
Parameterized Aspect Calculus: A Core Calculus
for the Direct Study of Aspect-Oriented Languages

Curtis Clifton, Gary T. Leavens, and Mitchell Wand

TR #03-13
November 2003

Keywords: Parameterized aspect calculus, object calculus, join point model, point cut description language, aspect-
oriented programming, AspectJ, advice, HyperJ, hyperslices, DemeterJ, adaptive methods

2003 CR Categories: D.3.1 [Programming Languages] Formal Definitions and Theory — Semantics D.3.2 [Programming
Languages] Language Classifications — object-oriented languages D.3.3 [Programming Languages] Language Constructs and
Features — classes and objects

Submitted for publication.

Copyright c© 2003, Curtis Clifton, Gary T. Leavens, and Mitchell Wand, All Rights Reserved.

Department of Computer Science
226 Atanasoff Hall

Iowa State University
Ames, Iowa 50011-1040, USA

Parameterized Aspect Calculus: A Core Calculus
for the Direct Study of Aspect-Oriented Languages

Curtis Clifton
Dept. of Computer Science

Iowa State University
226 Atanasoff Hall

Ames, IA 50011-1040 USA

cclifton@cs.iastate.edu

Gary T. Leavens
Dept. of Computer Science

Iowa State University
226 Atanasoff Hall

Ames, IA 50011-1040 USA

leavens@cs.iastate.edu

Mitchell Wand
College of Computer and

Information Science
Northeastern University
Boston, MA 02115 USA

wand@ccs.neu.edu

ABSTRACT
Formal study of aspect-oriented languages is difficult be-
cause current theoretical models provide a range of features
that is too limited and rely on encodings using lower-level
abstractions, which involve a cumbersome level of indirec-
tion. We present a calculus, based on Abadi and Cardelli’s
object calculus, that explicitly models a base language and
a variety of point cut description languages. This explicit
modeling makes clear the aspect-oriented features of the cal-
culus by removing the indirection of some existing models.
We demonstrate the generality of our calculus by presenting
models for AspectJ’s open classes and advice, and HyperJ’s
compositions, and sketching a model for DemeterJ’s adap-
tive methods.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and
Theory—Semantics; D.3.2 [Programming Languages]:
Language Classifications—object-oriented languages; D.3.3
[Programming Languages]: Language Constructs and
Features—classes and objects

Keywords
Parameterized aspect calculus, object calculus, join point
model, point cut description language, aspect-oriented pro-
gramming, AspectJ, advice, HyperJ, hyperslices, DemeterJ,
adaptive methods

1. INTRODUCTION
Formal models are helpful in understanding new program-

ming paradigms and exploring their properties. Formal study
of aspect-oriented languages is difficult because current the-
oretical models provide a range of features that is too lim-
ited. Most existing formal models focus on the dynamic ad-
vice binding, or weaving, features of AspectJ-like languages

Copyright c© 2003, Curtis Clifton, Gary T. Leavens, and Mitchell Wand,
All Rights Reserved

[8, 17, 19]. These models neglect other aspect-oriented fea-
tures like AspectJ’s open classes [3, 9], HyperJ’s composi-
tions [14], and DemeterJ’s adaptive methods [11].

Another weakness of current formal models of aspect-
oriented languages, is that they rely on encodings using
lower-level abstractions. This is similar to the situation
early in the formal study of object-oriented languages. At
that time, there were studies that modeled object-oriented
languages using the lambda calculus. However, this indirect
modeling was cumbersome because of the multiple layers [1,
§8.6], hampering work on semantics and type theory for the
object-oriented paradigm. Abadi and Cardelli developed the
object calculus, which directly models object-oriented con-
structs, to alleviate this problem.

In this paper we introduce the parameterized aspect cal-
culus, which is a step towards solving these problems.

Our calculus is based on Abadi and Cardelli’s functional
object calculus, ς [1, pp. 57–78]. We extend the ς calculus
to create a core calculus, ςasp(M), where M is a parameter
defining one of a variety of point cut description languages.
This is typical of design for aspect-oriented languages, where
an advice mechanism is added on to an existing non-aspect-
oriented base language [3, 16]. In ςasp(M), the base pro-
grams are written in a variant of the ς calculus, and one can
also write advice containing code related to various cross-
cutting concerns.

As usual, advice can be triggered at certain points in the
execution of the base program. At every reduction step in
a ςasp(M) program, the semantics consults the given point
cut description language, M , to find any applicable advice,
making each reduction step a potential join point. As with
Abadi and Cardelli’s direct modeling of objects, this direct
modeling of join points is intended to simplify reasoning
about them. Because join points are explicit and pervasive
in the calculus, theorists can instantiate ςasp(M) with dif-
ferent point cut description languages to investigate a large
variety of aspect-oriented features. We demonstrate this by
presenting models for AspectJ’s open classes and advice, and
HyperJ’s compositions, and sketching a model for Deme-
terJ’s adaptive methods.

2. ADDING ASPECTS TO OBJECTS
In this section we present the syntax and operational se-

mantics of our parmeterized object calculus.

2.1 Parameterized Aspect Calculus

1

We begin by outlining how the calculus incorporates as-
pect-oriented features. The key to this is how the opera-
tional semantics allows advice code to be executed at most
reduction steps. That is, most reduction steps are poten-
tial join points. The semantics represents reduction steps
abstractly as four-tuples, 〈ρ,K, S, k〉, where:

ρ is one of {Val, Ivk,Upd}, indicating a value creation,
invocation, or update operation,

K is a string representing the context in which the sub-
term to be reduced appears,

S is the signature, either a basic constant or a set of
method labels, of the value created or against which
invocation or update is to be performed, and

k is the message, either the label or functional constant,
that is to be invoked or updated, or the empty string,
ε, for value creation.

We refer to such a four tuple as a join point, and to the set
of all possible join points as the join point model, written J .

An instance, ςasp(M), of the calculus is created by defin-
ing a point cut description language, M = 〈C,match〉. The
grammar C gives the syntax for point cut descriptions; match
gives their semantics. A piece of advice, A, consists of a
point cut description, pcd , defining a set of join points in the
reduction of a term, and a naked method, ς(−→y)b, so called
because they have the form of methods in the ς calculus but
are not “clothed” in objects. The function match takes a
piece of advice and a join point and returns a sequence of
naked methods to be executed in place of the original oper-
ation. The naked methods may also proceed to the original
operation, as discussed below.

The match function returns an empty sequence if the
point cut description of the given advice does not match
the given join point. On the other hand, if the point cut de-
scription and join point do match, then the function would
typically return a singleton sequence containing the naked
method of the advice. (Some point cut description languages
that we study return longer sequences, for example, by quan-
tifying over some component of the naked method.)

2.1.1 Notation and Syntax
Before describing the syntax and semantics in detail, it

is useful to introduce some notation for sets and sequences.
We use an over-line notation, li

i∈I , to denote a set {li|i ∈ I}
indexed by the set I. We use a vector notation,

−→
bi

i∈I , to de-
note a sequence 〈bi1 , bi2 , . . . , bin〉 indexed by the ordered set
I = {i1 < i2 < . . . < in}. For empty I, the notations denote
the empty set, also written “∅”, and the empty sequence,
also written “•”. We omit the index from the notation if it
is clear from context. We use a comma as shorthand for set
union and we use “+” to denote sequence concatenation.

Figure 1 gives the syntax and meta-syntax for ςasp(M).
We use x to denote a variable drawn from a countable set
Vars of variables. Basic constants are denoted by d, drawn
from a countable set Consts, and functional constants by
f , drawn from a countable set FConsts. The meta-variable
l ranges over a countable set Labels of method labels. We
assume that FConsts and Labels are disjoint. The meta-
variable S ranges over the set of signatures. The signature
of an object is its set of labels; a basic constant is its own
signature.

Syntax:

x ∈ Vars d ∈ Consts f ∈ FConsts l ∈ Labels

S ∈ P (Labels) ∪ Consts pcd ∈ C

programs P ::= a⊗
−→
A

terms a, b, c ::= x | v | a.k |
a.l⇐ ς(x)b |
proceedVal() |
proceedIvk(a) |
proceedUpd(a, ς(x)b) | π

values v ::= d | [li = ς(xi)bi
i∈I]

selectors k ::= l | f

proceed closures π ::= ΠVal{|B, v|}() |
ΠIvk{|B, S, k|}(a) |
ΠUpd{|B, k|}(a, ς(x)b)

naked methods B ::=
−−−→
ς(−→y)b

advice A ::= pcd� ς(−→y)b

step kinds ρ ::= Val | Ivk | Upd

Meta-syntax:

reduction judgments K
M̀,
−→
A a ; v

evaluation contexts K ::= ε | κ · K
evaluation steps κ ::= ib(l, l) | va | ia | ua

Figure 1: Syntax and meta-syntax of ςasp(M), where
C is the syntax of M ’s point cut description language

Programs, denoted by P, are pairs, a⊗
−→
A , consisting of

a single term and a sequence of advice. The term represents
the base program to be evaluated.

In the syntax, a, b, and c range over terms. To the term
syntax of Abadi and Cardelli’s ς calculus, [1, pp. 57], we add
proceed terms for continuing from advice code to the code
which it advises (or any lower precedence advice). We also
add basic and functional constants.

The basic terms are variable references (like x), values,
and value proceed terms, written proceedVal(), for continu-
ing from advice on values. A value may be a basic constant,
represented by d, or an object, written [li = ς(xi)bi

i∈I]. An
object is a set of labeled methods. Methods have the form
ς(x)b, where x represents the “self” parameter and b is a
term. Since an object is a set of labeled methods, we equate
objects when they only differ by a reordering of methods.
We also equate methods when they only differ up to alpha
congruence (i.e., renaming of self parameters).

The composite terms are: a.k, the selection of a method
or application of a functional constant, together referred to
as invocation; a.l⇐ ς(x)b, method update, for changing the
method to which a label is bound; proceedIvk(a), invoca-
tion proceed, for continuing from advice on invocation; and
proceedUpd(a, ς(x)b), update proceed, for continuing from
advice on method update.

The calculus includes another set of terms called proceed
closures. Proceed closures are created dynamically by the
semantics during the evaluation of advice. Proceed terms
appearing in the body of advice are replaced with proceed

2

closures. These closures carry a thunk that tracks the ad-
vised code and any lower-precedence advice. This tracking
allows the semantics to continue to the lower-precedence ad-
vice, and ultimately to the advised code. Although proceed
closures are part of the term syntax, they are not allowed in
user programs; they may only be dynamically generated by
the semantics. A simple check on user programs can ensure
this.

An advice sequence
−→
A in ςasp(M) associates point cut de-

scriptions with advice. A single piece of advice in
−→
A has the

form pcd� ς(−→y)b, where pcd denotes an arbitrary point cut
description drawn from M ’s syntax, C. The advice body b is
applied at the points in a reduction that match pcd accord-
ing to the point cut description language’s match function.
The bound variables in the advice body are given by −→y . The
number of bound variables depends on whether the advice
applies to values, invocation, or method update. The use of
these bound variables is described below.

Figure 1 also gives the meta-syntax used in the semantics.
A judgment of the form K

M̀,
−→
A a ; v says that the term a

reduces to the value v in the evaluation context K, given the
point cut description language M and the advice sequence−→
A . We omit M and

−→
A from the notation when they are

clear from context. The evaluation context, K, is an encod-
ing of all the reduction steps below the judgment in a proof
tree. An evaluation context corresponds to the call stack in
a dynamic aspect-oriented language like AspectJ.

2.1.2 Helper Functions
The reduction rules described in subsequent subsections

use three helper functions. The advice lookup function for
a point cut description language M = 〈C,match〉 is defined
recursively:

advForM (jp, •) = •

advForM (jp, (pcd� ς(−→y)b) +
−→
A) =

match(pcd� ς(−→y)b, jp) + advForM (jp,
−→
A)

The signature function returns a value’s signature:

sig(v) =

{
li

i∈I if v = [li = ς(xi)bi
i∈I]

v otherwise

The closeρ function takes a term, representing an advice
body, and some additional information, and produces an-
other term in which all the proceedρ sub-terms have been
converted into proceed closures. For proceed terms the func-
tion is defined as follows:

closeVal(proceedVal(), {|B, v|}) = ΠVal{|B, v|}()

closeIvk(proceedIvk(a), {|B, S, k|}) =
ΠIvk{|B, S, k|}(closeIvk(a, {|B, S, k|}))

closeUpd(proceedUpd(a, ς(x)b), {|B, k|}) =
ΠUpd{|B, k|}(closeUpd(a, {|B, k|}), ς(x)closeUpd(b, {|B, k|}))

For proceed closures, the function is undefined; proceed clo-
sures may not appear in advice bodies. For all other terms,
the function simply recurses on sub-terms [6].

2.1.3 Rules When No Advice Matches
The rules Red Val 0, Red Sel 0, and Red Upd 0, given

in Figure 2, correspond to the three reduction rules in the

Red Val 0

K
M̀,
−→
A � advForM (〈Val,K, sig(v), ε〉,

−→
A) = •

K
M̀,
−→
A v ; v

Red Sel 0 (where o , [li = ς(xi)bi
i∈I])

K
M̀,
−→
A a ; o

lj ∈ li
i∈I advForM (〈Ivk,K, li

i∈I , lj〉,
−→
A) = •

ib(li
i∈I , lj) · K M̀,

−→
A bj{{xj ← o}}; v

K
M̀,
−→
A a.lj ; v

Red Upd 0 (where o , [li = ς(xi)bi
i∈I])

K
M̀,
−→
A a ; o

lj ∈ li
i∈I advForM (〈Upd,K, li

i∈I , lj〉,
−→
A) = •

K
M̀,
−→
A a.lj ⇐ ς(x)b ; [li = ς(xi)bi

i∈I\{j}, lj = ς(x)b]

Red FConst 0

K
M̀,
−→
A a ; v′ advForM (〈Ivk,K, sig(v′), f〉,

−→
A) = •

ib(sig(v′), f) · K
M̀,
−→
A δ(f, v′) ; v

K
M̀,
−→
A a.f ; v

Figure 2: Reduction rules when no advice matches

operational semantics for the functional ς calculus [1, p. 64],
with Red Val 0 generalized to handle both objects and
basic constants. In each of these rules there is a premise
that asserts that advice lookup yields the empty sequence.
Since these rules correspond to those for the ς calculus, we
omit examples here, however, three details bear mentioning:

• In Red Val 0, the premise K
M̀,
−→
A � indicates that the

environment is well formed.

• In Red Sel 0, when reducing the method body, b, the
semantics prefixes ib(li

i∈I , lj) to the evaluation con-
text. By recording every invocation during a reduc-
tion, the evaluation context models the call stack in
a typical language implementation. This is useful to
model constructs like AspectJ’s cflow point cuts.

• We write a{{x ← b}} to denote the standard, capture-
avoiding, substitution of b for x in a.

A companion technical report provides the formal defini-
tion of these and other details suppressed below, as well as
detailed reductions for all examples [6].

The rule Red FConst 0, also given in Figure 2, spec-
ifies the semantics of functional constants when no advice
matches. The rule says that when a functional constant is
applied to a term, the term is first reduced to a value and
then the δ function is applied to the functional constant and
value to yield the final result. Thus, the δ function, which
is intentionally underspecified here, determines the meaning
of the functional constants. We restrict δ to just depend on
observable characteristics of v [6].

Through the remainder of this paper we will use examples
based on the point object [n=ς(y) 0, pos=ς(p) p.n]. In the
example, n is a “field” storing the point’s position and pos
is a method for querying the point’s position.

2.1.4 Rules When Some Advice Matches

3

Red Val 1

K
M̀,
−→
A � advForM (〈Val,K, sig(v), ε〉,

−→
A) = ς()b + B

closeVal(b, {|B, v|}) = b′ va · K
M̀,
−→
A b′ ; v′

K
M̀,
−→
A v ; v′

Red Sel 1 (where o , [li = ς(xi)bi
i∈I])

K
M̀,
−→
A a ; o

lj ∈ li
i∈I advForM (〈Ivk,K, li

i∈I , lj〉,
−→
A) = ς(y)b + B

closeIvk(b, {|(B + ς(xj)bj), li
i∈I , lj |}) = b′

ia · K
M̀,
−→
A b′{{y ← o}}; v

K
M̀,
−→
A a.lj ; v

Red FConst 1
K

M̀,
−→
A a ; v′

advForM (〈Ivk,K, sig(v′), f〉,
−→
A) = ς(y)b + B

closeIvk(b, {|B, sig(v′), f |}) = b′

ia · K
M̀,
−→
A b′{{y ← v′}}; v

K
M̀,
−→
A a.f ; v

Red Upd 1 (where o , [li = ς(xi)bi
i∈I])

K
M̀,
−→
A a ; o

advForM (〈Upd,K, li
i∈I , lj〉,

−→
A) = ς(targ , rval)b′ + B

closeUpd(b
′, {|B, lj |}) = b′′

ua · K
M̀,
−→
A b′′{{rval ←↩ b{{x← targ}}}}targ{{targ ← o}}; v

K
M̀,
−→
A a.lj ⇐ ς(x)b ; v

Figure 3: Reduction rules when some advice
matches

The rules in Figure 3 correspond to the basic operations
when there is applicable advice. In addition to invocation,
these rules provide join points for values and method up-
date. These additional join points are unique among formal
models of aspect-oriented languages, and are used to model
the AspectJ’s open classes, HyperJ, and adaptive methods,
as discussed in Section 3.

For objects and basic constants, Red Val 1 constructs
a join point, 〈Val,K, sig(v), ε〉, that contains the signature
of the value. This join point is passed to the advice lookup
function, which must return a non-empty sequence of advice
for this rule to be applicable.1 The rule closes any proceedVal

sub-terms in the body, b, of the first element in the advice
sequence, yielding a term b′. The closeVal function uses the
thunk, {|B, v|}, which stores any other applicable advice, B,
and the original value, v. See Section 2.1.5 for how this in-
formation is used for proceeding from value advice. Finally,
the rule reduces b′ in an environment whose evaluation con-
text is extended with va, indicating that the reduction is
value advice. The result, v′, of reducing b′ is the result of
the advised value term.

For method selection, Red Sel 1 reduces the target term,
a, to an object value, o, and verifies, by the lj ∈ li

i∈I

premise, that the selected method is defined in the target
object. The rule constructs a join point, 〈Ivk,K, li

i∈I , lj〉,
that contains the signature of the target object and the label

1In Red Val 1, and the other “1” rules, if any of the el-
ements of the sequence returned by advice lookup has the
wrong number of parameters, then the reduction may stick.

of the method to be selected. This join point is passed to
the advice lookup function, which must return a non-empty
sequence of advice for this rule to be applicable.

Advice for method selection, ς(y)b, has one parameter.
The rule closes any proceedIvk sub-terms in the body, b, of
the first element in the advice sequence, yielding a term
b′. The thunk, {|(B + ς(xj)bj), li

i∈I , lj |}, records any other
applicable advice plus the originally selected method (as
B + ς(xj)bj), the set of labels in the target object, and the
selected label. The rule then reduces b′, substituting the
target object, o, for each instance of the parameter, y. The
rule extends the evaluation context, adding ia to indicate
that the reduction of b′ is invocation advice. The result, v,
of reducing the advice is the result of the entire rule.

Red FConst 1 only differs slightly from Red Sel 1. The
functional constant rule allows the target term to reduce to
any value, not just an object.

Red Upd 1, for method update, is also similar to Red
Sel 1. The key differences are that advice on method up-
date, ς(targ , rval)b′, has two parameters and the reduction of
the closed advice body, b′′, uses both capture-avoiding and
capturing substitution. The first advice parameter, targ ,
corresponds to the target object, o, of the update opera-
tion. The second parameter, rval , corresponds to the body,
b, of the update’s r-value. The combination of capturing
and capture-avoiding substitution in the reduction rule al-
lows some interesting tricks. We illustrate this with exam-
ples below, after first giving more details on the two sorts of
substitution.

In general, substitution of c for x in b, with capture of
any free occurrences of z in c, is written b{{x ←↩ c}}z. The
only difference between capture-avoiding and capturing sub-
stitution is in the definition for substitution under variable
binders. For capture-avoiding substitution, the definition is:

(ς(y)b){{x← c}} , ς(y′)(b{{y ← y′}}{{x← c}})

where y′ /∈ FV (ς(y)b) ∪ FV (c) ∪ {x}. The renaming of y to
a fresh name y′ prevents capture. On the other hand, for
capturing substitution, there are two cases:

(ς(z)b){{x←↩ c}}z , ς(z)(b{{x←↩ c}}z)
(ς(y)b){{x←↩ c}}z , ς(y′)(b{{y ← y′}}{{x←↩ c}}z) if y 6= z

The first case captures free instances of z in c by omitting
the renaming step. The second case avoids capture when
the bound variable, y, in the term differs from the variable,
z, to be captured by the substitution.

The combination of the two sorts of substitution in Red
Upd 1 gives advice authors some interesting options. The
first substitution, b{{x← targ}}, renames the self parameter
in the body, b, of the original r-value. The next substitu-
tion is the targ-capturing substitution for rval in the advice
body, b′′. This capturing substitution allows the advice au-
thor to capture occurrences of the self-parameter, by placing
rval under a ς(targ) binder, or not capture occurrences of
the self-parameter, by not placing rval under a binder or
by placing it under a non-targ binder. The following two
examples illustrate the utility of combining the two sorts of
substitution. Consider the update:

[n=ς(y)0, pos=ς(p)p.n].pos ⇐ ς(x)x.n.succ

In the absence of advice, this would reduce to:

[n=ς(y)0, pos=ς(x)x.n.succ]

4

We first consider advice that fixes the value of the pos
method to the result of evaluating the new method body,
x.n.succ, substituting the original target object for x:

ς(targ,rval)proceedUpd(targ, ς(z)rval)

Assuming no other advice was found in the advice lookup,
Red Upd 1 closes the proceedUpd sub-term in the advice
body using the thunk {|•, pos|}. Thus, we get:

b′′ = ΠUpd{|•, pos|}(targ, ς(z)rval)

We now consider the substitutions in the last premise of
Red Upd 1. Because targ does not appear bound in b′′,
there is no capture in these substitutions. After making
the replacements specified in the rule, the substitutions are
carried out as follows (where underlining shows the subterm
that is the target of the next substitution):

ΠUpd{|•, pos|}(targ, ς(z)rval){{rval←↩ x.n.succ{{x← targ}}}}targ
{{targ← [n=ς(y)0, pos=ς(p)p.n]}}

= ΠUpd{|•, pos|}(targ, ς(z)rval){{rval←↩ targ.n.succ}}targ
{{targ← [n=ς(y)0, pos=ς(p)p.n]}}

= ΠUpd{|•, pos|}(targ, ς(z)targ.n.succ)

{{targ← [n=ς(y)0, pos=ς(p)p.n]}}
= ΠUpd{|•, pos|}([n=ς(y)0, pos=ς(p)p.n],

ς(z)[n=ς(y)0, pos=ς(p)p.n].n.succ)

The last term will reduce (as discussed in Section 2.1.5) to:

[n=ς(y)0, pos=ς(z)[n=ς(y)0, pos=ς(p)p.n].n.succ]

where the original object is now embedded in the pos method.
No matter what we set n to in this term, selecting pos on
this term will yield the successor of 0. Because no capture
occurred, the advice has fixed the value of pos to that ob-
tained by calling the updated method at the time of the
update.2

As a second example, consider advice that uses the body
of the update’s r-value without causing it to be reduced.
Suppose the advice lookup in the Red Upd 1 rule returned:

ς(targ,rval)proceedUpd(targ,ς(targ)rval.succ)

Assuming no other advice was found in the advice lookup,
then after closing the proceedUpd sub-term, the substitutions
for this advice are:

ΠUpd{|•, pos|}(targ,ς(targ)rval.succ)

{{rval←↩ x.n.succ{{x← targ}}}}targ
{{targ← [n=ς(y)0, pos=ς(p)p.n]}}

= ΠUpd{|•, pos|}(targ,ς(targ)rval.succ)

{{rval←↩ targ.n.succ}}targ
{{targ← [n=ς(y)0, pos=ς(p)p.n]}}

=† ΠUpd{|•, pos|}(targ,ς(targ)targ.n.succ.succ)

{{targ← [n=ς(y)0, pos=ς(p)p.n]}}
= ΠUpd{|•, pos|}([n=ς(y)0, pos=ς(p)p.n],

ς(targ)targ.n.succ.succ)

2Although our calculus is functional, the order of execution
matters. The semantics is essentially call-by-value; the tar-
get sub-term of an operation is evaluated to a value before
the operation takes place.

This term will reduce to:

[n=ς(y)0, pos=ς(targ)targ.n.succ.succ]

Thus, the advice causes any subsequent selections of pos to
return the successor of what they would have if the update
had happened without advice. The substitution that cap-
tures the free targ in targ.n.succ, flagged with a dagger (†),
is the key to this behavior. The capture allows the body of
the r-value in the update to be syntactically embedded inside
another term whose evaluation is suspended by a binder.

2.1.5 Proceeding from Advice
Figure 4 gives the reduction rules for proceeding from ad-

vice. The rules only reduce proceed closures. Proceed terms
that are not closed, such as those appearing outside of ad-
vice, are errors (and cause reductions to stick).

There are four pairs of rules, one pair each for proceeding
from advice on values, method selection, functional constant
application, and method update. The “1” rule in each pair
proceeds to the advice with the next highest precedence; the
“0” rule proceeds to the original operation when no lower-
precedence advice remains.

When proceeding from invocation or update advice, the
target object is found by reducing the first term in the pro-
ceed closure. When proceeding from update advice, the r-
value is also taken from the proceed closure. The proceed
closure for value advice does not give a new term; if it did,
and if the originally advised term appeared in the new term,
then this would re-trigger the advice, causing evaluation to
loop.

The four “0” rules are similar to the corresponding rules
in Figure 2 for operations with no matching advice. One
interesting detail is that Red SPrcd 0 extracts the original
method, ς(y)b, from the proceed closure, where it was stored
by Red Sel 1, instead of extracting the method from the
new target object, o. This permits advice to execute the
code defined in the original object while using different data.

The four “1” rules are similar to the corresponding rules in
Figure 3 for operations with matching advice, but instead of
calling the advice lookup function to find applicable advice,
they extract the next advice from the proceed closure.

To illustrate the use of proceed, we introduce a simple
point cut description language that allows advice on method
selection. Let Ms = 〈Cs,matchs〉, where Cs ::= [l].l and:

matchs([l].l� ς(−→y)b, 〈ρ,K, S, k〉) ={
〈ς(−→y)b〉 if (ρ = Ivk) ∧ (S = l) ∧ (k = l)

• otherwise

In ςasp(Ms), proceed can be used to encode before, after,
and around advice as in AspectJ.

Before advice, or advice that is executed before the body
of a method, can be written by changing the target object
before proceeding. For example, let

A , [n,pos].pos � ς(x)proceedIvk(x.n⇐ς(y)0)

This advice advises selection on the pos method so that be-
fore reducing the body of that method, the n field of the
target object is set to 0. That is, Red SPrcd 0 evaluates
x.n⇐ς(y)0 before evaluating the original body of the pos
method. Thus, without advice

ε
M̀s,• [n=ς(y)2,pos=ς(p)p.n].pos ; 2,

5

Red VPrcd 0
K

M̀,
−→
A �

K
M̀,
−→
AΠVal{|•, v|}() ; v

Red VPrcd 1
K

M̀,
−→
A � closeVal(b, {|B, v|}) = b′ va · K

M̀,
−→
A b′ ; v′

K
M̀,
−→
AΠVal{|(ς()b + B), v|}() ; v′

Red SPrcd 0

K
M̀,
−→
A a ; o ib(l, l) · K

M̀,
−→
A b{{y ← o}}; v

K
M̀,
−→
AΠIvk{|ς(y)b, l, l|}(a) ; v

Red SPrcd 1
K

M̀,
−→
A a ; o B 6= •

closeIvk(b, {|B, l, l|}) = b′ ia · K
M̀,
−→
A b′{{y ← o}}; v

K
M̀,
−→
AΠIvk{|(ς(y)b + B), l, l|}(a) ; v

Red FPrcd 0
K

M̀,
−→
A a ; v′ ib(S, f) · K

M̀,
−→
A δ(f, v′) ; v

K
M̀,
−→
AΠIvk{|•, S, f |}(a) ; v

Red FPrcd 1
K

M̀,
−→
A a ; v′

closeIvk(b, {|B, S, f |}) = b′ ia · K
M̀,
−→
A b′{{y ← v′}}; v

K
M̀,
−→
AΠIvk{|(ς(y)b + B), S, f |}(a) ; v

Red UPrcd 0

K
M̀,
−→
A a ; [li = ς(xi)bi

i∈I] lj ∈ li
i∈I

K
M̀,
−→
AΠUpd{|•, lj |}(a, ς(x)b) ; [li = ς(xi)bi

i∈I\j , lj = ς(x)b]

Red UPrcd 1
K

M̀,
−→
A a ; o closeUpd(b

′, {|B, lj |}) = b′′

ua · K
M̀,
−→
A b′′{{rval ←↩ b{{x← targ}}}}targ{{targ ← o}}; v

K
M̀,
−→
AΠUpd{|(ς(targ , rval)b′ + B), lj |}(a, ς(x)b) ; v

Figure 4: Reduction rules for proceeding from ad-
vice in ςasp(M)

but with the advice A,

ε
M̀s,A

[n=ς(y)2,pos=ς(p)p.n].pos ; 0.

Similarly, after advice, or advice that is executed after the
body of a method, can be written by proceeding using the
original target object and then manipulating the result:

[n,pos].pos � ς(x)proceedIvk(x).succ

Around advice is simply a combination of these notions
of before and after advice; that is, around advice includes
some code that is executed before the body of the advised
method and some code that is executed after.

3. MODELING EXISTING LANGUAGES
Because of the richness of the join point model in the se-

mantics of ςasp we can model several existing aspect-oriented
languages. This result supports our contention that our
calculus is suitable for studying the reasoning properties of
aspect-oriented language. In this subsection we describe how
we can model AspectJ [3] and HyperJ [14], and we sketch a
model for adaptive methods à la DemeterJ [11].

descriptions pcd ::= Val | Ivk | Upd |
k = k | S = S | K ∈ r |
¬pcd | pcd ∧ pcd | pcd ∨ pcd

context expr. r ::= ε | ib(M, m) | va | ia | ua |
� | r + r | rr | r*

signatures M ::= d | l | �

messages m ::= f | l | �

Figure 5: Point Cut Syntax, CG, for MG

3.1 AspectJ
In this section, we use an instance of ςasp to model all of

the aspect-oriented features of AspectJ [3], including open
classes (in Section 3.1.2) and all relevant point cut descrip-
tions (in Section 3.1.1).

We define a general point cut description language, MG =
〈CG,matchG〉, in which the point cut descriptions are boolean
combinations of queries over the elements of tuples from J .
The syntax, CG, is given in Figure 5. For brevity, the formal
definition of matchG is omitted here in favor of an intuitive
explanation [6].

• A Val, Ivk, or Upd point cut matches any join point
of the corresponding kind.

• A k = k point cut matches any join point whose label
or functional constant is k.

• A S = S point cut matches any join point whose target
value has the signature S.

• A K ∈ r point cut matches any join point whose eval-
uation context is described by the regular expression
r. In the regular expressions the symbol ‘�’ is a wild-
card, matching any evaluation step, signature, label,
or functional constant, depending on the context.3

• A ¬pcd point cut matches any join point that is not
matched by the point cut pcd .

• A pcd1 ∧ pcd2 point cut matches any join point that is
matched by both pcd1 and pcd2.

• A pcd1 ∨ pcd2 point cut matches any join point that is
matched by either pcd1 or pcd2 (or both).

A few details of AspectJ are abstracted away in our model,
but this does not impact its utility for theoretical work. Be-
cause of the “classless” and functional nature of our calculus,
our model omits the class-based and imperative features of
AspectJ. Also our calculus does not include a module sys-
tem, so any references to Java packages are omitted from
our model.

Several point cut descriptions in AspectJ match based on
an object’s type, given as a class or interface name, commen-
surate with Java’s by-name typing discipline. Like Abadi
and Cardelli, we use the set of labels appearing in an object
to represent the object’s type [1, pp. 79–92].

3Our use of regular expressions for matching the evaluation
context is motivated by Sereni and de Moor [15].

6

Table 1: Modeling primitive AspectJ point cuts

AspectJ Point Cut Modeled In ςasp(MG)
call(void Point.pos()) Ivk ∧ S = {n,pos} ∧ k = pos
call(Point.new()) Val ∧ S = {n,pos}
execution(void Point.pos()) Val ∧ K ∈ ib({n,pos}, pos)�*
get(int Point.n) Ivk ∧ S = {n,pos} ∧ k = n
set(int Point.n) Upd ∧ S = {n,pos} ∧ k = n
adviceexecution() K ∈ �*(va + ia + ua)�*
within(Point) K ∈ ib({n,pos}, �)�*
withincode(Point.pos) K ∈ ib({n,pos}, pos)�*
cflow(Point.pos) K ∈ �*ib({n,pos}, pos)�*
cflowbelow(Point.pos) K ∈ �* � ib({n,pos}, pos)�*
this(Point) K ∈ ib({n,pos}, �)�*
target(Point) S = {n,pos}

3.1.1 Point Cut Descriptions in AspectJ
AspectJ allows advice to be applied using an extensive

point cut language. We have already shown how to model
before, after and around advice (in Section 2.1.5). In this
section we survey AspectJ’s primitive point cut descriptions.
For each, we show how it can be modeled in ςasp(MG).

Table 1 lists all of the AspectJ primitive point cut descrip-
tions that may be sensibly modeled in ςasp(MG). The first
column gives an example of each point cut in AspectJ; the
last column gives a ςasp(MG) model of the example.

The call join point for methods in AspectJ refers to the
point in client code immediately before control passes to
the invoked method. This point is analogous with the step
in Red Sel 0 and 1 immediately before a method body is
reduced. When reducing the method invocation [n=ς(y)0,
pos=ς(p)p.n].pos the join point used for advice lookup in
Red Sel 0 and 1 is 〈Ivk,K, {n,pos}, pos〉. In MG, the point
cut description Ivk ∧ S = {n,pos} ∧ k = pos, shown in the
table, matches this join point. Any advice on this point cut
description would cause Red Sel 1 to be used instead of
Red Sel 0, thus triggering the evaluation of the advice at
the appropriate step to model the call join point for methods.
Because ςasp(MG) does not include explicit constructors, the
call join point for constructors in AspectJ is modeled by a
point cut descriptor on object creation.

The execution join point for methods in AspectJ refers to
the point in client code when an invoked method begins ex-
ecuting. In ςasp(MG), when a method body is evaluated the
reduction rules recurse on the target sub-term until a value,
either an object or basic constant, is reached. This value is
then used by all the subsequent reduction steps in the eval-
uation of the method body. Within the evaluation of the
method body, only this first term will match the point cut
description, Val ∧ K ∈ ib({n,pos}, pos)�*, shown in Table 1.

We use the same model for AspectJ’s get point cut de-
scription as for call, because methods and fields are unified
in the object calculus. We model set like get, but use the
update, instead of invocation, reduction kind.

AspectJ’s adviceexecution point cut matches any join point
where advice is executing. Our model for this in ςasp(MG)
is straightforward: if advice is executing, then one of va, ia,
or ua must appear in the evaluation context.

The two AspectJ point cuts within and withincode match
any join point associated with the code statically appearing
in a given class or method, respectively. We model this in

ςasp(MG) by checking for the evaluation of the appropriate
method body in the evaluation context. For within(Point), if
ib({n,pos}, �) is at the head of the evaluation context, then
the body of some method (note the wildcard) defined in a
point object is being reduced. Furthermore, no code defined
outside of such a method has been called, otherwise the ib
term would not be at the head of the evaluation context.
The model for withincode is similar, but a specific method
is named instead of using a wildcard.

The cflow point cut in AspectJ matches any join point
when the given method has begun executing and not yet
finished. For the given example, this corresponds to the sit-
uation in ςasp(MG) where the ib term matching the method
is somewhere in the evaluation context.

We model cflowbelow similarly, but we require, with the
extra � before the ib, that the context record something after
the given joint point. This translation considers even join
points in the execution of advice to be “below” the given join
point. Another possible interpretation for “below” would
be to consider code in the advice to not be “below” the
joint point; only code declared in a base term would be
consider “below” the advised method. For our example,
this alternative interpretation would be modeled:

K ∈ �*ib(�, �)ib({n,pos}, pos)�*

AspectJ’s this and target point cuts come in two forms.
In the first form, the point cut’s argument is a type name.
We can model this form in ςasp(MG) as shown in Table 1.4

In the second form of these point cuts, the argument is a
variable that is bound for use in the advice body. The se-
mantics of ςasp(MG) always substitutes the target object
for a variable in the advice body, implicitly supporting the
variable-binding form of the target point cut. On the other
hand, the variable-binding form of the this point cut cannot
be modeled in ςasp(MG) without changing the semantics,
because advice might bind to some join point in the body
of a method after substitution of the “this” object for the
self parameter of the method. In such a case, because the
semantics do not track the “this” object, there is no way to
bind it in the advice body. However, it would be straight-
forward to add support for a variable-binding form of the
this point cut. For example, the semantics could record the
“this” object within the ib(S, k) evaluation context entry.

We omit some AspectJ point cuts from Table 1 that can-
not be sensibly modeled in ςasp(MG). Some of these are
omitted because they refer to base-language features that
are not present in the object calculus:

• the execution and withincode point cuts when applied
to constructors,

• the initialization, preinitialization, and staticinitialization
point cuts for field initializers,

• the handler point cut for exception handling, and

• the args point cut for binding method arguments other
than the target object

The only other AspectJ point cut that we omit is the if
point cut. This point cut allows programmers to evaluate
boolean-valued expressions during join point matching. The

4In a language with neither subtyping nor subclassing,
this(T) is equivalent to within(T).

7

point cut description language MG does not readily model
this, but we could define one that does. The simplest way
of doing so would be to have a point cut description that
takes a function as a parameter. The point cut description
would match if the function applied to the current join point
evaluated to true.

Our model of AspectJ’s point cut descriptions is direct.
All of the models presented in Table 1 can be generated by
context-free translations from the AspectJ versions.

3.1.2 Open Classes in AspectJ
Open classes allow a programmer to extend the set of

methods that may be invoked on an object without changing
the code of the original class of that object [5, 13]. AspectJ
allows a programmer to declare an additional supertype for
a given type and add new methods to a class. Because
ςasp(MG) does not include declared subtyping, there is no
direct analogue for the former feature. For the latter fea-
ture, advice on object creation allows us to create a wrapper
object that adds methods to existing objects.

Consider the following AspectJ declaration which adds a
color field to all Point class instances:

int Point.color = 0;

A model of this in MG uses two pieces of advice:

(Val ∧ S = {n,pos}) � ς()
[orig=ς(s)proceedVal(),
n=ς(s)s.orig.n,
pos=ς(s)s.orig.pos, color=ς(s)0]

(Upd ∧ S = {orig,n,pos,color} ∧ (k = n ∨ k = pos))�
ς(t,r) [orig=ς(s)proceedUpd(t.orig, ς(t)r),

n=ς(s)s.orig.n,
pos=ς(s)s.orig.pos, color=ς(s)t.color]

The first piece of advice is applicable to every creation of
a point in the base program. The original point object is
stored in the field orig of the wrapper object. Methods n
and pos redirect selection of these methods on the wrapper
object to the appropriate methods of the original object.
Finally, the color field exists only in the wrapper object.

But this first piece of advice is not the whole story. The
second piece is needed to deal with updates to the n field of
a point object. For example, without advice the term:

([n=ς(y)0, pos=ς(p)p.n].n ⇐ ς(y)2).pos

reduces to 2. However, with just the first piece of advice, the
term reduces to 0. This is because the assignment to n up-
dates the wrapper object, replacing the redirection method:

[orig=ς(s)ΠVal{|•, [n=ς(y)0, pos=ς(p)p.n]|}(),
n=ς(y)2, // no longer redirects to orig
pos=ς(s)s.orig.pos, color=ς(s)0]

The second piece of advice avoids this problem by redi-
recting updates to point, so that they update the original
point object within the wrapper.

We directly model open classes using ςasp(MG). The set
of labels in the original object and the methods to be added
are all that is needed to generate the necessary advice.

3.2 HyperJ
With ςasp(MG) we can also model “multi-dimensional sep-

aration of concerns”, as embodied in HyperJ [14]. Contrary
to AspectJ, which divides a program asymmetrically into
base language terms plus aspects, HyperJ uses a set of mod-
ules, called “hyperslices”, each of equal standing, along with
a module-interconnection language that specifies how these
hyperslices should be statically composed to form a single
module. In ςasp(MG), we model hyperslices using advice,
maintaining the symmetry of the hyperslices. We also model
hyperslice composition with advice.

Suppose we have two hyperslices. One defines a point
object whose pos method multiples the position before re-
turning it. The other defines a multiplier object. We use
advice on basic constants to model these two hyperslices:

(Val ∧ S = PointSlice) � ς() [n=ς(y) 0,
pos=ς(p) p.n × p.mult,
mult=ς(y) y.outer.mult,
outer=ς(y) y]

(Val ∧ S = MultSlice) � ς() [mult=ς(y) 1,
outer=ς(y) y]

To represent an abstract method, m, in a hyperslice, we
use m = ς(y)y.outer.m, as in the mult method of PointSlice.5

Now suppose we want to compose these two hyperslices to
form a module where the mult method of the second hyper-
slice replaces the abstract mult method of the first hyper-
slice. We model such a composition by defining the following
three pieces of advice, using MG:

(Val ∧ S = MultPoint) �

ς() [slice1 = ς(s) PointSlice,
slice2 = ς(s) MultSlice,
n = ς(s) (s.slice1.outer ⇐ s).n,
pos = ς(s) (s.slice1.outer ⇐ s).pos,
mult = ς(s) (s.slice2.outer ⇐ s).mult]

Upd ∧ S = {slice1,slice2,n,pos,mult} ∧ (k = n ∨ k = pos) �

ς(t,r) [slice1 = ς(s) proceedUpd(t.slice1,ς(t)r),
slice2 = ς(s) t.slice2,
n = ς(s) (s.slice1.outer ⇐ s).n,
pos = ς(s) (s.slice1.outer ⇐ s).pos,
mult = ς(s) (s.slice2.outer ⇐ s).mult]

Upd ∧ S = {slice1,slice2,n,pos,mult} ∧ k = mult �

ς(t,r) [slice1 = ς(s) t.slice1,
slice2 = ς(s) proceedUpd(t.slice2, ς(t)r),
n = ς(s) (s.slice1.outer ⇐ s).n,
pos = ς(s) (s.slice1.outer ⇐ s).pos,
mult = ς(s) (s.slice2.outer ⇐ s).mult]

The first advice causes the basic constant MultPoint in
expressions to be replaced with an object that is comprised
of the two hyperslices, plus methods to direct selection on n
and pos to the first hyperslice, and selection on mult to the
second hyperslice, after first setting the outer field of the slice
appropriately. The two pieces of update advice are identical
in design to that used for open classes in Section 3.1.2.

With this advice, we can show results like [6]:

ε` ((MultPoint.n⇐ς(y)4).mult⇐ς(y)3).pos ; 12

5Invoking mult on a PointSlice without providing a non-
abstract implementation of mult would result in an infinite
regress.

8

We directly model HyperJ using ςasp(MG). The use of
advice on basic constants models the static nature of Hy-
perJ’s compositions. The advice representing compositions
could be generated by a context-free translation; all that is
needed is a mapping indicating from which slice each mem-
ber of the composed object comes. It is straightforward to
define advice to model more complicated compositions.

3.3 Adaptive Methods
In adaptive methods, a traversal strategy abstractly spec-

ifies a walk of the object graph of a program [11]. Reflection
is used to reify this abstract strategy into an actual walk
of the graph at run-time. To model adaptive methods with
ςasp we need a point cut description language with reflec-
tive capabilities; specifically, we need to be able to find the
set of labels of an object o, and invoke those labels that
return the sub-objects of o. We do this by establishing a
convention that labels for fields begin with “f ” and defining
a point cut description language, MR = 〈CR,matchR〉, that
extends MG with a mechanism to quantify over the fields
of an object [6]. We sketch the mechanism here.

All point cut descriptions in CG (see Figure 5) are valid
in CR. Additionally the suffix “·∀ l ∈ fieldsOf(S)” may be
added to any of CG’s point cut descriptions. This suffix
causes matchR to create a sequence of advice from a single
matching piece of advice. The generated sequence has one
element for each field in the target object of the join point.

For a point cut description without the quantifier suffix,
matchR is identical to matchG. For a point cut description
pcdG · ∀ l ∈ fieldsOf(S), matchR is defined as follows:

matchR(pcdG · ∀ l ∈ fieldsOf(S)� ς(−→y)b, 〈ρ,K, S, k〉) ={
• if matchG(pcdG� ς(y)b, 〈ρ,K, S, k〉) = •
〈ς(−→y)b1, . . . , ς(

−→y)bm〉 otherwise

where {l1, . . . , lm} is the set of field labels in S and each
bi is formed from b by first finding all occurrences of l as a
selection or update label, and then replacing them with li.

For example, given the advice:

Ivk ∧ k = print · ∀ field ∈ fieldsOf(S)�
ς(x) proceedIvk(x.field.print)

and the join point 〈Ivk, ε, {f left,f right,sum}, print〉, matchR

will return the sequence:

〈 ς(x) proceedIvk(x.f left.print),
ς(x) proceedIvk(x.f right.print) 〉

We model traversals by using update advice to walk the
object graph. Update advice has two parameters. We use
one parameter to track the root of the object (sub-)graph
to be traversed, using ςasp(MR)’s reflection to follow the
traversal strategy. We use the other parameter to hold a
visitor object for accumulating results. Details are available
in the companion technical report [6].

4. DISCUSSION AND FUTURE WORK
Filman and Friedman argue that the two essential fea-

tures of an aspect-oriented language are quantification and
obliviousness [7]. Quantification is the ability to specify that
a block of code is to be executed at multiple points in the
body of a program. Obliviousness is the property that the

base program need not explicitly mention aspect-oriented
code in order for such code to be executed.

Our calculus directly models quantification and oblivious-
ness. Quantification is modeled by allowing single pieces of
advice to bind to multiple join points. Obliviousness is mod-
eled by not requiring base program terms to explicitly men-
tion aspect-oriented code. Our model for AspectJ’s point
cuts, like the language itself, allows the base program to be
completely oblivious to the aspect-oriented code. Our model
for HyperJ, like the language itself, allows a hyperslice to
be oblivious to others’ implementations, but requires non-
oblivious composition and client code. Similarly, our model
for adaptive methods requires the base program to invoke
the traversal, but allows it to be oblivious to the actual ob-
ject graph structure. The correspondence in obliviousness
properties between our models and the actual languages sup-
ports our contention that ςasp(MG) directly models these
languages.

Some have argued that obliviousness means that a base
program must not reference aspect-oriented code and that
one should be able to reason about the base program without
considering the aspect-oriented code.6 We take exception to
this second claim and have previously argued, albeit infor-
mally, that it may be necessary to sacrifice obliviousness in
order to modularly reason about aspect-oriented programs
[4, 18]. We plan to formally study the reasoning properties of
aspect-oriented languages in an attempt to understand the
relationship between obliviousness and modular reasoning.
Because ςasp is explicitly aspect-oriented, directly modeling
both quantification and obliviousness, it will serve well for
our planned study.

5. RELATED WORK
Masuhara and Kiczales also examine models for HyperJ,

adaptive methods, and AspectJ’s join points and open classes
[12]. They develop a series of interpreters, written in Scheme,
for subsets of each aspect-oriented language and compare
and contrast those interpreters. However, because they ab-
stract away fewer features of the languages, and because
their interpreters are Scheme programs, their approach is
less amenable to formal study, compared to ςasp .

Walker, Zdancewic, and Ligatti present a core aspect-
oriented calculus based on the simply-typed lambda calculus
[17]. However, their calculus is completely unoblivious—
sub-terms must be explicitly labeled in order for advice to
be applied to those terms. The paper demonstrates how
an aspect-oriented variant of ML, MinAML, which is obliv-
ious, may be translated into the core calculus. The lack of
any obliviousness in MinAML makes it less suitable than
ςasp for studying the impact of obliviousness properties on
reasoning.

Walker, Zdancewic, and Ligatti [17, §3.2] also extend their
core calculus with objects à la Abadi and Cardelli. However,
the resulting calculus is significantly more complex than ςasp ,
as it includes the simply-typed λ calculus, the ς calculus, and
the label system for attaching advice. It is not clear that
their calculus can be used to model open classes, HyperJ,
or adaptive methods, because it lacks the update advice we
rely on to model of these languages.

6We have not seen published arguments for this position,
but we have heard it expressed at Foundations of Aspect-
Oriented Languages 2002 and 2003, and in conversations.

9

Jagadeesan, Jeffrey, and Reily present an aspect-oriented
calculus that is class-based and models multi-threaded pro-
grams [8]. They examine equivalence between aspect-orient-
ed programs in the calculus and the same programs trans-
lated into an object-oriented subset of the calculus. This
equivalence demonstrates the correctness of their transla-
tion algorithm. Although well-suited to this purpose, their
calculus is overly complex for our planned studies of rea-
soning properties. Their calculus only considers point cut
descriptions that are boolean combinations of call and exe-
cution join points.

Other formal semantics have been described with various
join point models. Wand, Kiczales, and Dutchyn give a de-
notational semantics for a first-order procedural language
with join points for procedure call and procedure and ad-
vice execution [19]. Lämmel gives an operational semantics
for an imperative object oriented language with join points
for method calls [10]. These languages only model a small
fraction of AspectJ’s join points, and, unlike ςasp , they do
not model open classes, HyperJ, or adaptive methods.

6. CONCLUSION
In this paper we have described the parameterized aspect

calculus, ςasp(M), for modeling aspect-oriented languages.
We have demonstrated how ςasp(M) can be used to directly
model several such existing languages including key features
of AspectJ, HyperJ, and adaptive methods. These models
encompass a wide variety of aspect-oriented features, while
maintaining the quantification and oblviousness properties
of the original language. Because of the directness of its
modeling and the preservation of key properties, ςasp(M)
provides an excellent basis for studying the formal properties
of aspect-oriented languages.

7. ACKNOWLEDGMENTS
The work of Clifton and Leavens was supported in part

by the US National Science Foundation under grants CCR-
0097907 and CCR-0113181.

8. REFERENCES
[1] M. Abadi and L. Cardelli. A Theory of Objects.

Monographs in Computer Science. Springer-Verlag,
New York, NY, 1996.

[2] M. Akşit, editor. Proc. 2nd Int’ Conf. on
Aspect-Oriented Software Development (AOSD-2003).
ACM Press, Mar. 2003.

[3] AspectJ Team. The AspectJ programming guide.
Available from http://eclipse.org/aspectj, Oct.
2003.

[4] C. Clifton and G. T. Leavens. Obliviousness, modular
reasoning, and the behavioral subtyping analogy.
Technical Report 03-01a, Iowa State University,
Department of Computer Science, Mar. 2003.

[5] C. Clifton, G. T. Leavens, C. Chambers, and
T. Millstein. MultiJava: Modular open classes and
symmetric multiple dispatch for Java. In OOPSLA
2000 Conference on Object-Oriented Programming,
Systems, Languages, and Applications, volume 35(10)
of ACM SIGPLAN Notices, pages 130–145, New York,
Oct. 2000. ACM.

[6] C. Clifton, G. T. Leavens, and M. Wand. Formal
definition of the parameterized aspect calculus.

Technical Report 03-12b, Iowa State University,
Department of Computer Science, Nov. 2003.

[7] R. E. Filman and D. P. Friedman. Aspect-oriented
programming is quantification and obliviousness. In
M. Akşit, S. Clarke, T. Elrad, and R. E. Filman,
editors, Aspect-Oriented Software Development.
Addison-Wesley, Reading, MA, to appear.

[8] R. Jagadeesan, A. Jeffrey, and J. Reily. A calculus of
untyped aspect-oriented programs. In L. Cardelli,
editor, ECOOP 2003, European Conference on
Object-Oriented Programming, Darmstadt, Germany,
volume 2743 of Lecture Notes in Computer Science,
pages 54–73. Springer-Verlag, New York, NY, 2003.

[9] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of
AspectJ. In J. L. Knudsen, editor, ECOOP 2001 —
Object-Oriented Programming 15th European
Conference, Budapest Hungary, volume 2072 of
Lecture Notes in Computer Science, pages 327–353.
Springer-Verlag, Berlin, June 2001.

[10] R. Lämmel. A semantical approach to method-call
interception. In G. Kiczales, editor, Proc. 1st Int’
Conf. on Aspect-Oriented Software Development
(AOSD-2002), pages 41–55. ACM Press, Apr. 2002.

[11] K. Lieberherr, D. Orleans, and J. Ovlinger.
Aspect-oriented programming with adaptive methods.
Commun. ACM, 44(10):39–41, Oct. 2001.

[12] H. Masuhara and G. Kiczales. Modeling crosscutting
in aspect-oriented mechanisms. In ECOOP
2003–Object-Oriented Programming 17th European
Conference, pages 2–28. Springer-Verlag, July 2003.
Lecture Notes in Computer Science, Volume 2743.

[13] T. Millstein and C. Chambers. Modular statically
typed multimethods. In R. Guerraoui, editor, ECOOP
’99 — Object-Oriented Programming 13th European
Conference, Lisbon Portugal, volume 1628 of Lecture
Notes in Computer Science, pages 279–303.
Springer-Verlag, New York, NY, June 1999.

[14] H. Ossher and P. Tarr. Using multidimensional
separation of concerns to (re)shape evolving software.
Commun. ACM, 44(10):43–50, Oct. 2001.

[15] D. Sereni and O. de Moor. Static analysis of aspects.
In Akşit [2], pages 30–39.

[16] D. B. Tucker and S. Krishnamurthi. Pointcuts and
advice in higher-order languages. In Akşit [2], pages
158–167.

[17] D. Walker, S. Zdancewic, and J. Ligatti. A theory of
aspects. In Proceedings of the ACM SIGPLAN
International Conference on Functional Programming
(ICFP ’03), pages 127–139. ACM Press, Aug. 2003.

[18] M. Wand. Understanding aspects: extended abstract.
In Proceedings of the eighth ACM SIGPLAN
international conference on Functional programming,
pages 299–300. ACM Press, 2003.

[19] M. Wand, G. Kiczales, and C. Dutchyn. A semantics
for advice and dynamic join points in aspect-oriented
programming. ACM Trans. Prog. Lang. Syst., 2003. to
appear.

10

