
Fault-Tolerant Platforms for Automotive Safety-Critical
Applications

M. Baleani, A. Ferrari, L. Mangeruca, A.
Sangiovanni-Vincentelli

PARADES EEIG
Via San Pantaleo 66

Rome, Italy

mbaleani, aferrari, leon,
alberto@parades.rm.cnr.it

Maurizio Peri, Saverio Pezzini
ST Microelectronics

Via C. Olivetti 2
Agrate Brianza, Italy

maurizio.peri, saverio.pezzini@st.com

ABSTRACT
Fault-tolerant electronic sub-systems are becoming a stan-
dard requirement in the automotive industrial sector as elec-
tronics becomes pervasive in present cars. We address the is-
sue of fault tolerant chip architectures for automotive appli-
cations. We begin by reviewing fault-tolerant architectures
commonly used in other industrial domains where fault-
tolerant electronics has been a must for a number of years,
e.g., the aircraft manufacturing industrial sector. We then
proceed to investigate how these architecture could be imple-
mented on a single chip and we compare them with a metric
that combines traditional terms such as cost, performance
and fault coverage with flexibility, i.e. the ability of adapt-
ing to changing requirements and capturing a wide range of
applications, an emerging criterion for platform design. Fi-
nally, we describe in some details a cost effective dual lock-
step platform that can be used as a single fail-operational
unit or as two fail-silent channels trading fault-tolerance for
performance.

Categories and Subject Descriptors
B.8 [Performance and Reliability]: Performance Anal-
ysis and Design Aids; C.0 [General]: System architectures;
C.1.2 [Processors Architectures]: Multiple Data Stream
Architectures (Multiprocessors)—Interconnection architec-
tures (e.g., common bus, multi-port memory, crossbar switch),
Multiple-instruction-stream, multiple-data-stream processors
(MIMD); C.3 [Special-Purpose and Application-Based
Systems]: Microprocessor/microcomputer applications, Real-
time and embedded systems; C.4 [Performance of Sys-
tems]: Design studies, Fault-tolerance, Reliability, Avail-
ability, and Serviceability; C.5.4 [Computer System Im-
plementation]: VLSI Systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’03,Oct. 30–Nov. 2, 2003, San Jose, California, USA.
Copyright 2003 ACM 1-58113-676-5/03/0010 ...$5.00.

General Terms
Design, Reliability

Keywords
system-on-a-chip, fault-tolerant, VLSI, multi-processor, au-
tomotive, safety critical

1. INTRODUCTION

1.1 Electronics in the Car
The introduction of digitally controlled combustion en-

gines with fuel injection and digitally controlled anti-lock
brake systems (ABS) in the late 70’s was just the first step
towards a pervasive use of electronics in the car. Close syn-
ergy between mechanics and electronics yields several ben-
efits that we can measure in terms of better fuel economy,
better vehicle performance in adverse conditions, driver as-
sisting functions such as ABS, traction control (TCS), elec-
tronic stability control (ESP), and brake assistant (BA) and
safety features such as collision warning and even automatic
collision avoidance systems.

To design cars with better performance and higher level of
safety, engineers must substitute mechanical interfaces be-
tween the driver and the vehicle with electronic systems.
These systems are common in the aerospace industry and
are generically called X -by-wire systems. X-by-wire systems
consist of a driver’s operating unit (throttle pedal, brake
pedal, gear selector, steering wheel) whose electrical output
is processed by micro-controllers that manage the power-
train, braking and steering activities via electrical actua-
tors. Throttle-by-wire, shift-by-wire, and driver assistance
systems have been used successfully for many years.

1.2 Fault-Tolerance Requirements
The fault-tolerance requirements in cars are minimal since

the scenario considered is the single-fault one [8]. In the case
of the previously mentioned electronic sub-systems, either a
mechanical backup exists, or a fail-safe mechanism is guar-
anteed by mechanical sub-systems in the event of electronic
failures. In the case of throttle-by-wire, the throttle spring
system provides a reduced engine speed in the event of elec-
tronic failure. Similarly, when electronic braking functions
(ABS, TCS, ESP, BA) fail, the brake system behaves like a

conventional one providing a mechanical backup. Mechan-
ical backups relieve electronics of stringent fault-tolerance
requirements, but they are costly, heavy, potentially critical
in the case of accident (e.g. steering column) and somehow
limit the potential of electronics in terms of performance and
flexibility. Moving to X-by-wire systems without mechanical
backup (brake-by-wire, steer-by-wire), as it is done today in
fly-by-wire aircraft, will require to build highly reliable and
fault-tolerant electronic systems. Indeed, the real challenge
is to build these fault-tolerant systems with hard real-time
requirements for mass market and at a reasonable cost.

With respect to fly-by-wire systems in the aerospace, au-
tomotive electronic systems present some distinctive fea-
tures in terms of safety requirements. Particularly, a safe
state can be reached easier and faster in the event of haz-
ardous failures. For automobiles, standstill or low speed at
a non-hazardous place represent a safe state. This fail-safe
condition propagates differently to electronic components
according to their hazard severity for failures and the inher-
ent fault-tolerance possibilities due to mechanical backups
and/or intrinsic redundancy. In the case of a brake-by-wire
system, the hazard severity is mitigated by the intrinsic re-
dundancy of the braking system (four braking wheels).

1.3 Fault-Tolerant Design Approaches
Any form of fault-tolerance is based on redundancy that

can be spatial, or temporal, or pertaining to information.
Redundancy alone does not guarantee fault-tolerance. On
the contrary, redundant structures show a higher fault ar-
rival rate compared to a non-redundant system. It is of
paramount importance how redundancy is managed. One
of the most important issues is the definition of fault-con-
tainment regions (FCR’s) i.e. “collection of components that
operate correctly regardless of any arbitrary logical or elec-
trical fault outside the region” [9] and whose faults do not
cross region boundaries. This generally requires the use of
independent power and clock sources, the electrical isolation
of interfaces and may also require physical separation in or-
der to avoid common-mode failures. These fault-tolerance
requirements call for multi-chip/multi-package solutions, at
least for fail-operational structures and are apparently clash-
ing with current silicon technology trends. In fact, recent
advances in device integration and IC packaging make the
implementation of complete systems on a single chip (SoC’s)
or in a single package (SiP’s) not only viable but also cost
effective. Indeed, the most hazardous drive-by-wire applica-
tions will deploy redundant distributed architectures imple-
menting fail-operational configurations. Nonetheless, single
chip fail-operational architectures may be of important value
if we account for the occurrence of soft errors.

1.4 Contributions
In this paper, we focus on fault-tolerant system-on-a-chip

platforms. We begin by describing the issues in system-on-
a-chip fault-tolerant design (Section 2). We then present
in Section 3 several alternatives for an automotive control
platform trading performances for system integrity, i.e. the
probability of the system satisfactorily performing the re-
quired functions under all the stated conditions within a
stated period of time. In analyzing each of the alternatives,
we leverage the great deal of literature inherited from tradi-
tional safety related disciplines (railway, aircraft, space, mil-
itary, and nuclear systems), we consider the unique safety re-

quirements and features of automotive systems, and we har-
monize all these aspects with the current silicon technology
trends. The main contributions of this paper come from the
analysis of a system-on-a-chip implementation (Section 4)
and the effective design space exploration presented in Sec-
tion 5, where the necessary trade-offs between cost, perfor-
mance and system integrity are discussed within an auto-
motive domain application context. The results show that
a great deal of flexibility in performance versus system in-
tegrity can be achieved at an acceptable cost.

2. FAULT-TOLERANCE IN SOC
Single-chip solutions cannot be divided up into fault con-

tainment regions, i.e. they are subject to common mode
failures. Common mode failures occur because of faults
whose occurrence causes the failure of all replicas. For in-
stance, duplication cannot provide any protection against
a common mode failure that stops both CPUs, e.g. a fail-
ure on the power supply. In a single-chip implementation,
usual sources of common mode failures are the clock tree,
the power supply and the silicon substrate.

Design techniques can be adopted to separate clock and
power distribution or to make them more robust and/or
clock and power supply monitors [3] can observe the correct
operation and signal any deviation.

On the other hand, as pointed out before, we cannot pre-
vent other common mode failures as those caused by me-
chanical faults (e.g. faults hitting the packages or the sub-
strate) from affecting system operation. If the probability of
these events is not small enough to satisfy the safety require-
ments, the only solution available is replicating the entire
chip keeping the replicas physically separated.

Although single-chip implementations of electronic sys-
tems suffer from common modes of failure, the use of re-
dundancy within the system itself is still to be considered a
fundamental design practice. The higher level of integration
bears as a side effect a non-negligible increase in the prob-
ability of occurrence of permanent and transient faults. In
fact, the reduced pitch and wire width, due to the higher
integration level, significantly increase the probability of oc-
currence of an undesired short or open circuit, causing a
permanent fault in the system.

Similarly, transient faults, also called single event upsets
(SEU’s), are due to electrical noise or external radiations [2].
Radiation can, directly or indirectly, induce localized ioniza-
tion events capable of upsetting internal data states. While
the upset causes a data error, the circuit itself is undamaged
and the system experiences a transient fault. The data up-
setting is called soft error and the rate at which these events
occur is called soft error rate (SER). Soft errors are already
of great concern in devices built in current technologies [13]
and will become a major issue as device sizes continue to
shrink not only for memory components but also for combi-
national logic [1, 14].

While the occurrence of a permanent fault may impair
or even stop the correct functionality of the system, soft
errors caused by transient faults often drastically reduce the
system availability. As a matter of fact, it is often the case
that soft error avoidance is strongly required to maintain
the system availability at an acceptable level.

Due to the transient nature of these faults, temporal re-
dundancy techniques can be used to implement fault de-
tection and masking. Triple execution and majority voting

represents a static temporal redundancy technique that can
be used to mask any single soft error. A dynamic technique
can be realized deploying error detection (e.g. via duplica-
tion and comparison) and recovery via checkpointing and
roll-back.

The former solution may result too demanding, particu-
larly taking into account the hard real-time requirements of
automotive applications. The latter technique may yield to
unacceptable degradation in terms of the availability of the
service provided by the system especially when the soft error
rate (SER) is sensibly higher than the permanent fault rate.
This is why we believe that some form of spatial redundancy
must be employed at the chip level in order to mask or detect
soft errors. While the error detection drastically simplifies
the system roll-back and restart, error masking eliminate
(or at least reduce) this need thus maintaining the provided
availability at an acceptable level.

3. A SURVEY OF FAULT-TOLERANT
MULTI-PROCESSOR ARCHITECTURES

Comprehensive surveys on redundant structures can be
found in [10, 12, 4]. In this section we review the basic
features of the various alternatives.

3.1 Lock-Step Dual Processor Architecture

Figure 1: Lock-step dual processor architecture

In a lock-step architecture (Figure 1), two processors usu-
ally referred to as the master and the checker, execute the
same code being strictly synchronized. The master has
access to the system memory and drives all system out-
puts, while the checker continuously executes the instruc-
tions moving on the bus (i.e. those fetched by the master
processor). The outputs produced by the checker, both ad-
dresses and data, feed the compare logic (monitor), consist-
ing of a comparator circuit at the master’s and checker’s
bus interfaces, that checks the consistency of their data-,
address- and control-lines. The detection of a disagreement
on the value of any pair of duplicated bus lines reveals the
presence of a fault on either CPU without giving the chance
to identify the faulty CPU.

The monitor is not capable of detecting bus and memory
errors. These errors are in fact a source of common-mode
failure causing both CPU to fail the same way. Bus and
memory must hence be protected against faults deploying

error detection (correction) techniques such as parity bits
(Error Correcting Codes).

The lock-step architecture can be employed as a fail-silent
node providing the capability of detecting any (100% cover-
age) single error (permanent or transient) occurring indiffer-
ently on the CPU, memory or communication sub-system.
Error correcting codes are required when errors occurring
on busses and memories turn out to be relatively frequent
due to the occurrence of transient faults.

Due to the relatively low gate count of its logic, the in-
terrupt controller can be designed to guarantee the required
robustness using ad-hoc techniques or it can be provided
with fault-tolerance mechanisms such as self-checking hard-
ware.

3.2 Loosely-Synchronized Dual Processor Ar-
chitecture

In a loosely-synchronized architecture (Figure 2) two CPUs
run independently having access to distinct memory sub-
systems. A real-time operating system running on both
CPUs handles interprocessor communication and synchro-
nization and is responsible for error detection (e.g. by means
of cross-checks), correction and containment (e.g. memory
protection).

A subset (possibly all) of the tasks executed by the pro-
cessors are defined as critical. The image of critical tasks is
duplicated on both memories. Critical tasks are executed in
parallel as software replicas and their outputs are exchanged
after each run on a time triggered basis. Both processors
are responsible for checking their consistency. A mismatch
indicates a fault on the CPU, memory or communication
sub-system and prevents outputs from being committed.

Figure 2: Loosely-Synchronized Dual-Processor ar-
chitecture

When a cross-check mismatch has been detected, prede-
fined computation, called sanity-check, or other self-testing
techniques can be used on both processors to identify the
faulty component. If the check succeeds, i.e. the sanity-
check on only one processor detects a fault condition, the

system may degrade its operation (instead of halting) using
the healthy component only. Notice that, if the sanity-check
coverage is less than 100%, there is no guarantee that the
operational CPU be fault-free. In fact the probability that
both CPU experience a fault might be non-negligible since
the fault rate must be integrated over a time window start-
ing from the last known fault-free condition.

In order to guarantee the commitment of agreed outputs
only, several mechanism may be employed. With protected
accesses, only specific processes such as RTOS services or
dedicated tasks are granted access to the system outputs.
Alternatively, to prevent outputs from being committed be-
fore being cross-checked, time guardians can restrict CPU
access to system outputs to a predefined time-window. The
mechanism can be implemented in hardware, by synchro-
nizing it with the cross-check executions, or handled by the
RTOS. A third technique is based on the use of signatures.
Each processor adds its own signature to the outputs of crit-
ical tasks and the receiver checks for both signatures before
accepting the data.

According to the subset of critical task, the architecture
can appear in several different configurations. At the one
end, fully critical applications must be entirely replicated,
thus requiring twice as much memory while providing the
same performance as a single processor architecture. Actu-
ally, in this case, the lock-step architecture outperforms the
loosely-synchronized one, for the performance overhead re-
quired for executing sanity- and cross-checks does not com-
pare with the relatively low performance penalty due to the
compare logic. At the other end, when only a few sporadic
tasks are identified as critical, the two processors can run
different tasks in parallel approaching the performance of a
dual-processor architecture.

The execution of a function on both CPUs guarantees the
detection of any error (100% coverage) occurring indiffer-
ently on one of the CPUs, busses or memories. Since busses
and memories (at least for critical tasks) are replicated, no
other form of redundancy (e.g. parity bits) is needed to de-
tect errors on these components. Nevertheless, ECCs may
be employed in the case of high memory (or bus) failure
rate.

3.3 Triple Modular Redundant (TMR) Archi-
tecture

In the TMR configuration (Figure 3) three identical CPUs
execute the same code in lock-step and a majority vote of the
outputs masks any possible single CPU fault. The memory
and communication sub-system faults can be masked em-
ploying ECC techniques.

Other TMR configurations can be devised. For example,
three loosely synchronized cores (possibly heterogeneous)
can replace the lock-step modules or a dynamic redundancy
scheme with hot/cold standby can be deployed. These con-
figurations are not considered in the present work since we
believe they are outperformed in terms of cost, performance
and fault-tolerance characteristics by the dual lock-step ar-
chitecture presented below.

3.4 Dual Lock-Step Architecture
A configuration largely employed in multi-chip fault-tolerant

systems consists of the combination of two fail-silent chan-
nels, each one consisting of a lock-step architecture as the
one presented in Section 3.1, building up a single fail-operational

Figure 3: Triple modular redundant (TMR) archi-
tecture

unit (see Figure 4). In this case, the architecture provides
fault-tolerance only for the replicated tasks, whose outputs
are checked before being committed. Notice that software
design errors can be prevented as well. In contrast to solu-
tion presented in Section 3.2, the execution of sanity-checks
is no more required, since self-checking capabilities are al-
ready provided in hardware by means of duplication and
yield a 100% fault coverage. Moreover, in degraded mode,
while fault-tolerance cannot be guaranteed, the architecture
still preserves fail-silence capabilities.

Figure 4: Dual Lock-Step architecture

4. SOC FAULT-TOLERANT ARCHITECTURE
IMPLEMENTATION

The SoC implementation of the architectures presented in
Section 3 opens the way to new opportunities and challenges.
Due to the costs associated to the higher integration level,
single-chip implementations should have enough flexibility
to support a wide range of applications [6] in order to share

the silicon development cost across a set of different final
electronic systems.

Here, the term flexibility describes the capability of a sil-
icon solution to correctly adapt to performance, cost and
fault-tolerance requirements of a set of applications, after
silicon production. The flexibility can be obtained via soft-
ware configurability or programmability during software de-
sign or even run-time.

While, from the architectural standpoint, the simple ar-
chitecture of the lock-step and the TMR solutions offer very
small optimization margins, important variations of the loosely-
synchronized and dual fail-silent architectures can be ex-
plored that provide significant improvement in both perfor-
mance and flexibility. In this section we first examine such
architectural variations and then provide a comparison of
the single-chip implementation of the four architectures.

In contrast to multi-chip solutions, in a single-chip dual-
processor architecture the memory sub-system can be shared
between the processors at much lower cost. Since the two
cores can run independently, the memory and communica-
tion sub-systems are likely to become a major performance
bottleneck. For this reason, as we already proposed in [5],
the memory sub-system is split into 4 banks (2 for code and
data respectively) and the traditional bus is replaced by a
more performant crossbar switch, which guarantees suffi-
cient bandwidth between the processor and memory sub-
systems.

As a result, while the sensitivity to failures only marginally
changes due to the small amount of gates additionally needed
to implement the shared memory sub-system, the flexibility
of the architecture significantly improves. In fact, the physi-
cal memory partition does no more constrain the application
size on each processor and unbalanced applications can be
supported.

Figure 5 shows the single-chip loosely-synchronized dual-
processor architecture, called Shared-Memory (SM) Loosely-
Synchronized Dual-Processor in the sequel. Since the mem-
ory sub-system is shared between the processors, the dupli-
cation of critical code becomes a trade-off between system
integrity, memory size and performance: while critical code
takes up costly memory space, non-duplicated critical code,
which must be executed on both cores, runs at half the speed
of a single processor.

Figure 5: SM Loosely-Synchronized Dual-Processor
architecture

The most promising opportunities in the single-chip im-
plementation of the presented architectures come from the
integration of the dual lock-step configuration, as it will be
presently discussed. In the SM Dual Lock-Step architec-
ture (Figure 6) the two fail-silent channels share the same
memory sub-system. This solution largely enhances flexibil-
ity, since it covers the TMR solution (same fault-tolerance
properties), while implementing the dual lock-step architec-
ture. In fact, when fail-operational capability is required,
the two channels can be arranged in lock-step mode, in
which case the architecture provides masking capabilities of
CPU’s faults as in the TMR solution, otherwise they can be
used as two completely parallel fail-silent channels provid-
ing double performance. Memories and buses are protected
using ECCs in order to retain error masking capabilities on
these components when operating in lock-step mode.

The lock-step and parallel modes are just the two ex-
tremes of a continuum of operating modes the architecture
can be used in. For applications featuring just a few critical
tasks, we can follow an approach similar to Section 3.2, by
only loosely synchronizing the two fail-silent channels.

Figure 6: SM Dual Lock-Step architecture

5. IMPLEMENTATION ISSUES AND COM-
PARISONS

The design space exploration of the previously described
single-chip architectures is carried out in a three-dimensional
design space by analyzing the best trade-off between cost,
performance and fault-tolerance capabilities. In order to
support our assertions, we compare the performance and
the fault-tolerance features of the different solutions and
evaluate their cost on the basis of the area estimates de-
rived from the current implementation of the architecture
presented in [5].

CPU FLASH RAM Bus ECC
(1Mbit) (1KByte) (32bit) overhead

1 4.15 0.17 0.5 7/32

Table 1: Area of embedded memory components
normalized to CPU footprint

Table 1 summarizes the area of memory components (both
RAM and FLASH) and buses, normalized to the CPU foot-

#CPU CPU #RAM RAM #FLASH FLASH #Bus Bus Area
area area area area

Low-range
Single CPU no ECC 1 1.0 1 2.0 1 8.0 1 0.5 11.5
Lock-step mem/bus ECC 2 2.0 1 2.4 1 9.8 1 0.6 14.5
SM Loosely-Sync mem ECC 2 2.0 2 4.9 2 19.5 2 1.0 27.4
TMR mem/bus ECC 3 3.0 1 2.4 1 9.8 1 0.6 15.8
SM Dual LS mem/bus ECC 4 4.0 1 2.4 1 9.8 2 1.2 17.4

Mid-range
Single CPU no ECC 1 1.0 1 10.0 1 41.0 1 0.5 52.5
Lock-step mem/bus ECC 2 2.0 1 12.2 1 50.0 1 0.6 64.8
SM Loosely-Sync mem ECC 2 2.0 2 24.4 2 99.9 2 1.0 127.3
TMR mem/bus ECC 3 3.0 1 12.2 1 50.0 1 0.6 65.8
SM Dual LS mem/bus ECC 4 4.0 1 12.2 1 50.0 2 1.2 67.4

Table 2: Cost of different architectures for low-/mid-range X-by-wire systems

print. The approximated overhead due to the introduction
of memory error correction code is also shown.

Table 2 shows the estimated area for each of the alterna-
tives presented in Section 3 for typical low-range and mid-
range X-by-wire systems.

The single CPU architecture can be considered as a refer-
ence design satisfying computational and memory require-
ments but not providing any fault-tolerance capability.

5.1 The Lock-Step Architecture
The lock-step architecture cannot provide any performance

boost over the single processor solution, since the two cores
are bound to execute the same code cycle by cycle. Rather,
due to the introduction of the compare logic and the ECC
coders/decoders in the critical path, the clock rate may be
decreased.

However, with a relatively low area overhead (see Table 2),
this solution provides a 100% fault coverage within an error
detection time in the order of the clock period. This feature
together with an error detection mechanism which is local
to the CPU, memory and bus sub-systems eases fault diag-
nosis. Even if the lock-step configuration does not provide
any degraded mode of operation, fault diagnosis can be very
important to recover from transient faults.

Since both processors execute the same code, the lock-
step configuration does not provide any protection against
software design errors. On the other hand, hardware design
diversity is partially supported (e.g. implementing the dual
core as the combination of a hard-IP and a soft-IP) even if
this might make core synchronization more complex.

5.2 SM Loosely-Synchronized Dual-Processor
Architecture

In the SM loosely-synchronized dual-processor architec-
ture the two CPUs can run independently having full access
to the memory sub-system and system I/O. Since only criti-
cal tasks must be duplicated for safety requirements, we can
trade criticality for system performance.

As the lock-step configuration, the SM loosely-synchronized
architecture provides a 100% error detection when running
full-critical applications. However, this requires roughly twice
as much memory space to accommodate the duplicated code.
Memory footprint is mostly responsible for the huge area

overhead1 as shown in Table reftab:results. Moreover, fault
diagnosis is complicated by the longer error detection time,
proportional to the check execution period, and by the fact
that error detection only performed on selected outputs.
Nonetheless, in contrast to the lock-step solution, the SM
loosely-synchronized architecture has the ability of support-
ing both hardware and software design diversity and pro-
vides a degraded mode of operation.

Both configurations presented above provide no fault mask-
ing mechanism, except for the possible implementation of
ECCs on buses and memories. This may be a major draw-
back especially in the case of a high transient fault rate.

5.3 Triple Modular Redundant Architecture
The TMR configuration represents a “low-cost” solution.

In fact, the area overhead over the lock-step architecture is
as low as 9% and 1.5% for low- and mid-range systems re-
spectively. However, it also inherits almost all of the features
and flaws of the lock-step architecture. Excepting its unique
capability of masking any single fault, at the cost of an addi-
tional CPU, it offers a 100% error detection coverage within
a single clock period. On the other hand, performances are
limited to those of a single processor architecture, and nei-
ther degraded mode nor support for software design diversity
are provided. Actually we can view the TMR as operating
in degraded mode when it is working with just two healthy
CPUs: in this condition the TMR system operates as a fail-
silent node.

5.4 SM Dual Lock-Step Architecture
The SM dual lock-step architecture combines the advan-

tages of the SM loosely-synchronized solution in terms of
flexibility with the fault masking capabilities provided by
the TMR architecture.

The two fail-silent channels can be used in different config-
urations trading fault-tolerance capabilities for performance
and some area overhead. When the two cores execute the

1Notice that since memory is duplicated, ECC protection
on memory is not needed for error detection. However it
improves system availability assuming a relatively higher
error rate affecting the memory sub-system than other sys-
tem components. Without memory ECC the estimated area
would be of 23.0 and 105.0 for low- and mid-range systems
respectively. A similar argument holds for the communica-
tion sub-system.

same code in lock-step, they provide fault-tolerance capabil-
ities. On the other hand, if the fail-silence property suffices
for the application at hand, the two channels can operate
completely independently and the architecture behaves like
a “traditional” dual processor solution.

This great deal of flexibility comes at a relatively low price.
In fact, if compared with the fault-tolerant TMR architec-
ture, while the introduction of the 4th CPU yields a 10%
overhead for low-range applications, the overhead falls down
to just 2-3% for more memory demanding applications (i.e.
mid-range). Notice that to cover software design faults2 via
design diversity, we need to double the memory footprint as
done for the SM loosely-synchronized architecture. Also in
this case, comparing the two alternatives, we come out with
a modest increase in area, in the order of about 8% and 2%
for low- and mid-range applications respectively.

5.5 Trade-off Analysis
As shown in Table 2 the SM loosely-synchronized architec-

ture is by far the most area-demanding solution. The perfor-
mance improvement over the lock-step architecture and its
fault-tolerance characteristics do not justify the additional
cost due to the large area overhead. Hence, the choice is
restricted to the lock-step solution, the TMR configuration
and the SM dual lock-step architecture (the single processor
solution is out of the scope for it provides no error detection
mechanism).

Both the lock-step and the TMR architectures cannot pro-
vide any performance improvement over the single proces-
sor solution, while representing “low-cost” solutions. On
the other hand, the versatility (100% single fault-tolerance
vs. fail-silence plus double performance) of the SM dual
lock-step architecture allows to use the same platform for a
wider range of applications, reducing engineering costs and
significantly augmenting product volumes.

Based on the considerations above we strongly believe
that the SM dual lock-step solution represents the best al-
ternative between the four architectures considered in this
paper for the given application range.

6. SM DUAL LOCK-STEP ARCHITECTURE
IMPLEMENTATION DETAILS

The 4 CPUs used in the implementation of the dual lock-
step architecture can be 4 ARM7 or ARM9 providing roughly
0.9 and 1.1 instruction per cycle respectively. In 0.13µm
technology the maximum clock frequency can reach 80MHz
and 200MHz. However, without the introduction of a more
complex memory hierarchy (i.e. cache) the maximum clock
frequency will be limited by the embedded memory access
time which is expected to be about 60ns.

The 4 CPU are arranged in two lock-step pairs with the
possibility of executing all 4 in a lock-step mode. One CPU
for each couple drives the outputs to the memory or I/O sub-
system while the other provides replicated outputs to a self-
checking checker for duplication (or double rail) codes [11].

When the two pairs are used in lock-step mode to guar-
antee fault-tolerance, the system provides the same per-

2With respect to software design faults the dual lock-step
architecture cannot provide fault-tolerance, since one pair of
processors is simultaneously affected by the same fault and
cannot detect it. Additional checks (e.g. alternate com-
putation, consistency checks) can be deployed to preserve
fault-tolerance capabilities.

formances as a single CPU architecture (if we neglect the
overhead introduced by fault-tolerant mechanisms). In this
mode either outputs can be used to access system the mem-
ory and peripheral modules. Since each couple forms a fail-
silent sub-system either both outputs are correct or one sub-
system provides no output at all.

When used for parallel processing the architecture can
double the performance while retaining the fail-silence prop-
erty. Since in this operating mode accessing the system
memory becomes the major performance bottleneck, we bor-
row many of the architectural principles introduced in [5] to
overcome the same problem.

The memory sub-system provides 4 concurrent ports, two
for SRAM and two for FLASH accesses. At the same time,
a hierarchical interconnection scheme substitutes the tradi-
tional bus backbone. The two processor pairs, the I/O and
memory ports are connected to a crossbar network. I/O de-
vices share a high- or low-performance bus, according to
their bandwidth requirements, which can be accessed by
master devices (typically the two processor and a DMA)
via the crossbar I/O ports.

We have to remark that other approaches exist that do
not depend on the replication of the central processing unit.
These approaches include concurrent checking methods based
on coding techniques, on-line Built-In Self-Test (BIST) and
Built-In Current-Monitoring (IDDQ-Test). The AE11 micro-
controller [3], specifically developed for safety-critical auto-
motive applications, deploys a combination of these different
techniques. These techniques yield a lower overhead than
duplication at the expense of fault coverage, error detection
latency and performances.

While on-line BIST and IDDQ testing are extremely im-
portant for peripheral modules, we believe that duplication
is the best approach for detecting/tolerating errors on the
CPU sub-system, which is the focus of this paper. The AE11
controller deploys parity based coding techniques to detect
errors on the CPU data path and signature monitoring [15]
for the control path. These methods entail a complete re-
design of the CPU and at least a major modification of the
software tool-chain (e.g. a customized assembler). While
the related development costs can be sustainable for an 8-
bit CPU in 0.7µm technology, or at least comparable to the
cost of duplicating the entire CPU, this is no longer the case
for 32-bit architectures in 0.18-0.13µm technologies.

Last but not least, the selected solution does not tie us
to a particular CPU core manufacturer and architecture,
leaving us the freedom of choosing the “best” (in terms of
both performance and cost) CPU core for the application at
hand 3.

7. CONCLUDING REMARKS
In this paper, we have proposed a single-chip solution,

devised for fault-tolerant automotive applications, which is
based on the use of two lock-step channels (4 CPUs over-
all), a cross-bar communication architecture and embedded
memories.

The reasons behind this choice are manifold. From cost
perspective, since the design is dominated by the embed-
ded memory area (from 70% to even 94% of the overall
area required for CPUs, memories and communication in-

3This aspect is underlined also in [7] and claimed to be a
major advantage of the Delphi Secured Micro-controller.

frastructure) the introduction of the redundant CPUs affects
marginally the overall cost.

The availability of two fail-silent channels, which can be
used as lock-stepped or loosely synchronized computational
units, provides a great deal of flexibility. This flexibility can
be exploited in two different ways:

1. The dual lock-step platform fulfills the requirements
of a large application space. In fact, it can be used for
a class of applications that call for high computational
power as well as for another class of applications that
must satisfy more stringent safety requirements.

2. For each application, designers may still trade perfor-
mance for fault-tolerance features. In fact, they have
the freedom of moving from a single fail-operational
channel with a 100% coverage of CPU, memory, and
bus faults, to a double-performance fail-silent architec-
ture, passing through a continuum of performance/fault-
tolerance trade-off alternatives.

8. ACKNOWLEDGMENTS
This work has been partially supported by the European

Community project IST-200138314 Columbus and by the
NFS ITR CCR-0225610 Center for Hybrid Embedded Soft-
ware Systems (CHESS) 4. We would also like to thank Clau-
dio Pinello, University of California at Berkeley, and Marco
Carloni, University of Bologna, Italy, for their important
contributions.

9. REFERENCES
[1] R. Baumann. The impact of technology scaling on soft

error rate performance and limits to the efficacy of
error correction. In Digest of the Internation Electron
Devices Meeting IEDM’02., pages 329–332, 2002.

[2] R.C. Baumann. Soft errors in advanced semiconductor
devices - part I: The three radiation sources. IEEE
Transaction on Device and Materials Reliability,
1(1):17–22, Mar 2001.

[3] E. Böhl, Th. Lindenkreuz, and R. Stephan. The
fail-stop controller AE11. In Proceedings of the
International Test Conference, pages 567–577, Nov
1997.

4Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Sci-
ence Foundation (NSF).

[4] F. Cristian. Understanding fault-tolerant distributed
systems. Communications of the ACM, 34(2):56–78,
Feb 1991.

[5] A. Ferrari, S. Garue, M. Peri, S. Pezzini, L. Valsecchi,
F. Andretta, and W. Nesci. Design and
implementation of a dual processor platform for
power-train systems. In Proceedings of Convergence
Conference, October 2000.

[6] A. Ferrari and A. Sangiovanni-Vincentelli. System
design: Traditional concepts and new paradigms. In
Proceedings of the International Conference on
Computer Design, October 1996.

[7] L. T. Fruehling. Delphi secured microcontroller
architecture. In Desing and Technologies for
Automotive Safety-Critical Systems, SAE 2000 World
Congress, 2000.

[8] R. Isermann, R. Schwarz, and S. Stolzl. Fault-tolerant
drive-by-wire systems. IEEE Control Systems
Magazine, 22(5):64–81, Oct 2002.

[9] J.H. Lala and R.E. Harper. Architectural principles
for safety-critical real-time applications. Proceedings of
the IEEE, 82(1):25–40, Jan 1994.

[10] V.P. Nelson. Fault-tolerant computing: Fundamental
concepts. IEEE Computer, 23(7):19–25, Jul 1990.

[11] M. Nicolaidis and B. Courtois. Strongly code disjoint
checkers. transcomp, 37(6):751–756, Jun 1988.

[12] V.B. Prasad. Fault tolerant digital systems. IEEE
Potentials, 8(1):17–21, Feb 1989.

[13] N. Seifert, Xiaowei Zhu, and L.W. Massengill. Impact
of scaling on soft-error rates in commercial
microprocessors. IEEE Transactions on Nuclear
Science, 49(6):3100–3106, Dec 2002.

[14] P. Shivakumar, M. Kistler, S.W. Keckler, D. Burger,
and L. Alvisi. Modeling the effect of technology trends
on the soft error rate of combinational logic. In
Proceedings of the International Conference on
Dependable Systems and Networks, pages 389–398,
2002.

[15] K. Wilken and J.P. Shen. Continuous signature
monitoring: Low-cost concurrent detection of
processor control errors. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, 9(6):629–641, Jun 1990.

