
1Claude Helmstetter, November 2006

Validation of SoC models
in presence of indeterministic
schedulings and loose timings

Claude Helmstetter
with Florence Maraninchi, Laurent Maillet-

Contoz, Matthieu Moy, Jérôme Cornet, ...

Verimag &
ST Microelectronics

2Claude Helmstetter, November 2006

Outline

Context: modeling of SoCs in SystemC-TLM

Our Problem: managing scheduling and
timing indeterminism

Covering the valid schedulings

Covering the valid timings

Implementation and case study

Current and further works

3Claude Helmstetter, November 2006

Context: Transaction Level Model

accuracy

simulation speed

TLM

RTL

Early simulation of
the embedded
software

Golden model for
RTL validation

Architecture
exploration

SoC synthesis

4Claude Helmstetter, November 2006

SystemC: C++ Library
...
unsigned x;
sc_event e;
SC_HAS_PROCESS(top);
top(sc_module_name
name):
 sc_module(name) {
 SC_THREAD(P);
 SC_THREAD(Q);
}
void top::P() {
 wait(e);
 ...

Construction of the architecture first, then non-
preemptive scheduling, simulated time.

BUS

P Q

5Claude Helmstetter, November 2006

Examples

 void top::P() {
 wait(e);
 wait(20);
 if (x) cout << "Ok\n";
 else cout << "Ko\n";}

 void top::Q() {
 e.notify();
 x = 0;
 wait(20);
 x = 1;}

With fixed delays:

6Claude Helmstetter, November 2006

Examples

void top::P() {
 wait(e);
 wait(20);
 yield();
 if (x) cout << "Ok\n";
 else cout << "Ko\n";}

 void top::Q() {
 e.notify();
 x = 0;
 wait(20);
 yield();
 x = 1;}

Untimed:

7Claude Helmstetter, November 2006

Examples

void top::P() {
 lwait(3,d1); //t1
 wait(e);
 wait(20); yield();
 lwait(40,d2); //t2
 if (x) cout << "Ok\n";
 else cout << "Ko\n";}

 void top::Q() {
 lwait(6,d3); //t3
 e.notify();
 x = 0;
 wait(20); yield();
 lwait(24,d4); //t4
 x = 1;}

With loose delays:

8Claude Helmstetter, November 2006

Outline

Context: modeling of SoCs in SystemC-TLM

Our Problem: manage scheduling and timing
indeterminism

Covering the valid schedulings

Covering the valid timings

Implementation and case study

Current and further works

9Claude Helmstetter, November 2006

Example of Scheduling
Dependencies

 void top::P() {
 wait(e);
 wait(20);
 if (x) cout << "Ok\n";
 else cout << "Ko\n";}

 void top::Q() {
 e.notify();
 x = 0;
 wait(20);
 x = 1;}

3 possible schedulings: (TE=Time Elapse)

P1;Q1;P2;[TE];Q2;P3: Ok
default OSCI scheduler choice, if P declared before Q and if ...

P1;Q1;P2;[TE];P3;Q2: Ko

Q1;P1;[TE];Q2: “dead-lock”

P1
P2

P3

Q1

Q2

10Claude Helmstetter, November 2006

Example of Timing Dependencies

 void top::P() {
 lwait(3,2); //t1
 wait(e);
 lwait(40,10); //t2
 if (x) cout << "Ok\n";
 else cout << "Ko\n";}

 void top::Q() {
 lwait(6,2); //t3
 e.notify();
 x = 0;
 lwait(24,6); //t4
 x = 1;}

3 possible executions again:

With t13, t240, t36, t424: Ok

With t15, t240, t34, t424: dead-lock

With t13, t230, t36, t430: Ko possible

11Claude Helmstetter, November 2006

The Coverage Problem

Even if data is fixed

The SystemC LRM allows many schedulings

Delays may be not fixed (designer choice)

For the validation of SoC models:

1 execution ⇒ very poor coverage

Random schedulings and timings => uncertain
coverage, lots of useless executions

Test with all possible values => unrealistic

Our goal : test only the executions that may
lead to different final states

12Claude Helmstetter, November 2006

Outline

Context: modeling of SoCs in SystemC-TLM

Our Problem: managing scheduling and
timing indeterminism

Covering the valid schedulings

Covering the valid timings

Implementation and case study

Current and further works

13Claude Helmstetter, November 2006

Principle of the Approach

Data is fixed; Delays are fixed;
we generate schedulings

MULTI-THREAD
SYSTEM

DATA

Scheduling

Use of Dynamic Partial Order Reductions
(presented by C.Flanagan, P.Godefroid
 at POPL'05)

14Claude Helmstetter, November 2006

Cyclic Generation

Checker

Program.exe
+data

Execution
trace

(0..n)

Test
directives
for new

executions

Checked trace (~ partial order)

15Claude Helmstetter, November 2006

Checker: Observing Traces

Goal:
Guess if transitions are dependent by

observation of their behavior

q: e.notify()p: wait(e)

p =?
q

exists ?

p q

16Claude Helmstetter, November 2006

Checker: Action Dependencies

Independent <=> order is irrelevant

Dependency cases for SystemC:

Variables (or memory locations):

Two write (T[12]=1 and T[12]=2)

One write and one read (x=1 and f(x))

Events:

One notify and one wait

In some cases: two notify
(consequences on the computed partial order)

17Claude Helmstetter, November 2006

Checker:
Dynamic Dependency Graph

e x
p1 p2 p3

q1 q2

e

t=20t=0

time

P

Q

Execution Trace:

Green arrows: dependent but not permutable
Red arrows: dependent and permutable

p1: wait(e) q1: notify(e), modify(x) p2: enabled by
q1

[Time Elapse] q2: modify(x) p3: read(x)

Dynamic Dependency Graph:

18Claude Helmstetter, November 2006

Checker:
Scheduling Constraint

Generation of 1 new test directive
for each red arrows

e x

p1 p2 p3

q1 q2

e

t=20t=0

time

P

Q

P1<Q1 Q2<P3

pi<qj: i-th execution of process p before
 j-th execution of process q

19Claude Helmstetter, November 2006

Cyclic Generation with
Scheduling Constraints

P1
Q1
P2

P3
Q2

{Q1 > P1,
P3 > Q2}

Checker

Program.exe

TRACE
Transition|Actions

wait(e)

modify(x)

notify(e), modify(x)

read(x)

{Q1 > P1}

TE
enabled by Q1

One new
constraint set

Set of inherited constraints
(from previous checking)

{Q1 > P1}

20Claude Helmstetter, November 2006

Property Guaranteed
by this Method

A: Set of all possible executions (for one
data)
G: Set of generated executions (for the
same data)

Property: For all a in A, there exists g in G
that differs only by the order of independent
transitions.

Consequences on coverage:

Full code accessibility for each process

All Dead-locks found

21Claude Helmstetter, November 2006

Proof Hint: Constraint Trees

Define a function f from A to G

a and f(a) differ only by the order of
independent transitions.

p1<q2

q2<p1

q3<r1

r1<q3

r1<q3

q3<r1

q1p1q2q3r1

p1q1r1q2q3

q1q2r1p1q3
q1q2p1q3r1

leafs = simulated schedulings

a=r1qq2q3p1∈A

=f(a)

root

22Claude Helmstetter, November 2006

Outline

Context: modeling of SoCs in SystemC-TLM

Our Problem: managing scheduling and
timing indeterminism

Covering the valid schedulings

Covering the valid timings

Implementation and case study

Current and further works

23Claude Helmstetter, November 2006

Principle of the Approach

Data is fixed; Delays are bounded;
we generate schedulings and timings

MULTI-THREAD
SYSTEM

DATA

Timing

We deduce linear timing constraints from
 schedulings constraints, and solve them

Scheduling

24Claude Helmstetter, November 2006

What we want to generate

 void top::P() {
 lwait(3,2); //t1
 wait(e);
 lwait(40,10); //t2
 if (x) cout << "Ok\n";
 else cout << "Ko\n";}

 void top::Q() {
 lwait(6,2); //t3
 e.notify();
 x = 0;
 lwait(24,6); //t4
 x = 1;}

3 possible executions again:

With t13, t240, t36, t424: Ok

With t15, t240, t34, t424: dead-lock

With t13, t230, t36, t430: Ko possible

25Claude Helmstetter, November 2006

Example of Timing Generation

Dynamic Dependency Graph:

timing: t13, t240, t36, t424

t=0

P

Q

time

t=3 t=6 t=30 t=46

t1

t3 t4

t2e
P1 p2 p3

q1 q2

p4

q3

e x

q2 before p2: t3≤t1, t1∈[1,5], t3∈[4,8]

p2 before q2: t3≥t1, t1∈[1,5], t3∈[4,8]
p4 before q3: t2≤t4, t2∈[30,50], t4∈[18,30]

➀

➀

➁

➁

Two Linear Programs to solve:

DPOR

LP

26Claude Helmstetter, November 2006

Constraints Generation

Symbolic date of a transition pi

If enabled by a transition qj (notification):

sdate(pi) = sdate(qj)

If follows a lwait(T) instruction

sdate(pi) = sdate(pi-1) + X
with X: new variable

For each scheduling constraint “pi before qj”:

Timing constraint: sdate(pi) ≤ sdate(qj)

Range of time variables: T ± ∆

27Claude Helmstetter, November 2006

Constraints Solving

We get a linear program with:

1 variable per lwait call

1 constraint per pair of dependent
permutable transitions (+ variable ranges)

Lots of null coefficients

We need to exhibit a solution, not only
emptyness

Solvable without abstraction using the
Simplex Algorithm (first phase only)

28Claude Helmstetter, November 2006

Outline

Context: modeling of SoCs in SystemC-TLM

Our Problem: managing scheduling and
timing indeterminism

Covering the valid schedulings

Covering the valid timings

Implementation and case study

Current and further works

29Claude Helmstetter, November 2006

The Tool Chain

kernel
checker

patched
SystemC

new

+ timings

GT

schedulings

trace
checkedraw trace

lp_solve
(LGPL)

model

analyzer
Pinapa

SystemC

model
intrumented

30Claude Helmstetter, November 2006

Industrial Case Study: LCMPEG

Part of a Set-Top Box, from STM

5 components, runs of 150 transitions, with
long sections of sequential code (~50klines)

At least 2^40 possible schedulings for the
timed version

31Claude Helmstetter, November 2006

Case Study: Results

Fixed Delays:

128 schedulings, 1 min 08 sec

overhead: 20% (time spent in checker)

Loose Delays +/- 20%:

3584 executions, 35 min 11 sec

overhead: 33%

Untimed version:

About 2^32 executions needed, failed.

32Claude Helmstetter, November 2006

Conclusion of the Case Study

Works

Harder for loosely timed TL models because of
the complexity of the state space

Well adapted to abstract TLM models which
are asynchronous

Light tool: no explicit extraction of an abstract
formal model, no state comparison, ...

33Claude Helmstetter, November 2006

Outline

Context: modeling of SoCs in SystemC-TLM

Our Problem: managing scheduling and
timing indeterminism

Covering the valid schedulings

Covering the valid timings

Implementation and case study

Current and further works

34Claude Helmstetter, November 2006

Avoid more redundant executions

Still not perfect: more executions than
 equivalence classes

dead leafs in the constraint tree

equivalent leafs in the constraint tree

Cannot be perfect: counter example exists!

Can be improved

Heuristics in checker and scheduler

Detecting dynamically equivalent leafs

Other solution: try to apply “net unfolding”

35Claude Helmstetter, November 2006

Constraint Trees

p1<q2

q2<p1

q3<r1

r1<q3
r1<q3

q3<r1

q1p1q2q3r1

p1q1r1q2q3

q1q2r1p1q3
q1q2p1q3r1

leafs = simulated schedulings
root

36Claude Helmstetter, November 2006

Better Dependency Analysis:
Persistent Events

Process A: v = 1; e.notify();

Process B: if (!v) wait(e); v = 0;

Consequence: useless simulations

Solution:

new class pevent with methods wait, notify
and reset

extending dependency analysis

Result: from 128 to 32 generated schedulings
for the LCMPEG

37Claude Helmstetter, November 2006

Using high level synchronization
mechanisms

Other structures:

Variants of persistent events

Generic Arbiter

Hash table (cf indexer benchmark)

Should dependency information be included
in specifications of components?

Models can be design in a way such that thay
are easier to validate

38Claude Helmstetter, November 2006

Thank you for your attention.

39Claude Helmstetter, November 2006

Demonstration:
LCMPEG with fixed delays

and persistent events

40Claude Helmstetter, November 2006

Parallelization of the
scheduling & timing generator

independent subtaskes

can be run on distant machine

