) q’2 €A% = (q17q2) —= (q/1’q/2) €A

@ Cutting: for f function identifier, remove every transition
holding call(f) or ret(f) or begin(f) or end(f)

Jérome Cornet Synchron 2006

Micmac Automata Formal settings

Example: product

(-) begin(f1)

end(f1)
©)

ret(f1)

beta

Jérome Cornet

call(fl) X —

beta

e
begin(fl)

end(fl)

call(fl)

end(f1)

Micmac Automata Formal settings

Example: product with cutting

@

alpha

e begin(f1) alpha

call(f1) X

&)

ret(f1)

end(f1) e

beta beta

Jérome Cornet Synchron 2006

Micmac Automata Formal settings

Micmac Product (with clocks)

@ Two “kinds” of transition:
e Transition holding [true]: untimed transitions
e Transition with non-trivial clock guards: timed transitions

@ Untimed transitions: apply previous product

@ For each timed transitions
q1 [091]_{)91} q/1 c ./41, q2 [ng]_{gz} q/2 c ./42:
[cg1/\ﬁI'I2]{_g1>/\Q1/\Qz} (@',) c A
1 2 1 2 1 2
[CQ Neg] {ﬂ)g AL AQ } (q/1’q/2) c A

° (q".¢°)
° (q".¢%)
° (4", 9%

[cg?A=N"] {PAQ'AQPY
—

C RS

Jérome Cornet Synchron 2006

Micmac Automata Formal settings

Micmac Product (with clocks)

@ For each timed transitions
C’1 [091]_{?1} C’/1 e ./417 q2 [ng_{gz} q/2 e ./42:

o (q',q2) @ " TTLHEATAY (g1 2y ¢ 4
o (q',qp) 19 TIHILTNIAYY (gt g2y ¢ 4
2 1 2 1 2
o (q',q7) [MO (g1 g2y ¢ 4
o' = N o M2 = N o
cget! from g cg e t2 from g2
get from ¢! get2 from @2

Jérome Cornet Synchron 2006

Micmac Automata Formal settings

Example: product with clockguards

Jérome Cornet Synchron 2006

Micmac Automata Formal settings

Example: product with clockguard

‘ [and(X<=5,Y<=10)] {not(true)}

[and(X=5,Y!=10)] {not(true)} gammal [and(Y=10,X!=5)] {not(true)}
) [Y<=10] {not(true)} [and(X=5,Y=10)] {not(true)} (=) [X<=5] {not(true)}
A
alpha gammal [Y=10] {not(true)} gamma2 / [X=5] {not(true)} | beta gammal

) [Y<=10] {not(true)} (cHE} @ [and(X<=5,Y<=10)] @) [X<=5] {not(true)}

Jérome Cornet Synchron 2006

Micmac Automata Formal settings

Example: product with clockguards

[and(X<=5.Y<=10)]

[X=5] [Y=10] [and(X=5.Y!=10)]

gammal
[Y<=10] {not(true)}
@) @) e alpha

[Y<=10]
[Y=10]
gamma?2

beta

) ® ©,)

N

alpha beta

Jérome Cornet

Micmac Automata Formal settings

Logical Constraints on Micmac automata

The following states are Macro states:
@ The initial state
@ A “final” state
@ A state with at least one timed transition

@ A state pointed to by a timed transition

Jérome Cornet Synchron 2006

Micmac Automata SystemC TLM Modeling with Micmac automata

SystemC TLM Modeling with Micmac automata

@ One micmac automaton per:

e Process
e Communication function

@ Function calls model inter-modules communications

@ Macro states represent “yielding points”

@ Shared variables between automata of the same module

@ Model classical shared variables
e Model SystemC’s events

Jérome Cornet Synchron 2006

Micmac Automata SystemC TLM Modeling with Micmac automata

oid process()
void interrupt()

aQ); {

it_event.notify(Q);
wait(it_event); }
bO;

\4

Jérome Cornet

Micmac Automata SystemC TLM Modeling with Micmac automata

Example: product

a begin(interrupt)) end(interrupt)

begin(interrupt)

@it_b:=1

@)D {not(it_a=1)} ><

{it_a=1}

begin(interrupt) end(interrupt)) begin(interrupt)

end(interrupt)

{it_b=1} @it_a:=1

begin(interrupt)) end(interrupt)

Jérome Cornet

Micmac Automata SystemC TLM Modeling with Micmac automata

oid processQ)
void interrupt()

a0; {

it_event.notify(Q);
wait(it_event); ¥
bO;

m A

oid process()
cO;

port.interrupt();
}

Jérome Cornet

Micmac Automata SystemC TLM Modeling with Micmac automata

Example: product

a begin(interrupt)) end(interrupt) Cl)

e

J begin(interrupt)

-)
X — ¢

call(interrupt)

end(interrupt)) begin(interrupt)

©
b
b
ret(interrupt)
begin(interrupt)) end(interrupt) @

Jérome Cornet

Application
Qutline

Q Application
@ PV/PVT Modeling
@ Global Comparison
@ Compositional Comparison

Jérome Cornet Synchron 2006

Application PV/PVT Modeling

Example PV

Generator IP #1
PV - PV

[k

Bus

Initiator port IP #2
Target port PV

Interrupt input

Interrupt output

Jérome Cornet

Example PVT

Application

PV/PVT Modeling

Generator IP #1
N PV 7 A PV
T 1
% Generator [A IP #1
T A T @
I Bus - PV fiber
l Bus - PVT fiber
| |
¥ pa
Initiator port T
Target port 4![
Interrupt input \Y IP #2
Interrupt output PV

Jérome Cornet

Synchron 2006

Application PV/PVT Modeling

Generator PV

call(writel)

begin(interrupt1)
ret(writel)

Tcall(wri(eZ)

ret(write2)
?@mt 1_2:=1
T@md,Z::]

{and(not(intl_1=1).not(in2_1=1))}

end(interrupt1)

{int1_2=1} @int]_l:=1 int]_received | {not(intl_2=1)}

begin(interrupt2)

end(interrupt2)

{intl_1=1} sl_ok _{int2_1=1} s2_ok

{not(int2_1=1)} {not(intl_1=1)}

{int2_2=1} @int2_1:=1 int2_received | {not(int2_2=1)}
{int2_1=1} s2_ok

{intl_1=1} s1_ok

finished

IP #1 PV

Application

PV/PVT Modeling

begin(writel)

end(writel)

{not(startl=1)}

{startl=1} @start]:=0 started1

ret(interrupt1)

call(interrupt1)

IP #2 PV

Application

PV/PVT Modeling

begin(write2)

end(write2)

{not(start2=1)}

{start2=1} @start2:=0 started2

ret(interrupt2)

call(interrupt2)

Al 3]

Jérome Cornet

Sy

Application PV/PVT Modeling

PV Platform’s behavior

intl_received

int2_received

s2_oK started started2 sl_ok

int2_received started2

sl_ok int2_received

finished

Application

Generator PVT

PV/PVT Modeling

Vvl W (1] 1]

call(write]_pvt)

ret(writel_pvt)

call(write1)

ret(writel)

bcgm(w%

call(write2_pvt)

ret(write2_pvt)

end(writel)

begin(wm 1 call(write2)

ret(write2)

end(write2_)

Jérome Cornet

Application

PV/PVT Modeling

endwritel)

(startl=1) @start]:=0 stared

o

retinermuptl)

begin(write])

call(write]_)

ret(writel)

end(writel)

begin(writel_pvt)

writel_pvt_ok

end(writel_pvt)

begin(interrupt1_)

[Z<=5]

call(interrupt1)

ret(interrupt1)

ALA

end(interruptl_)

[{]

Jérome Cornet

Sy

Application PV/PVT Modeling

IP #2 PVT

o

begin(interrupt2_)

(star2=1) @star2:=0 sared)

endwrite2) retinermup2)

[T<=10]

[T=10] T:=0 end(interrupt2_)

begin(write2_pvt)

call(interrupt2)

begin(write2)

iR) ret(interrupt2)

call(write2_) end(write2)

write2_pvt_ok

ret(write2_)

ALA 1]

Jérome Cornet Sy

Application PV/PVT Modeling

PVT Platform’s behavior

W

writel_pvt_ok

©)

started

@)

write2_pvt_ok

@

started2

)

int2_received

Jérome Cornet Synchron 2006

Application Global Comparison

Comparison

@ Functional consistency between PV and PVT ?
@ Comparison done at platform level
@ Formally:

Global functional consistency

PV: micmac automata of PV Platform
PVT: micmac automaton of PVT Platform

@ Using traces:
tr(PVT) |pv C tr(PV)

@ On automata:

PVT|py < PV

Jérome Cornet Synchron 2006

Application Global Comparison

Comparison
| l

—_

O

writel_pvt_ok

intl_received ()

started 1
s2_oK startedl started2 sl_ok @)

write2_pvt_ok

1n12received started2 V S @) ?
(5)

started2

sl_ok) s1_ok int2_received <5>

int2_received

©

s2_ok

int2_received

Application Global Comparison

Comparison

©)

started

int2_received intl_received

$2_oN started1 %mok

started2

1n12received started2 > <5> ’?
® '

s1_ok) s1_ok int2_received int2_received

Application

Comparison

int2_received intl_received

s2_oK startedl started2 sl_ok

1n12received started2

finished

Global Comparison

©)

started

@

started2

int2_received

s2_ok

Application

Generator PV bug

Global Comparison

call(writel)

ret(write2)
?@mt 1_2:=1
T@md,Z::]

{and(not(intl_1=1).not(in2_1=1))}

{intl_1=1} sl_ok _{int2_1=1} s2_ok

{not(int2_1=1)} {not(intl_1=1)}

{int2_1=1} s2_ok_~" {intl_l=1} s1_ok

finished

{intl_2=1} @int1_I:=1 intl_received

begin(interrupt1)

end(interrupt1)

{not(int1_2=1)}

begin(interrupt2)

{in2_2=1} @int2_1:=1 int2_received | {not(int2_2=1)}

end(interrupt2)

Application Global Comparison

Generator PV fixed

call(write])

ret(writel)
call(write2)

ret(write2)

begin(interrupt1)

end(interrupt1)

{int1_2=1} @int]_l:=1 int]_received | {not(intl_2=1)}

@int]_2:=1

T@le,Z::]

{and(not(int1_1=1),not(int2_1=1))}

begin(interrupt2)

end(interrupt2)

{intl_1=1} s1_ok {int2_1=1} s2_ok

{not(int2_1=1)} {not(int]_1=1)}

{in2_2=1} @in2_1:=1 int2_received

{not(int2_2=1)}

{int2_1=1} s2_ok {intl_I=1} s1_ok

Application

IP #1 PV bug...

Global Comparison

begin(writel)

end(writel)

{not(startl=1)}

{startl=1} @start]:=0 started1

ret(interrupt1)

call(interrupt1)

Al 3]

Jérome Cornet

Sy

IP #1 PV fixed

Application

Global Comparison

begin(writel)

end(writel)

{not(startl=1)}

{startl=1} @start]:=0 started1

ret(interrupt1)

call(interrupt1)

Al 3]

Jérome Cornet

Sy

Application Global Comparison

PV fixed Platform’s behavior

Jérome Cornet Synchron 2006

Application Global Comparison

PV fixed Platform’s behavior

started2 started |

int2_received | startedl int]_received

52_ok started! started2

int2_received intl_received / int2_received \ intl_received s1_ok

int]_received intl_received

Jérome Cornet Synchron 2006

Application Global Comparison

Comparison (fixed platform)

©)

started

@

started2

-

int2_received

Jérome Cornet Synchron 2006

Application Compositional Comparison

Compositional Comparison

@ Rules about building PVT should be “per component”
@ Need for comparison at component level
@ Formally:

Local functional consistency
PV 5: micmac automaton of a PV Component a
PVT 5: micmac automaton of a PVT Component a
Cpy : micmac automaton of the rest of the PV platform
Cpy7 : micmac automaton of the rest of the PVT platform
@ We want to define <* such as
PVTa|PVa <*PV, —

{ Y Cpv1,Cpy / CryTlcp, <* Crv,
(PVTa x Cpy1)lPva cpy <* PVax Cpy

Jérome Cornet Synchron 2006

Application Compositional Comparison

Compositional Comparison

@ Result: actually <* = <

Local functional consistency

PV a: micmac automaton of a PV Component a

PVT 5: micmac automaton of a PVT Component a

Cpy : micmac automaton of the rest of the PV platform
Cpy7 : micmac automaton of the rest of the PVT platform

PVTa|PVa =< PVa —

{ V Cpvr,Cry [CpyTlcs, < Cpy,
(PVTax Cpyr)|pva,cry < PVaxCpy

Jérome Cornet Synchron 2006

Application Compositional Comparison

Comparison for Generator (bugged version)

Jérome Cornet Synchron 2006

Application Compositional Comparison

Comparison for Generator (bugged version)

Jérome Cornet Synchron 2006

Application Compositional Comparison

Diagnostic analysis

@ Diagnostic gives for instance:
call(write1) ret(write1) begin(interrupt1) end(interrupt1) ...

@ — interrupt1 call not supposed to arrive before call to
write2 in bugged PV version

@ PVT transform works only on PVs following some rules...

@ Bugged PVs wrongly model reality

Jérome Cornet Synchron 2006

Application Compositional Comparison

Comparison for Generator (fixed version)

Jérome Cornet Synchron 2006

Conclusion

@ Micmac automata
o Reflect general semantics of SystemC

@ Non-preemption
@ Time

o Ability to encode very quickly complex behavior of the
SystemC specification

@ PV/PVT transform

o Ability to study functionality preservation on a specific
example

e Hopes for Proof Genericity:

@ Examples are sufficiently general
@ Limited set of synchronisation schemes

Jérome Cornet Synchron 2006

@ Study remaining synchronisation schemes
@ Extend Micmac Automata function calls to return a value
@ Summarise/Formalise PV/PVT rules

@ Other properties to guarantee about the process

@ Transfer?
o Rules for writing models
e T submodels library

e TLM synchronisations library?

Jérome Cornet Synchron 2006

Bibliography

@ Matthieu Moy, Florence Maraninchi, and Laurent Maillet-Contoz.

LusSy: an open Tool for the Analysis of Systems-on-a-Chip at
the Transaction Level.

Design Automation for Embedded Systems, 10(2-3):73—-104,
September 2005.

[H Matthieu Moy.
Techniques and Tools for the Verification of Systems-on-a-Chip
at the Transaction Level.

PhD thesis, Institut National Polytechnique de Grenoble,
December 2005.

Jérome Cornet Synchron 2006

	Context & Problem
	Systems on Chip
	Transactional Level Modeling
	PV/PVT
	Research approach

	Micmac Automata
	Formal settings
	SystemC TLM Modeling with Micmac automata

	Application
	PV/PVT Modeling
	Global Comparison
	Compositional Comparison

	Appendix

