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Abstract

This paper describes the conceptual model for, and the implementation of, a
software fault-tolerance layer (FT-layer) for distributed fault-tolerant hard real-
time systems. This FT-layer provides error detection capabilities, fault-tolerance
mechanisms based on active replication, and the interface between the applica-
tion software running on a node of the distributed system and the commu-
nication services. Communication is based on the fault-tolerant time-triggered
protocol TTP/C. The FT-layer handles all necessary information transfer across
the TTP/C bus transparently.

The conceptual model for the FT-layer is based on the DFR meta object model.
This model is based on a separation of the three domains: value domain, time

domain, and distribution domain. The DFR model supports a �exible choice of
the degree of replication of �ne-grained software components according to the
application-speci�c dependability requirements. As the DFR model captures all
the relevant design information explicitly, it allows the construction of powerful
tools supporting the software development process.

One such tool, called xOLT, analyzes the application software and generates the
FT-layer automatically and without user intervention. Due to a novel treatment
of domain separation and system factorization, the FT-layer generated by the
xOLT meets the stringent performance constraints of application areas extremely
sensitive to cost such as automotive electronics.

Keywords: fault-tolerance layer, time-triggered architecture, hard real-time, automatic software

generation, distributed system
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1 Introduction

In the past, the deployment of computer technology by the automotive industry
was mainly restricted to non safety-critical applications and to applications
characterized by fail-safe behavior. Currently, there is a strong trend in the
automotive industry towards an increasing number of safety related electronic
systems for active and passive driver, passenger and environmental safety. These
applications aim at increasing overall vehicle safety by freeing the driver from
routine tasks and assisting the driver in critical situations. It is clear that this
type of application requires computer systems providing high safety levels with
fail-operational behavior.

The EU funded Brite-EuRam research project x -by-wire (Safety Related Fault-
Tolerant Systems in Vehicles) addresses these requirements. Its objective is to
develop a framework for the introduction of ultra-dependable electronic systems
in vehicles which do not rely on conventional, i.e., hydraulic, mechanical, or
electrical, backups. In addition, the requirement for high dependability must be
met in the presence of severe cost constraints as imposed by the automotive
industry.

In the x -by-wire project, the following system architecture has been chosen. The
overall system consists of a set of clusters interconnected by gateways. Each clus-
ter is a distributed system, comprising a set of processing nodes interconnected
by the reliable communication service TTP/C [KoG94]. The fault hypothesis for
a single node is fail-silence; the fault hypothesis for the communication service
is omission failures, i.e., a message is either delivered correctly (with respect to
both the value and time domain) or not at all.

The FT-layer has the task of separating the implementation of the non-functional
requirements for fault-tolerance from the functional requirements as imple-
mented by the application software. Thus, the FT-layer must handle error de-
tection and error recovery transparently with respect to the application software
[Lap92]. Furthermore, the FT-layer is responsible for handling the information
transfer on the TTP/C bus with its replicated channels transparently. Figure
1 shows the rolê of the FT-layer in a layer model as a mediator between the
application software on one side and the operating system and TTP/C commu-
nication network interface (CNI) on the other side.

The related literature describes a number of systems providing functions sim-
ilar to the FT-layer. Examples are SIFT [WLG78], MAFT [KTW88], FTPP
[HaL90], Delta-4 [CPR92], and GUARDS [WBB96]. However, these architec-
tures are not applicable to extremely cost constrained markets such as auto-
motive electronics. The reason for this is their high resource overhead in terms
of the number of processors and processing cycles. Architectures such as SIFT,
MAFT and FTPP are targeted for ultra high dependability in military appli-
cations. In these applications, the cost of system certi�cation and validation is
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Figure 1: Rolê of FT-layer

orders of magnitude higher than the cost of the hardware components multi-
plied by the number of units shipped. Therefore, all these systems are built to
tolerate Byzantine faults [PSL80]. The cost incurred by the necessary level of
redundancy cannot be a�orded in cost critical mass quantity produced appli-
cations. Furthermore, these architectures do not allow the selection of di�erent
error detection strategies and degrees of replication at the level of software
components. Architectures such as Delta-4 and GUARDS are more �exible in
respect to a �ne grained selection of error detection strategies and replication
levels. However, these architectures are again targeted at products where devel-
opment cost outweighs product cost. The FT-layer approach described in this
paper speci�cally addresses mass produced systems where product cost is ex-
tremely critical. The new approach described in this paper is based on the idea
that best resource e�ciency can be attained by generating the FT-layer with a
tool which optimizes the performance of each application individually.

This paper is organized as follows: Section 2 presents the DFR model, which
describes the application software architecture. Section 3 gives an overview of
the underlying fault model for the FT-layer and it describes the strategies em-
ployed for node level error detection as well as the distributed fault-tolerance
mechanisms. The actual implementation of the FT-layer together with its tool
support xOLT is described in section 4. Finally, section 5 concludes the paper.

2 The DFR Model

The FT-layer is based on a meta object model designed to meet the speci�c
requirements of distributed fault-tolerant hard real-time systems. This meta
model de�nes a semantic framework which describes a software architecture for
the construction of application speci�c object models. As such, it is also the
ideal starting point for the construction of tools supporting the development of
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DFR applications. This section gives a short overview of the DFR model; for a
more detailed presentation the interested reader is referred to [PoT97].

The design of the DFR model was governed by the objectives composability,

reusability, testability, and maintainability and by the goal of reconcil-
ing the constraints e�ciency, guaranteed response time, robustness, and
fault-tolerance .
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Figure 2: DFR meta object model

To achieve these objectives while satisfying the constraints, a separation of three
di�erent domains is necessary:

� Value domain: The value domain is concerned with the functional be-
havior of objects. It does not prescribe any aspect of synchronization or
temporal events.

� Time domain: The time domain is concerned with the temporal behav-
ior of the objects of a concurrent software system on a single node. The
time domain addresses the dynamic interaction of independently active
objects (of a node) and the events triggering changes in the system state.

� Distribution domain: The distribution domain is concerned with the
association of software components to speci�c processing nodes in a dis-
tributed system.
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These three domains are orthogonal to each other. The DFR model was designed
in order to minimize the inter-dependencies between the objects in the di�erent
domains.

2.1 The value domain

The value domain is concerned with the functional behavior of objects. The cen-
tral concept in this domain is the subsystem which encapsulates the functional
characteristics of a real-time application object. The subsystem is the basic unit
of packaging software components; it supports information hiding and hierarchi-
cal composition. In the DFR model, the subsystem is the unit of distribution,
replication, and composability; it also is the focal point for the application of
fault-tolerance and error-detection strategies.

A subsystem contains data and functions which are speci�ed and implemented
by:

� Processes. A Process is the smallest schedulable entity of a DFR system.
It gives a time-invariant description of an independently active thread of
control. Communication between processes is done exclusively with state
messages (see below) and is anonymous, asynchronous, and non-blocking.

� Functions. Functions model algorithms; they execute in the context of
the caller.

� Messages. Messages are used for communication between processes and
have state semantics. State messages decouple the value domain very
e�ectively from the time and distribution domains. Each process can use
a message as if it were the only user � no concern about concurrency or
distribution issues is necessary.

� Resources. Resources are used to guarantee mutually exclusive access
to shared hardware devices. They are implemented with a stack-based
priority ceiling protocol and thus completely avoid blocking, dead-locks,
and live-locks.

The input of a process is de�ned as the set of messages received and the sensor
readings performed by the process, if any. Its output is de�ned as the set of
messages sent and the actuator commands given by the process, if any. The
history state (h-state) of a process is the subset of the internal state retained
between consecutive executions. The combination of process input and h-state
is called input vector (i-vector). Correspondingly, process output and h-state
are called output vector (o-vector).

2.2 The time domain

The time domain is concerned with the temporal behavior of the objects of a
concurrent software system on a single node. The central concept in this domain
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is the operating mode (op-mode) which encapsulates the timing characteristics
of a node-speci�c mode of operation.

An operating mode is de�ned by:

� Tasks . Tasks link the time domain to the value domain by de�ning sets
of processes to be executed in response to speci�c triggers. In the DFR
model, the task is the unit of scheduling. A single task comprises a set of
processes which are executed in sequential order.

� Time-table . A time-table de�nes the time-triggered activation patterns
of the tasks of an operating mode.

� Interrupts . External hardware events are modeled as interrupts which
activate event-triggered tasks.

The time domain is also concerned with the application of node-level error
detection strategies.

2.3 The distribution domain

The distribution domain is concerned with the association of software compo-
nents to speci�c processing nodes in a distributed system. The central concept
of the distribution domain is the TTP-bus which connects a number of nodes
called p-nodes. A TTP-bus may operate in one or more bus-modes which are
characterized by the transmission timing of global messages (g-messages).

Each p-node uses one or more TTP-busses to exchange messages with other
nodes. A p-node connected to more than one TTP-bus works as a gateway
node. In each bus-mode, a p-node executes a speci�c set of subsystems.

G-messages are used for the communication between nodes. The FT-layer maps
them to (value domain) messages according to the distribution of subsystems
across nodes.

The distribution domain is also concerned with the application of distributed
fault-tolerance mechanisms.

2.4 Domain synthesis

The objects in the value, time, and distribution domains are as independent from
each other as possible. This allows the software engineer to develop software
components in isolation without having to consider the characteristics of the
environment in which the components will be used.

The value domain is the fundamental domain and is independent from the two
other domains. The time domain depends on the value domain, but is indepen-
dent of the distribution domain � although it has to comply with the scheduling
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constraints of the distribution domain. The distribution domain depends on the
interface of both the value and the time domain.

Due to this low inter-domain coupling, the components of the di�erent domains
can be developed independently of each other. Changes in one domain normally
do not require changes in another domain. For instance, the same subsystem
can be used unchanged in an isolated node and as part of a distributed system.
The adaptation of the components to the actual environment is performed by
the tool xOLT.

3 Error Detection and Fault-Tolerance Mechanisms

This section describes the mechanisms provided by the FT-layer for error detec-
tion and fault-tolerance. All the necessary code for these mechanisms is gener-
ated automatically by the tool xOLT. This tool based approach allows the selec-
tion of error detection strategies and redundancy levels for individual software
subsystems. It is therefore possible to minimize the overhead for error detec-
tion and replication according to the dependability requirements of application
functionalities.

3.1 Fault Hypothesis and Error Detection Strategies

The failure mode assumption for nodes is fail-silence. Each and every node must
therefore deliver either results which are correct in both the value and the time
domain or no results at all. It is therefore necessary to de�ne the fault hypothesis
for nodes. In the following, hardware as well as software faults are considered:

� Control timing faults.

� Control �ow faults.

� Data �ow faults.

� Data calculation faults.

� Data storage faults.

To achieve a su�ciently high coverage for the fail-silence assumption [Pow92],
it is necessary to employ extensive error detection strategies at the node level
to cope with the anticipated types of faults. In the following, we are con-
cerned with software-based error detection strategies which can be applied
systematically:1 double execution, double execution with reference check, valid-
ity checks (for messages, history-states, and resources), assertion checking, and
signature checks. Experimental results have indeed shown that it is possible to

1Systematically applicable means that the error detection strategy can be applied to a
piece of software without any knowledge of the application domain [Pol96]. This for example
excludes all types of plausibility and range checks.
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achieve a high error detection coverage by combining these strategies [KFA95].
A brief description of the speci�c mechanisms and their implementations will
be given in the following.

3.2 Double Execution

If double execution is speci�ed for a given subsystem, all its processes are ex-
ecuted twice per activation. After the second execution a generic comparison
function checks the individual o-vectors for bit-by-bit equivalence. The execu-
tion environment for processes with double execution looks like:

save i-vector

exec process

save o-vector-1

restore i-vector

exec process

save o-vector-2

compare o-vector-1 and o-vector-2

on error raise exception

send messages (generate output)

Double execution detects only transient hardware faults. However, the detection
of transient faults is very important since their likelihood is orders of magnitude
higher than the likelihood of permanent faults. This is particularly relevant for
automotive electronics which must operate under harsh environmental condi-
tions. Double execution can only detect transient faults when: (1) The persis-
tence of the transient faults is short enough not to a�ect both executions, or (2)
the transient fault a�ects both executions in di�erent ways so that the o-vectors
of the individual executions are di�erent.

3.3 Double Execution with Reference Check

Since it is possible that a transient (or permanent) fault, such as a latch-up,
a�ects both executions in the same way, it is desirable to detect this type of
fault as well. This can be facilitated by performing an additional execution of
the process with reference data between the �rst and second execution. That is,
the process i-vector is initialized with a given set of reference data, the process
is executed and its o-vector is compared to the results known to be correct for
the given set of reference data. The code as generated by the tool xOLT looks
like:

save original i-vector

exec process
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save o-vector-1

i-vector := reference i-vector

exec process

compare o-vector and reference o-vector

on error raise exception

restore original i-vector

exec process

save o-vector-2

compare o-vector-1 and o-vector-2

on error raise exception

send messages (generate output)

By using reference data for the additional process execution, the correct result of
the process execution is known a priori and can be checked. Since the additional
process execution is inserted between the �rst and second execution with regular
input data, it is very likely that any transient fault that a�ects the �rst and
second process identically can be detected by the execution with reference data.

3.4 Message, Resource, and History State Validity Checks

Since information exchange between processes is carried out exclusively by
means of message passing, it is important to detect message mutilations and
timing faults. This is done by allocating additional memory for messages and by
using error detecting codes. When sending a message, the message is transmit-
ted along with the calculated error detection code. When receiving a message,
the message data is read and the error detection code is calculated. Depending
on the types of errors to detect, the error detection code is calculated over the
actual message data, the message id, and a time-stamp. This allows detection of
message data corruption, messages sent to wrong memory locations, and tem-
porally invalid messages. Message validity checks are applicable to intra- as well
as to inter-node communication.

Resources guarantee mutually exclusive access to shared memory or peripherals.
In the DFR object model, a resource may protect a certain set of data. The
coverage of the fail-silence assumption can be improved by using error detecting
codes to detect mutilations of protected data.

The history state retains the information that must be kept by a process be-
tween two consecutive executions. To ensure that this information does not get
corrupted between two executions, again, an error detecting code is used.

All the calls necessary to calculate and check the error detecting code are auto-
matically inserted by the tool xOLT to relieve the application programmer from
writing error detecting code.

9



3.5 Signature Checks

Signature checking is a technique to detect control �ow errors [SaM90, MKG92].
The signature checking strategy implemented is a software based strategy ap-
plied at the level of subsystems. If a certain subsystem is selected for signature
checks, then all the contained processes are subject to the signature check mech-
anisms. Accordingly, all tasks which contain processes of this subsystem perform
the signature checking. Furthermore, all time-tables which contain the before
mentioned tasks perform signature checking as well.

The signature checking mechanism is based on an error detecting code which
is calculated over all the relevant task and process id's and checked against a
predetermined value. This predetermined value is calculated o�-line by the tool
xOLT and represents a correct execution sequence. It is thus possible to detect
omissions or super�uous executions of tasks and processes.

3.6 Assertion Framework

Assertions de�ne predicates on the correctness of the system state which can
be evaluated during run-time [Mey88]. There are three types of assertions: (1)
pre-conditions are restrictions that must be ful�lled before a certain operation
is executed, (2) post-conditions specify conditions which must hold after the
execution of a certain operation, and (3) invariants are conditions that must
hold throughout all legal executions of the system.

Within the software architecture used here, pre- and post-conditions are spec-
i�ed for processes. It is thus possible to check application speci�c correctness
criteria before and after the execution of a process. If one of the predicates
speci�ed for the pre- or post-conditions is violated, then an exception is raised.

Invariants are speci�ed for messages and resources. For messages, the predicate
is checked before each receive operation and after each send operation. For re-
sources, the predicate is checked before the get resource operation returns and
after the release resource operation. This is necessary since read/write opera-
tions can be applied to the protected variables of a resource.

The predicates for processes, messages, and resources are speci�ed for each ob-
ject individually. The checking of these assertions, however, can be enabled and
disabled on a per-subsystem basis in the time domain. Based on this infor-
mation, the necessary code for the assertions is inserted automatically during
system generation time by the tool xOLT.

3.7 Active Replication and Replica Determinism

With active replication, a speci�c subsystem executes on di�erent nodes in par-
allel. All replicas receive the same inputs and generate the same outputs. If one
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node fails, the remaining replicas of the subsystem are able to continue their
service on the remaining nodes. Examples of systems supporting active repli-
cation are SIFT [WLG78], MAFT [KTW88], and MARS [KDK89]. The �State
Machine Approach�, as described by Schneider [Sch90a], treats this replication
method in a very detailed manner. For hard real-time systems, active replication
is the technique best suited to mask faults transparently [Pol96], since there is
no delay for recovery actions.

For active replication, it is necessary that all the replicated subsystems (which
are executed on correct nodes) must exhibit replica determinate [Pol96] behav-
ior, i.e., all contained processes produce identical results within a given time
interval. There are basically two sources of non-determinism that must be ad-
dressed by the FT-layer: (1) readings of replicated sensors (this includes the
value and time domain) and (2) di�erences in the execution order and speed.
The mechanisms provided to handle these problems are described in the next
two subsections.

3.8 Message Agreement

If a replicated subsystem sends a message that is based on replicated sensors
it cannot be guaranteed that all the individual message instances are identical.
It is therefore necessary to employ an agreement algorithm that returns one
value. This is supported by the FT-layer and the xOLT based on the mechanism
described in the following paragraphs.

Given a message m is sent with a replication degree of n. If the message is based
on replica determinate information, all message instancesm1 tomn are identical.
According to the fault hypothesis, messages are delivered either correctly or not
at all. The FT-layer can therefore present the �rst message instance mi to the
application software. We call the algorithm doing just this pick �rst valid.

However, if the message m is not replica determinate then some of its instances
will have diverging values. The DFR model therefore allows the speci�cation
of an application speci�c agreement algorithm for the message in the distribu-
tion domain. Typical examples for such algorithms are averaging agreement or
majority voting. During the generation of the FT-layer the xOLT applies the
following strategy: If an application speci�ed agreement algorithm is de�ned for
a certain message, then this algorithm is used to read the message instances
and to present one value to the application software. Otherwise, the default
algorithm pick �rst valid is used.

It is important to note that user de�ned agreement algorithms are speci�ed in
the distribution domain. This guarantees that all nodes in the cluster use the
same algorithm to handle messages.
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3.9 Timed Messages

Actively replicated subsystems can show replica non-deterministic behavior as a
result of slight divergences in the execution timing. To avoid node internal non-
determinism it is necessary to achieve total agreement on the order of message
receive and send operations. A very e�cient means to attain this are timed

messages [Pol97]. It has been shown for real-time systems that timed messages
can guarantee ordered message delivery without any communication�except
for external events.

A brief description of the timed message mechanism will be given in the follow-
ing; for a more detailed discussion the interested reader is referred to [Pol96a,
PBB97]. Real-time systems are characterized by the a priori knowledge of the
time at which a certain process must �nish. It therefore follows that individual
processors have common knowledge of the completion times of replicated tasks.
This information can be exploited to achieve ordering of the message send and
receive operations. It should be noted that this scheme is necessary only for
messages which are sent node-locally; for global messages the communication
service already guarantees global order.

Upon sending a message, the message is marked with the completion time of the
sender process. Since only local messages are considered here, messages arrive
immediately after the completion of the send operation. It is therefore guaran-
teed that every message sent by a task arrives within the task's deadline. The
associated task's completion time is called a message's validity time.2 Typically,
messages are sent more than once during system operation, i.e., each send op-
eration generates a new message version. Message receive operations for timed
messages are de�ned as follows: if a task receives a message, it needs to select the
message version for which the associated validity time is the latest one before
the receiver's task activation request time. This enforces replica determinism on
the send/receive behavior of replicated processes.

3.10 Recovery and re-integration of nodes

After a node detects a fault, it must perform a self-test to determine whether
the fault is transient or permanent. After a transient fault, it is advantageous to
re-synchronize the node and re-integrate it into the cluster. After a permanent
fault, the node leaves the cluster; in some cases it may be replaced by the re-
integration of a new, correct node into the cluster.

The FT-layer handles node recovery completely autonomously. If the FT-layer
determines that a node starts into an already running cluster3, then a re-
integration is performed. During re-integration, the FT-layer receives all mes-
sages and h-states on the bus. This information is stored to form valid and

2In this context, validity time means not to use before rather than not to use after time.
3This information is provided by the TTP/C communication protocol.
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up-to-date i-vectors for the processes. Having done this for a su�cient period
(one cluster cycle, c.f. subsection 4.2), the application software is started in
synchronization with the cluster. This ensures replica determinism of the newly
integrated node. The prerequisite requirement for re-integration�that the h-
state of replicated processes is sent on the bus�is guaranteed by the tool xOLT
which generates the FT-layer accordingly.

4 The FT-Layer Implementation

The FT-layer provides the interface between the application software running
on a single p-node and the TTP/C bus connected to the node. In terms of the
DFR model, the FT-layer connects the value and time domains with the distri-
bution domain. In particular, the FT-layer handles the sending and receiving of
global messages and their mapping to node-local messages. For the application
software, the distribution domain is irrelevant and there is no di�erence between
a local and a global message.

The FT-layer is generated by the software tool xOLT. This tool is an extension
of the o�-line tool OLT which was developed as a part of the ERCOS operating
system. ERCOS is a commercially available product which is used in several
industrial automotive projects.

4.1 xOLT

The o�-line tool OLT was developed to support the development of robust,
reusable, and composable software components for embedded hard real-time
systems with rigorous resource constraints.

The development of the OLT was governed by the goals:

� Full support for the DFR model.

� Decoupling of software components.

� Decoupling of the application software from the used infrastructure, e.g.,
compiler, operating system, target hardware, networking, etc.

� Declarative instead of imperative interface.

� Automatic consistency checks, including user-de�ned checks.

� Extensive o�-line optimization.

The OLT performs message allocation, resource management, code adaption,
code optimization, and consistency checks. The original implementation handles
the value and time domain, i.e., it supports the development of applications on
isolated embedded processors. The xOLT extends the OLT by supporting the
distribution domain; in particular, it performs the automatic generation of the
FT-layer. The xOLT works on a per-node basis, i.e., it knows the value and time
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domains of a single node and the distribution domain of the complete distributed
system.

The OLT and xOLT perform two major functions: analysis and synthesis .

OLT/S
Source File

Lexer

Parser

OLT/A

OLT/A
Source File

OLT/S

Target File

Object File

CompilerAssembler

OLT/DB

Figure 3: OLT structure

The analysis part (OLT/A) gathers information about the application objects
and their associations. The source �les read by OLT/A are written in a host
programming language like C or assembler augmented by OLT declarations.
These OLT declarations provide all the design information required by the DFR
model. The OLT/A extracts the DFR speci�c information from the source �les
and puts it into an internal database (OLT/DB). The source �les can be analyzed
in any sequence and at any time � all together or one after another. The
OLT/DB contains all necessary information about the global system structure
needed by the OLT.

The synthesis part (OLT/S) uses the information in the OLT/DB to synthesize a
complete application. Synthesis is possible only if the OLT/DB is complete and
consistent. The OLT/S performs the functions:

� Global consistency checks.

� Message allocation and optimization.

� Resource handling and optimization.
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� Stack space allocation for the di�erent priority and exception levels.

� Time-table resolution.

� Con�guration of the ERCOS kernel.

� Source code rewriting: adaption of reusable components to the application
environment and to the target system.

The OLT supports a powerful macro language which provides full access to the
information in the OLT/DB. This macro language is used extensively for the
implementation of the FT-layer.

4.2 Communication basics

A TTP/C network comprises a set of p-nodes connected by the two replicated
channels of a TTP/C bus and is called a cluster . Access to the bus is controlled
by a cyclic time-division multiple access (TDMA) schema derived from a global
concept of time. The sequence of slots in which each p-node sends at most once
forms a TDMA round . After the completion of one TDMA round, the next
round commences with the same temporal access pattern, but possibly with
di�erent messages. The number of di�erent rounds determines the length of the
cluster cycle . After a cluster cycle is �nished, the transmission pattern starts
all over again at the beginning of the next cluster cycle.

A p-node consists of two components: the host computer and the TTP/C con-
troller(s). The TTP/C controller handles all access to the TTP/C bus au-
tonomously and communicates with the host computer via the communication
network interface (CNI).

Slot 1 2 3 4 5 6 7 8

Round

1

2

3

4

Figure 4: Slots vs. Frames
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For each slot, a speci�c p-node is allowed access to the TTP/C bus. The p-node
sends one frame on each of the channels. Each of these frames may be an i-

frame (used for protocol management) or a n-frame (used for message transfer
between hosts). Each n-frame can carry between one and sixteen g-messages. A
g-message might be sent in one or both n-frames of a slot depending on how
critical the message is.

A non-multiplexed p-node has access to the same slot in every round of the
cluster cycle. A multiplexed p-node shares the same slot with other multiplexed
p-nodes, each of them using the slot in a di�erent round of the cluster cycle.

4.3 Replica handling

Replication of a subsystem means that there are n replicas of the subsystem
running on di�erent p-nodes of the cluster. A message of a replicated subsystem
is sent in as many slots per round as there are replicas, i.e., if one replica sends
the message in a round, all others have to send it, too. Each replica may send the
message in one or two n-frames per round. The users of the replicated message
don't need to know about the replication degree.

(n� 1) round n round (n+ 1) round (n+ 2)

value (i� 1) value i value (i+ 1)

Figure 5: Replica Handling

A replicated message can be read from the CNI only after the slot of the last
replica was processed by the TTP/C controller. This situation is shown in dia-
gram 5 for three replicas (the slots of all other p-nodes are omitted). Between
the �rst and the last of the replica's slots, the old value of the message must
be used. Only after the arrival of all slots can the value be updated (marked by
the up-arrow).

A replicated message must be written into the CNI before the transmission
of the slot of the �rst replica commences (marked by the down-arrow). That
means that all replicas must update the CNI at the same time. Otherwise,
replica determinism might be compromised.

No matter what the replication degree of a message, there is at most one slot
per round where the FT-layer must read or write the message to or from the
CNI, respectively. For replicated messages, only the last slot in the round is used
for reading the message from the CNI; only the �rst slot is used for writing the
message into the CNI.
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For replica-deterministic messages, the value carried by any valid n-frame can be
used. Due to the fail-silent assumption, the values of all frames should contain
the same value.

For non-replica-deterministic messages, the FT-layer must produce a replica-
deterministic agreement on the values of all p-nodes from which a valid n-frame
was received. The agreement algorithm used is speci�ed per g-message, i.e., dif-
ferent g-messages may use di�erent agreement algorithms. In the value domain,
only the replica determinism status of a message is speci�ed. There isn't any
di�erence in the application's code between the sending/receiving of a deter-
ministic and a non-deterministic message.

4.4 FT-Layer generation

The xOLT generates the tasks implementing the FT-layer by using the infor-
mation in the OLT/DB. The design of the FT-layer generation was governed by
the objectives:

� Complete transparency to the application.

The application programmer needs no knowledge about the TTP proto-
col, the CNI, or the bus schedule.

� Avoid unnecessary work.

Only messages actually used by the application (or the FT-layer itself)
are handled.

� Avoid unnecessary tasks and unnecessary time-table entries.

By combining the handling of the di�erent messages into as few tasks as
possible, unnecessary overhead for the operating system kernel is avoided.

For messages used by event-triggered tasks, every slot carrying the message
must be processed. As the activation time of an event-triggered task is not
known in advance, every slot must be considered in order to avoid the use of
stale information by the task. Thus, event-triggered tasks impose an overhead
on the FT-layer.

For messages used only by time-triggered tasks, all receive-slots which are not
followed by a task using the message are ignored. It makes no sense to process
a slot when the value received is not used before the next slot containing the
message arrives. Diagram 6 shows an example: white slots are receiving slots,
gray slots are sending slots. For slot 1, both messages are used and must be
handled; slot 2 can be ignored because none of its messages is used; for slot 4,
only the message m1 is used and must be handled; for slot 5, the messages m3
and m4 are not used and can be ignored. Send-slots are always written, even if
there was not any change in the value of the message.
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Figure 6: Slot Pruning

The processing of a slot can be shifted in the interval between slot transmission
and task activation. For received messages, the earliest time of slot processing
is given by the completion of slot transmission, the latest time is given by the
time of task activation (for time-triggered tasks). For sent messages, the earliest
time is that of task termination (task activation plus deadline), the latest time
is given by the start of slot transmission minus the deadline of the FTL task.
That means, for every slot we have an interval for scheduling the FTL task (this
interval collapses to a point for messages used by event-triggered tasks). This
interval can be used for optimization.

Messages with overlapping processing intervals are handled by the same FTL
task. Each receive task is scheduled as early as possible, each send task is sched-
uled as late as possible. The FTL tasks inherit the priority of the tasks using
the messages. This guarantees that a FTL task cannot be interrupted by an
application task using the same message.

According to the strategy just outlined, the xOLT augments the time domain
with FT-Tasks and additional time table entries. This is done automatically
without any user intervention. For the generation of the FT-layer, the xOLT
needs complete information about the global system structure (in particular,
about the message use). This information is only available after the analysis of
all source �les. The FTL objects are de�ned via the normal OLT mechanisms,
i.e., they must be also analyzed by the OLT.

The time domain is de�ned by a single source �le. To generate the FT-layer, the
xOLT analyzes this �le twice � the �rst run determines the timing of the appli-
cation speci�c tasks, the second run adds the tasks generated by the FT-layer
via the OLT macro language and enters them into the time-tables of all a�ected
op-modes. Because the FTL objects are de�ned by normal OLT mechanisms,
their use is handled by exactly the same mechanisms as all application speci�c
objects (e.g., message copying).

Any change in the use of global messages (i.e., a change of a source �le de�ning
objects of the value domain) automatically triggers a re-analysis of the time
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domain. This keeps the FT-Layer consistent at all times with the application
software.

5 Conclusions

This paper presents a conceptual model for, and the implementation of, a soft-
ware fault-tolerance layer (FT-layer) for distributed fault-tolerant hard real-time
systems. This FT-layer is based on a systematic, application-independent frame-
work for fault-tolerance supported by the code-generating tool xOLT. The FT
framework comprises node-level mechanisms for increased error detection cov-
erage and distributed mechanisms for tolerating permanent faults of processing
nodes and peripherals.

The presented architecture supports a clear separation between the implemen-
tation of application-speci�c, functional requirements and the implementation
of non-functional requirements for systematic fault-tolerance. This allows the
tool xOLT to generate the FT-layer completely automatically and thus sup-
ports the development of reusable software components. In addition, the xOLT
substantially increases the productivity of the application programmer.

By using knowledge of the global system design, the xOLT is able to perform
extensive optimizations and therefore to generate highly e�cient code for the
FT-layer (and for the application-speci�c code). In contrast to the overhead
imposed by generic mechanisms without tool support, the xOLT generates code
custom-tailored to the properties of a speci�c application.

In the context of the x -by-wire project, the xOLT was developed by extending
the existing commercially available tool OLT. The implementation of the xOLT
has been �nished and the tool is being used to develop the software for the
x -by-wire prototype application. First results indicate an excellent performance
of the tool and the generated FT-layer.
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