DESIGNING GENERAL-PURPOSE FAULT-~TOLERANT DISTRIBUTED SYSTEMS - A LAYERED APPROACH*

Amiya R. Nayak! Wen-Ben Jonef and Sunil R. Das?

Abstract

General-purpose distributed systems comprised
of computing nodes with different characteristics
and connected by high-speed communication net-
works are very popular these days. The develop-
ment of a dependable distributed system, how-
ever, necessitates the use of various techniques
including fault tolerance to avert occurrences of
failures or system malfunction. The ad hoc tech-
niques of adding redundancy to improve reliabil-
ity are not always suitable in these circumstances
because of excessive design cost. Redundancies
have to be allocated at various hardware and soft-
ware levels in order to optimize their utilization
in the system. This paper considers the design
of general-purpose fault-tolerant distributed sys-
tems based on a layered approach. The benefits
of the layered approach in the process of alloca-
tion of redundancy and fault tolerance at various
system levels are presented and analyzed in the
paper.

1 Introduction

The development of fault-tolerant distributed sys-
tems requires the combined utilization of a wide
range of techniques, including that of fault toler-
ance intended to cope with the effects of faults
and avert the occurrence of failures or at least to
warn a user that errors have been introduced into
the system.

1This research was supported in part by the Natural
Sciences and Engineering Research Council of Canada un-
der Grant A 4750.

2School of Computer Science, Carleton University, Ot-
tawa, Ontario, Canada K1S 5B6.

3Dept. of Computer Science & Information Engineer-
ing, National Chung Cheng University, Chiayi 62107, Tai-
wan, R.O.C.

*Dept. of Electrical Engineering, Faculty of Enginecr-
ing, University of Ottawa, Ottawa, Ontario, Canada K1N
6N5.

0-8186-6555-6/94 $04.00 © 1994 IEEE

360

A distributed system consists of a set of au-
tonomous computing nodes connected by some
kind of communication network as shown in Fig-
ure 1. Each node may have different character-
istics and is capable of providing different soft-
ware services to other nodes in the system. A
distributed system is intended to support many
different applications and to execute concurrently
many unrelated requests that could compete for
both hardware and software resources.

The task of designing and understanding fault-
tolerant distributed systems has been addressed
in [3], in which the author, conceptually, divides
a computer system into several levels of abstrac-
tion such as the hardware (or processor) level, the
operating system (or system software) level, and
the application level as shown in Figure 2. The
application level is the highest, and the hardware
level is the lowest level of abstraction in the sys-
tem hierarchy. In such hierarchy, a higher level of
abstraction always receives service from the lower
levels. In this paper, we consider these three lev-
els of abstraction in our discussion.

In the design of fault-tolerant computing sys-
tems, measures for detecting and tolerating faults
can be applied at all levels. Applying fault toler-
ance in the lower levels is useful in that it frees
the designers of the higher levels from consid-
eration of faults in the lower levels, shares the
cost of fault-tolerant design among all the ap-
plications that use the same lower-level service,
and allows the designer to employ relatively cheap
techniques to cover known frequent faults.

A key issue in designing multi-layered fault-
tolerant systems is how to balance the amount
of redundancy at the various levels of a sys-
tem, in order to obtain the best possible over-
all cost/performance/dependability results. The
“end-to-end” arguments in the design of layered
systems given in [8] indicate that too much of

Node

Node

Node

Communication Network ————{Node

Node

Node

Figure 1: The schematic view of a distributed
system

Application Level

Hardware Level \\

Figure 2: Three-Level System Hierarchy

redundancy, at the lower levels of abstraction
of a system might be wasteful from an overall
cost /effectiveness point of view, and it may be
cost-effective to save on lower level redundancy
mechanisms and put more effort into fault toler-
ance in the higher levels to avoid duplication of
effort. On the other hand, a small investment at a
lower level of abstraction can often contribute to
substantial cost saving and speed improvements
at higher levels of abstraction and can result in
lower overall cost. Therefore, a balance in the
amount of redundancy at various levels of ab-
straction of a system is necessary.

361

2 Fault Tolerance Techniques

The key ingredient in all fault tolerance tech-
niques is redundancy. Redundancy is simply the
addition of information, resources, or time be-
yond what is needed for normal system opera-
tion. The redundancy may take several forms,
including information redundancy, hardware re-
dundancy, software redundancy, and time redun-
dancy.

Information redundancy is the addition of in-
formation beyond what is required to implement
a function. A good example of information re-
dundancy is an error-detecting code. Perhaps
the simplest form of error detection coding is
the single-bit parity check. Other forms of er-
ror detection coding are: checksums and arith-
metic codes [9]. Checksums are most applicable
when blocks of data are to be transferred from
one point to another. The primary advantage
of the arithmetic codes is that they allow hard-
ware that performs arithmetic operations to be
easily checked. Once the location of the error is
known, the data bit can be corrected by a single-
parity code. Error-correcting codes not only de-
tect errors but also correct them. Possibly the
most common extension of parity is the Hamming
error- correcting code. Hamming codes are de-
signed to detect double errors and correct single
errors. Other forms of single and multiple error-
correcting codes also exist and can be found in

[6).

Hardware redundancy is the physical replica-
tion of hardware for the purpose of detecting and
tolerating faults. A common form of this redun-
dancy is the triple modular redundancy, or TMR
[9]. The purpose of TMR is to mask single faults
by triplicating hardware and voting on the re-
sults. The general form of TMR is the N-Modular
redundancy (NMR). Other form of hardware re-
dundancy involves incorporating fault detection
and fault recovery into the system at the expense
of eliminating fault-masking capability. Example
of this is the standby replacement. In this con-
figuration, one unit is operational while one or
more units are standbys. Various error detection
schemes are used to determine when the on-line
unit has failed; if a failure is detected, the on-line

unit is removed from operation and replaced with
a standby.

Software redundancy is simply the addition of
extra software to provide some fault tolerance
features. The type of redundancy may range
from complete duplication of software to the addi-
tion of small programs to perform validity checks.
Probably the most common form of software re-
dundancy is the validity, or reasonableness check.
A second type of software redundancy is the pe-
riodic self- test. A third example of sofiware re-
dundancy is the use of multiple copies of pro-
grams. This version of software redundancy is
typically referred to as “N-version programming”
(1]. In this approach, multiple versions of a soft-
ware run simultaneously on multiple processors
or sequentially on a single processor; the results
are compared to provide a means of fault detec-
tion. The N-version, independently written pro-
grams provide protection against both hardware
and software faults. The hardware equivalent of
N-version programming is the N-modular redun-
dancy.

Time redundency uses additional time to pro-
vide fault detection and, sometimes, fault tol-
erance. It can be employed to distinguish be-
tween permanent and transient failures. The pro-
cessor performs the computations one or more
times after detecting first error; if the error con-
dition clears, the processor can assume that fault
was transient. In another form of time redun-
dancy, the same processor performs the same
computations multiple times using different cod-
ing schemes in each case with the assumption that
the fault may manifest itself in different ways de-
pending upon the particular code being used. Un-
fortunately, the time redundancy technique can-
not be used to detect permanent failures.

All the fault tolerance techniques mentioned
above can be separated into two major cate-
gories: static redundancy and dynamic redun-
dancy. Static redundancy techniques instantly
correct errors and do not require higher system-
level intervention to do so. The use of TMR or
error correcting codes are some examples of the
static redundancy technique. Dynamic redun-
dancy, on the other hand, requires interruption
of system availability while the fault is isolated.

362

Once the fault is isolated, the redundant resource
is switched on, and the system is recovered. For a
real-time system, if the error occurs in the middle
of an operation, some program rollback is neces-
sary to discard the bad data and to recover as
much good data as possible, The primary advan-
tage of dynamic redundancy techniques is that.
they can be implemented with fewer resources.

Hybrid redundancy systems combine static and
dynamic redundancy approaches. Static redun-
dancy provides error masking and detecting ca-
pability. Dynamic redundancy provides a set of
spares and a switching network for reconfigura-
tion.

Fault-tolerant systems have taken one of two
architectural directions: loosely-coupled systems
have relied primarily on software to ensure reli-
able operation, while tightly-coupled systems have
provided a hardware solution. A great deal of
work in the area of fault-tolerant computing has
been done in recent years, much of it in the sup-
port of the U.S. space program and special ap-
plications such as electronic telephone switching
systems [9]. The use of various fault tolerance
techniques in commercial computer systems are
well documented in {5, 7, 9].

3 Layered Approach — Philoso-
phy

In the past, ad hoc methods were employed to
add redundancy to existing designs to improve
their reliability. There are two major drawbacks
to such an approach: the massive redundancy
needed is enormously expensive to design, and
it has a negative impact on system performance.
This can be overcome using the following layered
approach. First, the fault tolerance must be in-
tegrated into the development of a system from
its inception to allow the system designer to ex-
ploit inherent characteristics such as parallelism
and concurrency that will automatically minimize
redundancy and thus minimize any negative im-
pact on system performance. Second. redundancy
and fault tolerance should be allocated at differ-
ent layers of abstraction of a system. Allocating

redundancy at various levels of a system can op-
timize hardware and software usage.

The advantage of the layered approach is the
efficient utilization of the redundant resources,
which decreases both the hardware overhead and
the recovery time. When a fault is diagnosed at
the lowest level of system hierarchy and the recov-
ery is not possible at that level, then steps can be
taken to mask the fault at the next higher level
in the hierarchy. This procedure can be repeated
until every failure at any level can be handled at
that level or at a level above in the hierarchy.

Some limited application of this concept has
been reported in the literature [11] where ben-
efits related to specific system design have been
investigated through savings in hardware cost and
recovery time.

4 Redundancy Management

Based on the layered approach, two major ap-
proaches to the incorporation of fault tolerance
into systems may be followed which represents
two extremes of possible choices. In the first ap-
proach, called the structured approach, the most
profitable fault-tolerant techniques are applied to
different levels of abstraction. This has the merit
of controlling extra complexity while introducing
fault tolerance into the system. In fact, since the
set of faults needed to be considered is isolated to
within a single level plus a set of well-defined fail-
ures of the underlying levels, the provision of fault
tolerance in that level is usually very simple and
easy to control. However, the approach may cause
the loss of efficiency and performance. First, run-
time costs due to fault tolerance in each level can
be quite significant resulting in a very high run-
time overhead, even in the absence of failures.
Second, the fault-tolerant techniques in different
levels may overlap heavily leading to poor perfor-
mance.

The second approach is called the integrated
approach. In this approach, redundancy is still
spread over different levels but the redundancy
management and the corrective action in the
event of failures are concentrated only in some

363

higher level. Failures in lower level are propa-
gated upwards and are masked by some previ-
ously selected higher level. This approach is obvi-
ously complementary to the structured approach.
The overlap of fault-tolerant mechanisms and
techniques could be controlled and minimized so
as to improve efficiency and performance. How-
ever, such a way of incorporating fault tolerance
into systems can be quite complex.

4.1 Hardware or Processor Level

With the advances in microprocessor and VLSI
technology, a reasonable level of redundancy at
the processor level is justifiable on a cost basis. A
wide range of fault-tolerant options are available
for this level.

It is possible to implement the redundancy
management mechanisms such as the TMR
scheme which can mask hardware failures di-
rectly in hardware. Reconfiguration and recovery
should be performed by the hardware as much as
possible without any software intervention. The
sparing policy can be used at the processor level,
which agrees with the widespread utilization of
microprocessors. A fault affecting a processor
leads to replacement of that processor. In some
cases more than one processor is replaced; in fact,
fault-free processors may be replaced to simplify
the recovery strategy.

4.2 Operating System or System Soft-
ware Level

The system software (or operating system) in
a distributed system has a key role to play in
dealing with processor or communication failures.
System-level fault-diagnosis mechanism, in which
processors test each other, is a good choice for this
level. For system-level diagnosis, a faulty proces-
sor is easily identified if at least three processors
are involved in testing each other because a fault
sysndrome is generated that isolates the faulty
processor. Several systems attempt to mask hard-
ware failures at the operating system level, so that
application software can continue to run without
interruption. For example, masking of CPU bus
or disk controller failures is done by the operating
system of Tandem [2].

4.3 Application Software Level

Application level is considered to be the high-
est level of abstraction of the system and must
have the capability to mask any lower-level fail-
ure, both hardware and software. Literature on
software fault tolerance contains several proposals
for structuring application-level fault tolerance in
distributed applications. They come in the fol-
lowing forms:

¢ system-supported roll-back and recovery,

o modular redundancy with masking, as in
multiple version programming,

e atomic transactions, and

o fault-tolerant algorithms.

Software fault tolerance needs redundancy of
software design or design diversity. The well-
documented techniques for tolerating software
design faults include recovery blocks (RB), N-
version programming, N self-checking program-
ming, etc. Several schemes for application level
fault tolerance have been reported in [10].

5 CONCLUSIONS

It is recognized that redundancies have to be al-
located at various hardware and software levels
in order to optimize their utilization in the sys-
tem. It is also recognized that a balance in the
use of right amount of redundancy at various lev-
els of a system is necessary to optimize hard-
ware and software use. But, very little knowl-
edge is available today that could guide a designer
in choosing among possible redundancy manage-
ment options at various levels of s system. Lack of
analytical and experimental information on vari-
ous redundancy techniques or on the failure be-
haviors of various system components has made
such choices more difficult. However, redundancy
management based on the layered philosophy has
the potential of utilizing redundancy effectively
and efficiently, thereby reducing both hardware
overhead and recovery time.

References

[1] A. Avizienis, “The N-Version Approach for
Fault-Tolerant Systems”, IFEE Trans. on

364

8]

[4]

[5]

(11]

Software Engineering, Vol. SE-11, No. 12,
Dec. 1985, pp. 1491-1501.

J. Bartlett, “A NonStop Kernel”, ACM
8th Symp. on Operating Systems Principles,
Dec. 1981, pp. 22-29.

F. Cristian, “Understanding Fault-Tolerant
Distributed Systems,” Communications of
the ACM, Vol. 34, No. 2, Feb. 1991, pp. 56-
78.

J. Lala, L. Alger, “Hardware and Soft-
ware Fault Tolerance: A Unified Architec-
ture Approach,” 18th Int. Symp. on Faull-
Tolerant Computing, 1988, pp. 240-245.

J. C. Laprie, J. Arlat, C. Beounes, and K.
Kanoun, “Definition and Analysis of Hard-
ware and Software Fault-Tolerant Architec-
tures”, IEFE Computers, Vol. 23, No. 7,
July 1990, pp. 39-51.

D. K. Pradhan, Ed., Fault-Tolerant Com-
puting, Theory and Techniques, Vol. I & 1I,
Prentice-Hall, Englewood Cliffs, NJ, 1986.

D. A. Rennels, “Fault-Tolerant Computing
— Concepts and Examples”, IEEE Trans.
on Computers, Vol. C-33, No. 12, Dec.
1984, pp. 1116-1129.

J. Saltzer, D. Reed and D. Clark, “End-to-
end Arguments in System Design,” ACM
Trans. Computer Systems, Vol. 2, No. 4,
Nov. 1984.

D. P. Siewiorek and R. S. Swartz, The The-
ory and Practice of Reliable System Design,
Digital Press, Bedford, MA, 1982.

L. Strigini and F. Di Giandomenico, “Flex-
ible Schemes for Application-Level Fault
Tolerance,” IEEE 10th Symp. on Reliable
Distributed Systems, 1991, pp. 86-95.

R. Yanney, V. Nickel and D. Bender,
“Fault-tolerant Computer Systems”, TRW
Flectronics €& Defense Sector Quest, 1987,
pp. 35-49.

