From clock constraints to GALS executives/shells/wrappers

Jacky Potop Yves Sorel Robert de Simone

INRIA, projet AOSTE (Rocq & Sop)

Outline

- The problem
- Weak endochrony
 - Theory
 - Shell generation
 - Checking weak endochrony
- Composition issues
- Future work

From synchronous to GALS

- Modular synchronous system
 - Absence as an explicit value (\perp)
 - Reactions are fired by consuming one value on all inputs (and producing on all outputs)

\rightarrow GALS

- No timing information
- Reaction firing: wrappers/shells
- Our approach: erase \perp values

When is it feasible, while preserving the semantics?

- Same I/O sequences, without the \perp values
- Different timing

- Reads values on input channels
- When enough input is available:
 - Add the missing \perp values to complete the input vector
 - Activates its pearl(s) (clock gating)
 - Remove the absent values from the output
 - Propagate the results on the output channels when space is available
 - Mark used inputs as read (new ones can arrive)
- In general, does not preserve semantics (or does so by reintroducing explicit absence)
 – Need correctness criteria: weak endochrony

Weak endochrony

- Ensures that constructing synchronous input is
 - Deterministic, up to commutation of independent reactions
 - Possible using single-place buffers
- In this paper, stateless weak endochrony:
 - If I, J sets of inputs that can trigger reactions, if no signal has different values in I and J, then I∩J, I∪J, and I\J can trigger reactions.
- Two issues :
 - Checking/enforcing WE
 - Synthesizing the shells

Weak wndochrony								
 Atoms = minimal reactions Generators of all reactions. Two different atoms that share a variable have contradictory inputs 								
 Example 	11	1	(9.9)	(9.9)	(9.9)	1	(1.2)	
$-r_1, r_2, r_3,$	O1	Ţ	8	8	8	1	3	
r _c , r _c atoms	SYNC1	T	0	0	1	T	0	
15, 1 ₆ atomo	SYNC	T	T	T	Т			
	С	T	T	T	1	L	T	
$-r_4 = r_5 \cup r_6$ not an atom	12	(0,0)	T	<mark>(0,0)</mark>	(0,0)	(1,5)	L	
	O2	0	T	0	1	0	T	
	SYNC2	0	T	0	1	0	<u> </u>	
		r ₆	r ₅	r ₄	r ₃	r ₂	r ₁	

Γ

Determining weak endochrony

- Compute a smallest set of reactions that generate all the other by union
- The generator set has the properties of an atom set *iff* the system is WE.

Shell generation for WE

- Component = Shell +pearls
- Shell = concurrent triggers (1 per atom)
 - Atom trigger:
 - await atom input
 - acquire needed pearls (mutual exclusion zone)
 - set the inputs of the pearls
 - enable clock (in soft, call the reaction function)
 - disable clock upon completion
 - send the outputs
 - release the needed pearls

Related work

- Latency-insensitive systems & SynDEx explicitly transmit all absence symbols
- Endochronous systems & generalized latency-insensitive add more synchronization (no independent computation of ADD1 and ADD2)

Future work

- Extend the techniques of SynDEx to complex multi-clock systems
 - Enrich the formalism
 - Extend the scheduling techniques to produced optimized executives
- Optimize shell generation
 - No need for fully separated atom triggers (can use forests of choices, generalizing the clock trees of Signal)
 - Possible pipelining of atoms in the pearls
 - In synchronous implementations of GALS systems (e.g. Latency-insensitive), can execute several atoms at the same time.