
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 20, 379-390 (2004)

379

Short Paper___

Management of Fault Tolerance Information for Coordinated

Checkpointing Protocol without Sympathetic Rollbacks

KWANG SIK CHUNG, YOUNGJUN LEE*, HEONCHANG YU** AND WONGYU LEE**

Department of Computer Science
University College London

Gower Street, WC1E 6BT, London
*Department of Computer Education

Korea National University of Education
Chungbuk, 363-791 Korea

**Department of Computer Science Education
Korea University

Seoul, 136-701 Korea

This paper presents the condition for an extended global recovery line for coordi-

nated checkpointing protocol and a new garbage collection protocol on checkpoints and
message logs in order to avoid the sympathetic rollback caused by lost messages. Since
previous works assumed the communication channel does not lose the in-transit mes-
sages, those works on garbage collection in coordinated checkpointing protocols delete
all the checkpoints except for the last checkpoints on each process. But coordinated
checkpointing protocol based on the communication protocol with reliability (TCP)
causes in-transit messages to be lost when a failure occurs, and lost messages lead to
sympathetic rollbacks of faulty processes or related processes. Thus there is a need for
management methods of fault tolerance information that can store and delete the coordi-
nated checkpoint and light message log to avoid sympathetic rollback.

In this paper, we define the extended global recovery line conditions for garbage
collection of checkpoints and message logs for lost messages, and present the new gar-
bage collection algorithm within the extended global recovery line. The proposed algo-
rithm uses piggybacked process information on each message so that the additional
messages for garbage collection and extended global recovery line are not needed. Since
it relies on the piggybacked checkpoint information in communication message, the
proposed garbage collection algorithm is called ‘the lazy garbage collection algorithm’.

Keywords: coordinated checkpointing protocol, message log, garbage collection, sym-
pathetic rollback, garbage collection

1. INTRODUCTION

With the development of distributed computing systems, one task is partitioned
into and run on several processes. The changes of computing environments lead to a

Received June 3, 2002; revised July 15, 2003; accepted August 8, 2003.
Communicated by Jang-Ping Sheu.

KWANG SIK CHUNG, YOUNGJUN LEE, HEONCHANG YU AND WONGYU LEE

380

higher probability that a failure will occur. Thus fault tolerant techniques have been
studied in various forms. There are generally two fault tolerant methods: message log-
ging and checkpointing. The fault tolerance information is saved in volatile memory or
stable storage in both of them. The saved fault tolerance information will increase mem-
ory consumption and some information become useless (i.e. garage) as time goes on. So
a garbage collection is needed. In checkpointing methods, states of processes are stored
as fault tolerance information, and useless information for garbage collection as old
checkpoints. In message logging methods, the message data logs and deterministic order
of message sending and receiving are stored, and message logs are deleted as a garbage
[3, 5, 8].

In checkpointing, garbage collection is the process of discarding all fault tolerance
information relating to events that occurred before recovery line [2, 5, 7] according to
identify consistent recovery line. Since the faulty processes and related processes are
rolled back only to the latest checkpoint [4], coordinated checkpointing methods can
delete the fault tolerance information before the recovery line.

Coordinated checkpointing methods based on the communication protocol with re-
liability (TCP) cause lost messages when a failure occurs, and lost messages lead to sym-
pathetic rollbacks of faulty processes or related processes. Therefore we need a new
management method for fault tolerance information and order to avoid lost messages and
not affect an old consistent recovery line. Rollback recovery of coordinated checkpoint-
ing methods needs information on lost messages and garbage collection methods of lost
messages.

In this paper we propose the condition for an extended global recovery line for co-
ordinated checkpointing protocol and a new garbage collection protocol based on an ex-
tended global recovery line’s condition. The paper proceeds as follows. Section 2 pre-
sents the system model and the problems of previous coordinated checkpointing proto-
cols on TCP. The motivations are given in section 3. Section 4 proposes conditions of
garbage collection of coordinated checkpointing protocol with reliable communication
protocol and a garbage collection method of fault tolerance information. Section 5 proves
the correctness of our proposed extended global recovery line’s condition. Section 6 and
section 7 present a comparison, a conclusion and future work.

2. SYSTEM MODEL

Assume that the distributed system consist of N processes. The work unit of the
system is denoted by ρ and the message by m during ρ. For each message m that is de-
livered during ρ, fault tolerance information consists of the identity of the sender process
m.source, send sequence number m.ssn and receive sequence number m.rsn. deliv-
erm.dest(m) indicate that a message m is delivered by a process m.dest and all states of the
system are transmitted [3].

Global states of distributed computing systems consist of all states of related proc-
esses and channels [6]. A consistent system state means that if a process state is trans-
mitted by a message receive event, then the message send event should be recorded by
the sender process. A consistent global checkpoint for coordinated checkpointing is de-
fined in Definition 1 [6].

MANAGEMENT OF FAULT TOLERANCE INFORMATION WITHOUT SYMPATHETIC ROLLBACKS

381

Definition 1 A consistent global checkpoint: Let G_ Ckpt = {C1, C2, C3, …, CN} be a
set of N checkpoints from each process. G_ Ckpt is defined as a consistent global check-
point if, for any message M and any integer i(1 ≤ i ≤ N), the following condition is satis-
fied:

$ Œ fi Œm receive M G Ckpt send M Ci, () _ () �

First, we define the process set that depends on an event in order to define fault tol-
erance information. Depend(m) is the set of processes whose state reflects the delivery of
a message m and a sending message m′ occurring after m.

Definition 2 Depend(m) is defined as follows:

→∃∨
∧=

∈
=))'()((:'(

).(
|)(

. mdelivermdeliverm

mdeliveredhasjdestmj
Nj

def
mDepend

jdestm

where → denotes the happen-before relation of Lamport [1].

FTI(m), Fault tolerance information of message m in rollback recovery is defined in
Definition 3.

Definition 3 FTI(m) that is fault tolerance information of message m is defined as fol-
lows:

 i) FTI m
def

content m dest m rsn m ssn Depend mm() { , . , . , . } { ()}
=

U

ii) FTI(m) is saved as checkpoints or message logs. �

3. MOTIVATIONS

Messages that are sent but not yet received are called in-transit messages. According
to Definition 1, even though a failure occurs, the system always recovers to a consistent
state if a system has a consistent global recovery line. It is possible by assumptions that a
communication channel is reliable and an in-transit message is always consistent.

Previous works exclude in-transit messages from consistent global checkpoints and
assume they are part of a communication channel. Thus in-transit messages don’t make
the global system state inconsistent. Depending on the assumption of reliablility of
communication channels, rollback-recovery protocols may have to guarantee the delivery
of in-transit messages when a failure occurs [2].

Rollback recovery protocol may be implemented based on a reliable communication
protocol or based on unreliable communication channel. In the case of a rollback recov-
ery protocol is implemented on top of an unreliable communication channel, the rollback
recovery protocol does not assume reliable communications.

The reliable communication protocols guarantee the delivery of in-transit messages
in failure free executions. But, the protocols can not guarantee the delivery of in-transit

KWANG SIK CHUNG, YOUNGJUN LEE, HEONCHANG YU AND WONGYU LEE

382

messages when a failure occurs. For example, if an in-transit message is lost due to the
failure of receiver process, the convenient communication protocols would inform the
sender process of the loss of the in-transit message through the time-out protocol. But
rollback-recovery protocols should guarantee the recovery of the faulty receiver process
and support time-out protocol. Thus rollback-recovery protocol should resend the lost
message to the process after the receiver process recovers.

If the system model assumes the unreliable communication channel, roll-
back-recovery protocol doesn’t have to manipulate the in-transit messages. Lost in-transit
messages due to process failure are not distinguished from those due to failure in an un-
reliable communication channels. The loss of in-transit messages can occur during fail-
ure free execution [2].

The rollback-recovery protocol based on reliable communication protocol (e.g.,
TCP) would be implemented without the delivery of in-transit messages on a failure time.
If the system model assumes the reliable communication protocol, lost messages have to
be manipulated in the recovery protocol.

 4. CONDITION FOR EXTENDED GLOBAL RECOVERY LINE
AND GARBAGE COLLECTION

4.1 Condition for Extended Global Recovery Line

Sender processes have to maintain message logs or checkpoints of in-transit mes-
sages. In order to log messages, we use the sender-based message logging protocol. This
protocol can save message logs in volatile memory since it doesn’t rollback before the
latest checkpoint. Our extended recovery line is proposed as bellow.

Condition 1 When the rollback-recovery protocol is based on the coordinated check-
pointing and reliable communication protocol, and process Pi sends a message to Pj, the
condition for the extended recovery line of fault tolerance information FTI(m) is

i) receivei(m) ∈ G_Chpt ⇒ sendi(m) ∈ chpti
k and,

ii) ∃chptj
P -1, chptj

P -1 → receivej(m) and,

iii) ∃chptj
P , receivej(m) → chptj . �

If Condition 1 is satisfied, our garbage collection method of fault tolerance informa-

tion that is related to in-transit messages or lost messages is valid. When all three parts of
Condition 1 are satisfied, garbagei(FTI(m)) is valid. chptj

P is the checkpoint that is taken
by process Pj after receiving the event of m, and garbagei(FTI(m)) is the garbage collec-
tion event of by FTI(m). In Definition 2, FTI(m) is assumed to be stored as a message log.
According to garbage collection condition of FTI(m), when the receiver process takes a
checkpoint after receiving a message, FTI(m) can be deleted as a garbage. For garbage
collection, we define the fault tolerance information.

In Fig. 1, before time t1, processes P2, and P4 send messages m2, m3 to P3, respec-
tively. At time t1, processes P2 and P4 maintain the message log of m2 and m3. Although
process P3 fails between time t1 and time t2, messages m2 and m3 can be restored.

MANAGEMENT OF FAULT TOLERANCE INFORMATION WITHOUT SYMPATHETIC ROLLBACKS

383

m
1

P
1

P
2

P
3

consistent recovery line

P
4

m
3

m
4

m
7

m
8

m
5

m
6

t
1

t
2

t
3

C
3

C
5

m
2

C
4

C
2

C
1

C
6

C
7

Fig. 1. Process information relating to lost message.

At time t3, process P3 doesn’t need to rollback to C3. The message log of messages

m2 and m3, is not needed to be saved in volatile storage and can be deleted as garbage.
According to Condition 2, message logs of a process can be deleted as garbage.

The garbage collection condition relating to lost message is as follows.

Condition 2 Garbage collection condition of information relating to lost messages:
When a process Pi sends a message to process Pj, Pi stores the checkpoint interval

(CIj) of Pj relating to lost message Lost_MSG_Infoi
j[CIj]. The Pi can delete the message

logs with smaller checkpoint intervals than the checkpoint interval piggybacked with
messages from Pj. �

According to the extended recovery line of Condition 1, garbage collection of mes-
sage m’s FTI(m) is restricted within narrow limits. And, Condition 2 defines the garbage
collection limits of Condition 1. The limited garbage collection without sympathetic
rollback can be decided by comparing checkpoint intervals (CIPr ocessID) of the receiver
process of message m. By comparing CIRe ceiver Pr ocess in sender process and CIRe ceiver Pr ocess
in the receiving message, we can decide whether the receiver process is included in ex-
tended recovery line or not. If the receiver process is included in the extended recovery
line, then message m’s FTI(m) can be deleted.

4.2 Garbage Collection Protocol

This section describes the garbage collection algorithm for message logs using
Lost_MSG_Infoi

j[CIj] defined in Condition 2.
When a process Pi sends a message m to a process Pj, Pi saves message logs of m in

volatile storage. If coordination of checkpoints is initiated and Pi receives a message
piggybacked with checkpoint interval information, message logs of m can be deleted
after comparing checkpoint intervals. If an initiator process in coordinated checkpointing
is the sender of message m, then the sender can delete message logs with a smaller
checkpoint interval than the checkpoint interval of the sender. Such garbage collection of
the message logs doesn’t make the sympathetic rollback.

KWANG SIK CHUNG, YOUNGJUN LEE, HEONCHANG YU AND WONGYU LEE

384

Fig. 2 shows the garbage collection algorithm for message logs using fault tolerance
information.

Pr ocess Pi sends a message M to Pj and process Pi maintains a message log in
volatile storage.

i) Pr ocess Pi receivesmessageN from process Pk

pivot_CI = each processes’ Checkpoint_Intervals in N from Pk
while (Pk ∈ Pi’s related process list) {

 if (pivot_CI > Lost_MSG_Infoi

j
 [CIj])

 garbagei (FTI (M))
 }
ii) Pr ocess Pi receives a coordinated checkpo int request from another process

or Pr ocess Pi initiates the coordinated checkpointing procedure
pivot_process = process id related with coordinated checkpoints
if (the coordinated checkpo int completed ∧ process Pi ∈ pivot_process)
garbagei (FTI(M))

Fig. 2. Garbage collection algorithm for message logs.

4.3 Example of Management of Fault Tolerance Information

Fig. 3 illustrates the management of fault tolerance information with the Garbage

collection algorithm (Fig. 2) and Condition 2. If the message satisfies Condition 2, the
message can be deleted from the message log and Condition 2 is checked in the Garbage
collection algorithm.

For example, at time t1 in Fig. 3, process P4 has to keep the message logs of mes-
sages 8 and 12, since if the other processes have a fault, then the messages 8 and 12 will
be used for fault recovery. But, P4 can delete the message log of message 11, since for
message 11 CIP1

 is greater than CIP4
 (Condition 2). At time t2, message 16 is added to the

message log of P4, since message 16 will make a sympathetic rollback of P3 when a fault
occurs at P4. At time t3 message 18 is added to the message log of P4. If the processes
coordinate the global checkpoints or P4 receives a message with a checkpoint interval, P4
may delete some message logs as garbage using the Garbage collection algorithm (Fig.
2). In this case the messages would not make a sympathetic rollback. Further, Condition
2 will validate it as proved in section 5.

At time t1, message 11 can be deleted from the message logs, since P5 coordinates
the checkpoint with P1 and P4 and message 11 is included in recovery line 2. At time t2,
P1 can delete the message log of message 20, since P2 is involved in recovery line 3. At
time t3, message 14, 15, 16 and 18 can be deleted because P2, P3, P4 and P5 are involved
in recovery line 4. At time t4, no message can be deleted as garbage, since any message
can not satisfy Condition 2.

MANAGEMENT OF FAULT TOLERANCE INFORMATION WITHOUT SYMPATHETIC ROLLBACKS

385

1

2

3

4

5

6

8

9

10

c1

c2

c3

c4

c5

c6

c14

c8

c9

c10

c11

c12

c13

: initiated checkpoint

Recovery Line 1

11

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

t
1

7

1513

12
16

14

18

17

19

c7

c15

c16

c17

t
2 t

3
t
4

20

Recovery Line 2

Recovery Line 3

Recovery Line 4

Fig. 3. Example of garbage collection using fault tolerance information.

5. PROOF OF CORRECTNESS

A condition for garbage collection of fault tolerance information is that a process
should not make an orphan message when a failure occurs. The conditions for garbage
collection are valid only if the system keeps consistent global states after rollback recov-
ery is applied to recover from failures.

Garbage collection of fault tolerance information requires the detection of garbage
information and keeping valid states. Theorem 1 and Theorem 2 show that the proposed
conditions for garbage collection cause the system keep its consistent global states.

Theorem 1 If we assume that the reliable communication and synchronous check-
pointing methods are supported, we would have to maintain not only the latest check-
points, but also fault tolerance information FTI(m) in order to avoid sympathetic
rollbacks occurring in in-transit messages.

Proof: If coordinated checkpointing protocols are assumed with reliable communication
protocol such as TCP, and since each process has a checkpoint that is coordinated with
other processes, each process would not be rolled back to the time before the latest
checkpoints. Although in-transit messages at the time of failure would not make the
whole system inconsistent, a recovery protocol should replay the messages. That is, be-
cause in-transit messages at the consistent recovery line would become lost during the
recovery procedure and lost messages would make the whole system to be inconsistent.

In order to prevent sympathetic rollback due to lost messages, a recovery protocol
needs the other fault tolerance information.

In Fig. 4, due to a failure occurring at time t, the process P2 has to roll back to
checkpoint C3. Process P2 that is rolled back to C3 needs to receive the message m1. Thus
the process P1 has to send m1 again. If process P1 does not maintain the message log of
m1, process P1 has to roll back to C1. In order to send m1 again, process P1 has to replay
the processing from C1. The sender processes have to maintain the fault tolerance infor-
mation FTI(m) relating to in-transit messages as well as the latest checkpoint. �

KWANG SIK CHUNG, YOUNGJUN LEE, HEONCHANG YU AND WONGYU LEE

386

P
1

P
2

P
3

m
1

t

consistent recovery line

m
2

C
2

C
3

C
4

C
1

Fig. 4. FTI(m) for lost message.

Theorem 2 Assume that the reliable communication and synchronous checkpointing
methods are supported and a process sends a message to:

(i) receivei(m) ∈ G_Chpt ⇒ sendi(m) ∈ chpti
k and,

(ii) ∃chptj
P -1, chptj

P -1 → receivej(m) and,

(iii) ∃chptj
P , receivej(m) → chptj .

if (i), (ii), and (iii) are satisfied, garbage(FTI(m)) is valid.

Proof: Consider condition (i), receivei(m) ∈ G_Chpt ⇒ sendi(m) ∈ chpti

k . Messages m1
and m2 in Fig. 5 satisfy sendi(m) ∈ chpti

k . If we consider conditions (ii) and (iii) with
messages m1 and m2, there are two possible cases.

(a) In the case of message m1, at checkpoint C4 of process, previous checkpoint chptj

P -1
that satisfies condition (ii) ∃chptj

P -1, chptj
P -1 → receivej(m) is C3. And C4 satisfies con-

dition (iii). Therefore, message m1 can be deleted since it would not be a lost message
in case of failure.

P
1

P
2

P
3

m
1

t
1

consistent recovery line

m
3

C
2

C
3

C
4

t
2

t
3

m
5C

5

C
1

m
2 m

4

C
7

C
6

Fig. 5. Garbage collection of FTI(m) for lost message.

MANAGEMENT OF FAULT TOLERANCE INFORMATION WITHOUT SYMPATHETIC ROLLBACKS

387

We assume that a failure occurs at time t1. At time t1, fault tolerance information of
lost message m1 already was deleted. But, the failure makes P2 roll back to C4 and mes-
sage m1 will not become a lost message. Thus fault tolerance information of message m1
can be deleted.

(b) In the case of message m2, previous checkpoint chptj

P -1 that satisfies condition (ii),
∃chptj

P -1, chptj
P -1 → receivej(m) is C4. If checkpoint C5 is taken, C5 will satisfy condi-

tion (iii). Thus fault tolerance information of m2 can be deleted after C5.

Next, we can decide the time to delete the fault tolerance information of message m2.
If we assume that a failure occurs at time t1, process P2 would roll back to checkpoint C3.
Process P2 would replay and message m2 would become lost. Thus fault tolerance infor-
mation for P1 would be needed. Process P1 can not delete FTI(m). At time t1, checkpoint
C5 of process P2 satisfies condition (iii). If a failure occurs at time t2, message m2 would
not become lost and fault tolerance information of message can be deleted. But, since
process does not know that C3 was taken, P1 can not delete the fault tolerance informa-
tion. At time, process receiving message m5, knows that C5 was taken. Thus fault toler-
ance information for message m2 can be deleted.

At times t2 and t3, garbage collection for fault tolerance information can be performed
since there will not be any rollbacks. However, the time of garbage collection for fault tol-
erance information for P1 is time t3, because it receives a message from P2 at time t3. �

In case (b) of Theorem 2, the time of garbage collection of fault tolerance informa-
tion for message m5 is time t3. But, if C5 of process P2 needs to coordinate with process
P1, then process P1 will take a coordinated checkpoint with process P2 and know that the
checkpoint interval of process P2 has increased. If at time t2 conditions (i), (ii), and (iii)
will be satisfied, fault tolerance information of message m2 can be deleted.

6. COMPARISON

The main points of our work based on coordinated checkpoint methods [8-12] are
the detection of consistent recovery lines for checkpoints and garbage collection accord-
ing to globally consistent recovery lines. The garbage collection of coordinated check-
point methods is based on the fact that all processes of the system will not roll back after
the global recovery lines. Thus all checkpoints before the globally consistent recovery
line can be deleted and are based on Theorem 1. If coordinated checkpointing methods
were implemented based on the communication protocol with reliability (TCP), then it
could cause lost messages when a failure occurs, and lost messages lead to sympathetic
rollbacks of faulty or related processes. In order to avoid these sympathetic rollbacks, we
delay deleting the last checkpoints before the globally consistent recovery lines.

In previous works, the recovery interval is the execution time between a checkpoint
and the other checkpoint of one process. The fault tolerance information can be deleted
according to Definition 1. We proposed the extended recovery lines and constraint on
garbage collection of the fault tolerance information. After the extended recovery line is
completed, the fault tolerance information can be deleted. Also, we proved that lazy gar-
bage collection of fault tolerance information based on Condition 1 does not result in

KWANG SIK CHUNG, YOUNGJUN LEE, HEONCHANG YU AND WONGYU LEE

388

sympathetic rollback by Theorem 1 and Theorem 2. Also we prove that the additional
messages are not needed for the proposed lazy garbage collection.

7. CONCLUSION AND FUTURE WORKS

We proposed conditions for an extended global recovery line for coordinated
checkpointing protocol and a garbage collection protocol for message logs saved in vola-
tile storage and checkpoints in stable storage to avoid the sympathetic rollback caused by
lost messages. If the recovery protocol is based on a reliable communication protocol
such as TCP, using only the latest checkpoint for rollback recovery causes processes to
roll back sympathetically.

In order to avoid sympathetic rollback, we proved that other checkpoints and mes-
sage logs in addition to the latest checkpoint have to be maintained. We defined the
conditions for the global recovery line’s condition for coordinated checkpointing
protocol and proposed the garbage collection of checkpoints and message logs to avoid
sympathetic rollback, and also proposed a garbage collection algorithm.

Since the proposed algorithm uses computational messages piggybacked with fault
tolerance information on in-transit messages, our garbage collection algorithm does not
generate additional messages for garbage collection. Fault tolerance information is pig-
gybacked with computational messages and includes only the checkpoint interval of a
sender process.

If a process does not receive any message from other processes or is not involved in
a coordinated checkpoint group, it can not delete the fault tolerance information. But,
“lazy garbage collection” does not make the whole system inconsistent. Our future effort
is to solve the problem of “lazy garbage collection”.

REFERENCES

1. K. M. Chandy and L. Lamport, “Distributed snapshots: determining global states of
distributed systems,” ACM Symposium on Principles of Database System, Vol. 3,
1985, pp. 63-75.

2. M. Elnozahy, L. Alvisi, Y. M. Wang, and D. B. Johnson, “A survey of roll-
back-recovery protocols in message-passing systems,” Technical Report
CMU-CS-96-181, Dept. of Computer Science, Carnegie Mellon University, 1996

3. D. B. Johnson and W. Zwaenpoel, “Sender-based message logging,” in Proceedings
of the Seventeenth International Symposium on Fault-Tolerant Computing, 1987, pp.
14-19.

4. R. Koo and S. Toueg, “Checkpoint and rollback-recovery for distributed systems,”
IEEE Transactions on Software Engineering, Vol. 13, 1987, pp. 23-31.

5. Y. Liu and J. Chen, “On thorough garbage collection in distributed systems,” in Pro-
ceedings of 3rd IEEE Symposium on Computers and Communications, 1998, pp.
576-581.

6. D. Manivannan and M. Singhal, “A low-overhead recovery technique using
quasi-synchronous checkpointing,” in Proceedings of the 16th International Confer-
ence on Distributed Computing Systems (ICDCS), 1996, pp. 100-107.

MANAGEMENT OF FAULT TOLERANCE INFORMATION WITHOUT SYMPATHETIC ROLLBACKS

389

7. M. V. Sreenivas and S. Bhalla, “Garbage collection in message passing distributed
systems,” First Aizu International Symposium on Parallel Algorithms/Architecture
Synthesis, 1995, pp. 213-218.

8. J. Xu, R. H. B. Netzer, and M. Mackey, “Sender-based message logging for reducing
rollback propagation,” Seventh IEEE Symposium on Parallel and Distributed Proc-
essing, 1995, pp. 602-609.

9. E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel, “The performance of consistent
checkpointing,” in Proceedings of IEEE Symposium on Reliable Distributed Systems,
1992, pp. 39-47.

10. P. Ramanathan and K. G. Shin, “Use of common time base for checkpointing and
rollback recovery in a distributed system,” IEEE Transactions on Software Engi-
neering, Vol. 9, 1993, pp. 571-583.

11. Z. Tong, R. Y. Kim, and W. T. Tsai, “Rollback recovery in distributed systems using
loosely synchronized clocks,” IEEE Transactions on Parallel and Distributed Sys-
tems, Vol. 3, 1992, pp. 246-251.

12. L. M. Silva and J. G. Silva, “Global checkpointing for distributed program,” in
Proceedings of IEEE Symposium on Reliable Systems, 1992, pp. 155-162.

13. Y. Manabe, “A distributed consistent global checkpoint algorithm for distributed
mobile system,” in Proceedings of Eighth International Conference on Parallel and
Distributed Systems (ICPADS 2001), 2001, pp. 125-132.

Kwang Sik Chung received the B.S. degree (1992), the M.S. degree (1995), and
the Ph.D. degree (2000) in Computer Science and Engineering from Korea University.
He is currently a senior consultant at Samsung SDS Ltd. And from September 2002 to
November 2003, he is also a research fellow of Department of Computer Science at
University College London. His research interests include distributed systems, fault tol-
erant systems, grid computing systems.

YoungJun Lee received a B.S. degree (1989), the MS degree (1991), and the PhD

degree (1994) in Computer Science from University of Minnesota, MN, USA, in 1994.
He is a professor of Graduate School and Department of Computer Education at Korea
National University of Education. His research interests include distributed systems, and
advanced network and intelligent systems.

HeonChang Yu received the B.S. degree (1989), the M.S. degree (1991), and the

Ph.D. degree (1994) in Computer Science and Engineering from Korea University. He is
currently an associate professor of Computer Science Education at Korea University in
Korea since 1998. And from February 2004 to January 2005, he is also a visiting profes-
sor of Computer Science at Georgia Institute of Technology. He was an assistant profes-
sor of Computer Engineering at Seokyeong University in Korea. He is a vice president at
the Korea Association of Computer Education and a member of the ACM. His research
interests include distributed systems, fault tolerant systems, grid computing systems, and
agent systems.

KWANG SIK CHUNG, YOUNGJUN LEE, HEONCHANG YU AND WONGYU LEE

390

WonGyu Lee received the B.S. degree (1985) in English Language and Literature
from Korea University, the M.S. degree (1989) and the Ph.D. degree (1993) in Informa-
tion Sciences and Electronics from University of Tsukuba in Japan. He is currently an
associate professor of Computer Science Education at Korea University in Korea since
1996. He was a principal researcher of Cultural Information at Korea Culture & Arts
Foundation. He is a president at the Korean Association of Computer Education and a
member of the ACM, IEEE. His research interests include database systems, information
models, semantic structures, information retrieval, and computer science education.

