Failure Detectors for Distributed Systems

Anurag Aggarwal Diwaker Gupta
Department of Computer Science & Engg. Department of Computer Science & Engg.
Indian Institute of Technology Indian Institute of Technology
Kanpur - 208016 Kanpur - 208016
Email: anuragag@cse.iitk.ac.in Email: gdiwaker@cse.iitk.ac.in

Abstract—Failure detectors are an integral part of any fault- research has focused on solving Consensus in partially syn-

detectors are based on simple timeouts. The timeout period is a Most of these models use a failure detector for identifying

critical factor for the performance of a failure detector. In this

. . fail r . Thus we find that the failur rs ar
paper we briefly look at the classes of failure detectors that have ailed processes us we find that the failure detectors are

been proposed in theory and some of their implementations. We central to the paradigm of Distributed Computing. In this paper
then study the Quality of service(QoS) of failure detectors. We we will look at the impact of timeout value on the performance
first look at some QoS metrics that have been proposed and how of the failure detectors and how to choose a timeout value to

they relate to the performance of the failure detector. Then we satisfy the given QoS constraints.

survey recent propositions that try to find optimal timeout values

. . i Thi r is organized in 7 tions. tion Il di
which satisfy some QoS constraints S paper is organized sections. Sectio discusses

the concept of Failure Detectors along with the some imple-

. INTRODUCTION mentation issues. In section |1l we take a look at the QoS for

Designing fault-tolerant distributed applications has bedtailure Detectors and how do they affect the performance of
the goal of application developers almost ever since tlige failure detectors. In section IV and section V we discuss
inception of the area of distributed systems but it has ntwo approaches for finding the optimal timeout value given
turned out to be easy to do so. Developing a failure detecswme parameters. In section VI we briefly discuss some other
which can identify the faulty processes seems to be the fiegiproaches and finally section VII gives some concluding
step toward building such a system. Failure detectors haenarks and future work.
also gained importance in recent times due to their application

. . , i [1. FAILURE DETECTORS
in solving problems likeConsensusand Atomic Broadcast

Consensus imsynchronous systermghere there is no bound A Theoretical Concepts

on the message delay is an attractive model because it hashe unreliable failure detectorsntroduced in [2] run as
simple semantics and is more general than the synchronausnodule with each process and return a list of suspected
model. But according to the FLP result [1] it is known thaprocesses. Depending upon the properties the failure detectors
Consensus can't be solved in an asynchronous system subijesd to satisfy, they have been classified into different classes.
to even a single failure. The intuition behind this result is that @ut of these classes the ones that are of interest@eand

is impossible for an application to distinguish between a “slowS. &P includes all the failure detectors that after some un-

process” and a “failed process”. To circumvent this resuknown but finite time,make no mistake i.e. the list of suspects

includes all the crashed processes and no correct procesaemessage from a suspected process then it removes it from
OS is the weakest failure detector to solve Consensus probléime suspected list and starts monitoring it again(figure 1).

in asynchronous distributed systems [3]. (Failure Detectors

Suspect q
with different aims and properties are presented in [4]) Timeout T /
Garg and Mitchell [5] introduced a class of failure detectors - [' ---- " """ 1‘ -
which can actually be implemented in asynchronous systems. Process -
But apart from that there are not many useful failure detectors Are you ali¥e? Yes c

that can be implemented in asynchronous systems because

. : : - P
they would otherwise contradict the impossibility result [1]. S Failure

So additional assumptions about the underlying system are

. . : Fig. 2. Pull Model
taken which can be used to implement the class of failure 9 ui Mode

detectors in which we are interested.
2) The Pull Model: In the Pull model, monitored com-

B. Implementation Issues ponents are passive while the monitor or failure detector is

active. The monitor sends liveness requésis(you alive?”

The implementation of failure detectors is generally based . .
messages) periodically to monitored components. If a mon-

on timeouts. There are twibow policiesbetween the failure . . . L :
itored component replies, it means that it is alive. When

detectors and monitored components which abstract behaviors _ . .
the monitor does not receive a reply from the monitored

of monitoring protocols used by failure detectors to monitor - L . . .
component within a certain time interval(timeout) it starts

system components and the way the information about com- . . ,
suspecting the monitored component(figure 2).

ponent failures is propagated in the system [6]. These models)
3) Comparison of the two approache3he Push model
are known agpushand pull models. .]
requires that only the monitored component send messages

Suspect q to the monitor whereas in Pull model both the monitor
Timeout T

____l___.l._______:

> Push model is more efficient as it involves onbpne-way
Process p
I'm alive/ I'm a%m:«%

Process q T not send the liveness request regularly. Instead it can choose
Failure

and monitored component send messages. So it appears that

messages whereas Pull model requires-waymessages. But

the argument in favor of Pull model is that the monitor need

to do it when it really needs to know whether the process

Fig. 1. Push Model is alive. Also there are variations of Pull model that try to
make it even more efficient. Felber et al. [6] discustazay

1) The Push Modelin the Push model, monitored compo-ailure detection protocol in which processes monitor each
nents are active and the monitor (failure detector) is passiwgher by using application messages whenever possible to get
Each monitored component periodically sends heartbeat megormation on process failures. This protocol requires that
sages to the failure detector which is monitoring the processmch message be acknowledged. In the absence of application
The failure detector suspects a process when it does not recengssages two processes control messages are used instead.
a heartbeat message from the monitored component withifflaus this protocol tries to reduce the number of messages

certain time interval (timeoul). If the failure detector receives exchanged but its performance depends largely on the nature

of the application. There have also been attempts to usesuspicions. In other words we need to quantify the properties
combination of the two models [6] to have the good featur@s speedand accuracy of failure detectors. Note that the

of both the models. speed of a failure detector is with respect to crashed or failed
processes whereas the accuracy is with respect to correct

I11. QOS FORFAILURE DETECTORS
processes. A failure detector’s speed is easy to measure. It is

. the time elapsed from the instant when a processashes
P down to the time when the failure detector starts suspecting
trust | trust permanently. This QoS metric is called tlietection time
- T (figure 3). Quantifying theaccuracy of failure detectors is
FDatq : suspect suspect more difficult. Consider the scenario in which a failure detector
\ Ty | at procesg; checks if the process is dead or not. Supposing
| | that p is alive, a natural way of quantifying the accuracy of
Fig. 3. Detection timeT failure detector at; is the probability that it correctly reports

that the procesp is alive when queried randomly. This QoS

Until very recently research on failure detectors was mainlr% . . .
etric is called thequery accuracy probabilityBut consider

concerned about the@ventualbehavior(e.g. a failure detector , i ,
the two failure detectors shown in the figure 5. Both of them

will eventually detect a failed process). These notions as- .
have a query accuracy probability of 0.75 htifD; makes
sisted in gaining a clear understanding of the implementable L
mistakesless frequentlythan F'D,. For some applications the
failure detectors in asynchronous systems which have no) i) i
rate of making mistakes might be more useful. So the metric
timing assumptions. However many applications have some) i i i)
g P v app needed to quantify this rate of making mistakes is termed as
timing constraints and for these applications determining the . . .)
mistake rat@figure 6). But again note that this metric alone
eventual behavior is not good enough. For example, if an . . i
Is not sufficient to characterize accuracy of failure detector.
application needs to solve consensus within a minute then) _
In figure 6 the two failure detectors have the same mistake
a failure detector, which gives a guarantee of detecting a ,)
rate butF' D, has a more desirable property of shonistake
crasheventually is useless for the application. Due to these = . , i) i
durationi.e. F'D, corrects its mistake earlier thanD, . It is
application requirements failure detectors must satisfy some .)
clear from the above examples that the metrics used to quantify
uality of Service(QoS) constraints. . .
Q y (QoS) failure detectors is not an easy task and depends largely on

up the requirements of the application. In the following section
p we give some more QoS metrics that are of interest to the
- trust application developers in general.
FDatq suspect | suspect , i
— v \
. 12 12 12
| | Fiy
- Tyr . L L LI
pps 3 & 3. :)

Fig. 4. Mistake duratio’y; and mistake recurrence tini,; p “ I_| |_| !_| [J |_| |_| U ” |_| |_| |_|

The QoS metrics should,in general, specify (a)Hfast it
Fig. 5. FD; and FDy have same query accuracy probability of 0.75, but

detects a failure and (b)hogood it is at avoiding the false the mistake rate of"Ds is four times that off"Dq

n

FD; 2 2 2

FD

Fig. 6.
accuracy probability o' D, and F'D5 are .75 and .50 respectively

is in steady state.

2) Some metrics for QoS:

« Detection timg(Tp):As described earlier in this section

FD; and FDy have same mistake rate of 1/16, but the query

The QoS metrics are conditional upon the requirements of

the application and the scenario in which we are interested in.

We will take a look at two different settings and the metrics

relevant in those settings.

A. QoS Metrics considering a pair of processes

Chen et al.[7] have given an extensive list of metrics for

QoS of complete and efficient failure detectors. Although they ,

have a considered a model consisting of two procegsasd

q interacting with one another, the metrics are relevant in most

of the scenarios. We will first take a look at the failure detector

model and the metrics proposed by them.

1) The failure detector modelConsider a system of two

processe andq with a failure detector at procegamonitor-
ing p. Also assume that during this period the procesoes

not crash.

At any instant of time the failure detector can either suspecte

(S) or trust(l") the proces. A transition occurs when the

output of the failure detector changes. SAtransition occurs

when the output of failure detector changes frdmto S.

Similarly, a T-transition occurs when the output of failure

detector changes fromff to T'. It is also assumed that there

are finite number of transitions in a given time interval. Only

those failure detectors are considered which eventually reach

steadystate. By this we mean that after running for some

time the behavior of the failure detector is not dependent one

the initial conditions anymore. In other words the probability

law governing the behavior of the failure detectors does not

change over time once it reaches the steady state. The metrics

given below refer to the state of the failure detector when it

4

this is a measure of thepeedof a failure detector.
Mathematically,Tp is a random variable representing the
time that elapses from the momeantrashes to the instant
when the final S-transition takes place and there are no
transitions afterwords(figure 3). If there is no such final S-
transition therl'r=oc;If the transition takes place before
p crashes theff’r=0.

Mistake recurrence time(T, z): This metric is a measure
of the accuracy of the failure detector. Mathematically,
Ty r is a random variable representing the time that
elapses from an S-transition to the next one(figure 4).
Mistake duration(7},):This is also an accuracy metric
for failure detectors. Mathematicallyf,; is a random
variable representing the time it takes from an S-transition
to the next T-transition (figure 4).

Average mistake ratg)\,):This measures the rate at
which a failure detectors makes mistakes,i.e. it is the
average number of S-transitions per time unit. It is
important for the applications where each failure detector
mistake(each S-transition) is costly.

Query accuracy probability(P4):This is the probability
that the failure detector’s output is correct at a random
time. It is important for applications which query the
failure detectors at random times

Good period duration(7;): This measures the length of a
good period- period in which the failure detector makes
no mistakes. Mathematicallyf; is a random variable
representing the time that elapses from a T-transition to
the next S-transition.

Forward good period duration(Tz¢):For some short
lived applications it might be useful if it can complete
its work in the good period starting from a random point
in the good period. Mathematicallfz¢ is defined as a

random variable representing the time that elapses from

a random time at which trustsp, to the time of the next so that we can identify the sets of independent metrics and
S-transition. just monitor those. The relationships are also dependent on

] o] the network model considered. Chen et. al [7] have shown
B. QoS Metrics for distributed failure detectors) =
that average mistake rate, query accuracy probability, good

Gupta et al.[8] have proposed a model consisting of diB?ariod duration and forward good period duration can be

tributed failure detectors running ongeoup of uniquely iden- expressed in terms of detection time, mistake recurrence time

tifiable processes, which are subject to failures and recover;leerﬁ]I mistake duration. So the three metrics detection time
and communicate over an unreliable network. We will fIrSllhistake recurrence time and mistake duration are chosen as

look at this model in detail and then go over some fe'evafﬁe primary metrics Another reason for choosing them as the

metrics in this case. primary metrics is that if one failure detectBD; is better that

1) Failure detector model:The model here consists of 8another failure detectaF' D, in terms of these three metrics

largegroup of » members. Each member has a unique identififo, it would also be better in terms of the other metrics. So

and is known to all other members. Members may suffer cragly, comparison of two failure detectors becomes easier if we

failures and recover subsequently. The probability of failure %oose the above stated primary metrics.
a random group member at a random time is givem hyAlso

the probability of a message getting lost due to some network
IV. QOSFOR FAILURE DETECTORS FOR A PAIR OF

problem is given byp,,;.Also ¢; andg,,,; refer to (1ps) and
PROCESSES

(1-pnu) respectively.

2) Some QoS metrics he requirements of efficiency of the The model proposed by Chen et al.[7] was discussed in the
failure detector need to specified by the application in teragction 111. We now take a look at the failure detector protocol
of the following parameters: satisfying the QoS constraints provided by them.

o SpeedEvery member failure is detected Bpmenon-

faulty group member within7Z time units after its A Problem with the common Push protocol

occurrence] > worst-case message round trip time)

« Accuracy:At any time instant, for every non-faulty mem- The Push protocol discussed in section Il has two problems,

ber M, not yet detected as failed, the probability that ngne regarding its accuracy and another related to its detection

other non-faulty group member will (mistakenly) detectme- Consider thei-th heartbeat message:; sent from

M, as faulty within next7 time units is at least (1- process to process;. The timer form; is started as soon as

PM(T)). soon asmn;_1 is received by the procegs This would mean

« Network load:Theworst-case network load &f a failure that the timeout form; is dependent not only on the delay

detector protocol is the maximum number of messaggg m; itself but also on the delay of message-, which is

transmitted by any run of the protocol within any timecIearIy not desirable. The other problem is in the case when
interval of length7, divided by 7. This loadL should a process sends a heartbeat just before crashing. If the delay
be minimum or optimal. of this message ig and the timeout is'O then the worst
case detection time for the algorithm ds7°0O. Dependency
C. Choice of Primary Metrics of detection time on message delay is not desirable as this can
The metrics that are of importance are not always indepdve arbitrarily large. The proposed algorithm does away with

dent. We need to determine the relationship between metribis dependencies.

B. The Probabilistic Network Model 2) Forany:i > 1,letp;(x) be the probability thag does not

We assume that the link connecting procegsesdq does receive messagen;,; by time r; + z, for everyj > 0

not duplicate messages but can delay or drop some messages. and everyz > 0; let po = po(0).

The message loss and message delay are characterized by ("ﬁ For anyi > 2,let o be the probability thay receives

message loss probability;, and (2) a random variabld), messagen;— before timer;

denoting the expected delay of a message. Although the Iocalé') For anyi > 1,letu(z) be the probability thay suspects

clocks need not be synchronized but there should not be any P & timer +z, for everyz € [0, 7).

clock drift 5) For anyi > 2,let p, be the probability that an S-

transition occurs at time;.
C. The Algorithm Proposition
The monitored process periodically sends heartbeat mes- 1) k= [§/7].
sagesn,, ma, ms, ... tog everyn time units. Leto; denotethe 2) For allj > 0 and for allz > 0, p;(z) = pr + (1 —
send times of the messages. The monitoring process maintains py)Pr(D > § +x — jn).
the sequence;=o;+4 whered is a parameter of the algorithm. 3) ¢y = (1 —pr)Pr(D <+ 7).
Consider a time periodr],7;1). At time 7;, ¢ checks whether 4) For allz € [0,7), u(x) = H;?:O pj(x).
it has received a message; with j > 4. If it has theng trusts 5) ps = qo-u(0)
p throughout the intervald,r;11). If it does not receive any Properties of NFD-S
such message thenstarts suspecting. If a messagen; is 1) The detection time is bounded By < 6 + 7
received beforeri + 1 then ¢ starts trustingp till the time 2) The average mistake recurrence time is
7,41 otherwisep is suspected for the whole time interval. The
intuition behind the algorithm is that we want to consider only E(Tvr) = pﬂs
those messages which are sfitsh The detailed algorithm 3) The average mistake duration is

with parameterg andJ is called NFD-S and is given in figure

[u(z)dx
E(Th) = 207
7 (Tha) ps
Procesg: _ , E. Configuring the failure detector to satisfy QoS requirements
(1) for all ¢ > 1, at timeo; = i.n, send heartbeat:; to ¢;
Process;: We are given the QoS requirements of the failure detector

(2) Initialization: output= S}

(3) for all > 1, at timer; = o; + 6:
(4) if did not receivem; with j > 4 then output «— S; S algorithm so that the QoS are satisfied. We assume that (a)
{suspecp if no fresh message is receivéd

(5) upon receive message; at timet € [, 7;41) :
(6) if 7 > then output « T} message loss probability, and the distribution of message

and we need to compute the parametgendd of the NFD-

The local clocks of the processes are synchronized and (b) The

Fig. 7. Failure Detector algorithm NFD-S with parametgrand ¢ delaySPT(D = x) are given. The QoS requirements that are
specified are
1) TY, the upper bound on detection time
D. The QoS Analysis of the Algorithm 2) TL . the lower bound on mistake rate
Definitions 3) TV, the upper bound on the average mistake duration
1) For anyi > 1,let k£ be the smallest integer such that for Note that we would like to maximize the value p&atisfy-

all j > i+ k, m; is sent at or after time; ing the above requirements so that the number of messages

are minimized. To compute such a solution the following

procedure is followed:

3

Step 1 : Compute), = (1 — pr)Pr(D < T§), and letn,,.. =

gb TV If nimae = 0 then output “QoS cannot be achieved”

average mistake recurrence time obtained from the simulations

and stop; else continue. i °
Step 2 : Let ' i N
10 f’ ?
n L4
f(T]) - 1‘5 é 2‘5 :‘3 3.5
[TU] -1 . required bound T}, on the worst-case detection time
T pr + (1= po) Pr(D > T — jn)]

; L
Find the largest) < n,,q. such thatf(n) > Ty; . Such Fig. 8. The average mistake recurrence times obtained by : (a) simulating

. . . . e new algorithms NFD-S and NFD-E (shown by + axyl (b) simulating
ann always exists. To find this we can use some Slmplﬁe simple algorithm (shown by- and <>-), and (c) plotting the analytical

formula for E(Trg) of the new algorithm NFD-S (shown by -).

numerical method, such as binary search.

Step 3 : Setf = TY — n, and outputy and§ .
setting up the simulation environment and reasons for choosing

F. Dealing with more generic situation them are as follows -

In the previous section for finding the parametgrand 1) n =1 : To normalize the inter-sending time in both the

0 we needed to know;, probability of message loss and algorithms

Pr(D < x),the probability distribution of the message delays. 2) pr = 0.01 : Close to the value in practical systems

We can estimate the’r(D < z) in terms of p., V(D) 3) Pr(D <) =1—e/ED) forall ¢ > 0 : Character-

(Variance of message delays) andD) (Expected value of istic of message delays in many practical systems and

message delays). We can then go on to estimaie£ (D) also allows easy comparison of simulation results

and V(D) by looking at the history of the algorithm. This 4) E(D) = 0.02 : Again chosen close to the values in

way we don't need the prior information about the message practical systems (e.g. Internet)

behavior. The other assumption about the local clocks being , i ,
For comparing the results of simulation, the parameters of

synchronous still remains there. We needed this so as to set the . .
the algorithms are chosen such that they satisfy the same

receiving times; by shifting the sending times of heartbeat.To U o i i
boundT’y on the detection time. The following observations

do away with this assumption we can use éxpected arrival ,)
Y P e could be made from the simulation runs for valuesTdf

times of the heartbeats instead of the actual time. Here the .
ranging from 1 to 3.5:

assumption is that there is no clock drift which is a reasonable

,)) o The accuracy of the algorithms NFD-S and NFD-E are
assumption to make. The new algorithm is called NFD-U. If

)) very similar and the results of both the algorithms match
we don’t know theexpected arrival timesf the messages then

))) the analytical formula fotE' (T r) given earlier in this
we can estimate them as well using the history of message

. section
arrival times. The algorithm using thestimatesof expected

]]) o The simple algorithm as such does not have an upper
arrival times is referred to as NFD-E.
bound on detection but by a slight modification a bound
G. Results can be imposed. The idea is to haveuwoff timec such
Both the new failure detector algorithms proposed (NFD- that any heartbeat which is delayed by more than this time
S and NFD-E) and the simple algorithm commonly used is discarded. As a result the detection tiffie is bounded

were simulated. The values of the various parameters used for by 7O+ c. For the simulation two cutoff timesc:= 0.16

andc = 0.08 were chosen. The algorithms corresponding L* is thus the optimal worst-case network load required to
to them are referred to as SFD-L and SFD-S respectiveatisfy thecompletenesspeed accuracyrequirements.

The simulation results show that the accuracy of the nelle measure the performance of a protocol in terms of network
algorithms is better than both SFD-L and SFD-S. load, sub-optimality factorof a failure detector that imposes

a worst-case network load df is defined asLL—* For a simple

V. SCALABLE AND EFFICIENT DISTRIBUTED FAILURE heartbeat implementation, the sub-optimality factor varies as

DETECTOR 6(n) for any values ofp,,;,py andPM(T).

Gupta et al.[8] present a failure detector which is useful in , . :))
B. A Randomized Distributed Failure Detection Algorithm

distributed systems. Large scale distributed applications need

a light-weight failure detector algorithm which minimizes thgntegerr; /* Local period number */

network loadin addition to being efficient. These detectors _)
- Every T’ time units atM; :
need to have goodcalability so that they can be used even

if more nodes become part of the application. A distributd4 pr=pr+1 .
_ . 1. Select random membéd; from view
algorithm has been proposed that tries to balance the load orggng a pingll;, M;, pr) message td\/;

different machines and satisfies application-defined efficiency Wait for the worst-case message round-trip time for
_ an ack{;, M;, pr) message
constraints. We have already presented the model and the met- |t have not received an acR4;, M;, pr) message yet

rics that this model uses. Now we will discuss the algorithm Selectk members randomly from view
Send each of them a ping-red/{, M, pr) message

and the bounds that it satisfies. Wait for an ack (/;, M;, pr) message
until the end of periogr

A. Quantification of Network Load)
3. If have not received an aclk4;, M, pr) message yet

As discussed earlier the aim of this algorithm is to guarantee Declare}; as failed
that the worst case network load imposed is close to the apytime at)s; :

optimal, with equal expected load per member. In this regard) .
4. On receipt of a ping-reoqM,,,, M;, pr) (M; # M;)

a theorem relating the optimal worst case network ladds Send a pingl/;, M;, M,,, pr) message td/;
stated below: On receipt of an ack\{;, M;, M,,, pr) message
from M;

THEOREM : Any distributed failure detector algorithm for geng an ackit,,, M;, pr) message to received i,

a group of sizen(>> 1) that deterministically satisfies the .
) ~Anytime at); :
completenessspeed accuracyrequirements above, for given

values of7 and PM (T)(< pn), imposes a minimal worst- 5. On receipt of a pingX/,,, M;, M;, pr) message
.] i from memberi/,,
case network load (messages per time unit, as defined abovelReply with an ack i/,,,, M, M;, pr) message td\,,,

of:
M Anytime at)M; :

L* =n.
log(pm1). T

6. On receipt of a pingN/,,,, M;, pr) message from

Furthermore, there is a failure detector that achieves this memberi,,

. . L Reply with an ack ¥/,,, M;, pr) message td\,,
minimal worst-case bound while satisfying thbempleteness

speed accuracy requirements. (For proof of this theorenfFig. 9. Protocol steps at a group memies. Each message also contains
the current incarnation number of the sender.
refer to [8])

For this algorithm thespeedcondition is relaxed to detect

a failure within anexpectedrather than exact) time bound of

7 time units after the failure. It satisfies tkempletenesand
accuracyconstraints and imposes an equal expected load on
each group member. The worst case network |dadiffers

from the optimalL* by a sub-optimality factor independent 3)
of group sizen. The failure detector algorithm uses two
parameters: protocol period” (in time units) and integer
k, which is the size of failure detection subgroups. These
parameters are knowa priori to all group members. Here
the clocks need not be synchronized but should not have any

drifts.

The algorithm is formally described in figure 9. At the start
of a protocol period of lengtti’ a member); selects a
random member, say/;, and sends a ping message to itMf
does not receive a replying ack frakd; within some time-out
(determined by the message round-trip time), whick«isT,
it selectsk members at random and sends to each a ping-
req message. Each of the non-faulty members among these
which receives the ping-req message subsequently pifigs
and forwards the ack received fraMd;, if any, back to};. In
the protocolk random members are chosen to send a ping to
M; rather than sending repeat ping messages so that if ther
are different message loss probabilities at different membe

they get evenly distributed out.

This gives us

PM(T)
ar-(1=q2,).

log| 7]
eIf —1

log(1 —qf.qfnl)

The sub-optimality factor is given by
L _ f(pfapml)
I+ g(pfvpml) + —log(PM('T))
whereg(pys, pmi) IS :
log(pml> els

]

log(1—qp.qt,) et —1

and f(ps, pmi) is :

log(qp-(1— ¢2)-=55) et

Therefore, the sub-optimality factor is independent of
the number of group size:(>> 1). More analysis
shows that even the expected network load.]JE§an
be upper-bounded from the optimal by a factor that

is independent of the group size

D. Results

The analysis of the protocol shows that it imposes a worst-
ce:ase network load that differs from the optimal by a sub-
orpstimality factor greater than 1. For very stringent accuracy

requirements ® M (7T) as low ase—3Y), reasonable message

C. Analysis

1) The expected time between failure of membBéy and

its detection by some non-faulty member is

eds

Tetr — 1

/

1 —_—

B[T) =T+ =

So we can get a configurable value Bt as a function
of T, Py
2) LetC(py) =

elf

—ir—7- Then

~

PM(T) ~ q5.(1 — qly)-(1 — q5.G3)*.Clpy)

loss probabilities and process failure rates in the network (upto
15% each), the sub-optimality factor is not as large as that of
the traditional distributed heartbeat protocols. The test results

of the implementation of the algorithm are still awaited.

E. Comparison with the previous approach

The network model and the corresponding algorithm for
the model proposed by Chen et al. [7] takes into account
only two processes whereas this algorithm is unique and more
practical in that it works for a group of processes. However,the
previous work is significant as it is the first to propose QoS
metrics for failure detectors formally and considers many QoS
metrics that are useful for applications. The second approach

mainly focuses on the scalability metric and does not discuss in

detail the reasons for choosing the other metrics. Also the firststatic and is not adaptable to a dynamic environment in
approach is more general in the sense that it does not requitédch components can join and leave at runtime.
any knowledge of the network behavior and can estimate the .
_ B. Gossip-style protocols
parameters likep;,. On the other hand the second approach
requires the network behavior parameters for estimating the

algorithm parameters. So we see that both the approaches

have their pros and cons and have relevance in their respective

'
' ; ;
! O Nonitored object

i
> Fallure dotestor
o), | 4P Menitoring nsg.
\

i = Gossip msg
i
1

domains.

VI. OTHER APPROACHES

A. Globus failure detection service

< Data 7 “ Data
\\ Collector 1/ e \Collector N,

heartbeat

Host 1

Local monitor Local monitor

Process

Proccss registration at time r+]

Fig. 10. Globus failure detection service Fig. 11. Gossip-style protocols

Stelling et al. [9] proposed a failure detection service for Renesse et al. [10] distinguish two variations of gossip-style
the Globus toolkit Their model treats two components of therotocols:basic gossipingindmulti-level gossipinsee figure
same computer in a different way than two components dd). In the basic gossiping protocol, a failure detector module
two different computers. This is done for efficiency reasons resident at each host in the network. It maintains a list
and is more closer to the real life situation where more thavith an entry for each failure detector module known to it.
one components on the same machine need to be monitorBus entry includes a counter called the heartbeat counter that
The architecture of the proposed failure detector service ha#l be used for failure detection. Evefs,,.;, seconds, each
two layers: the lower layer includdscal monitorsand the failure detector module picks another failure detector module
upper layer includeslata collectorg¢see figure 10). The local randomly and sends it a list after incrementing its heartbeat
monitor is responsible for monitoring the host on which it runsounter. The receiving failure detector module merges its
as well as selected processes on that host. It periodically selutsl list with the received list and adopts the maximum
heartbeat messages to data collectors including information teeartbeat counter for each member. Occasionally each member
the monitored components. The data collectors receive hedmoadcasts its list to recover from eventual network partitions.
beats from local monitors, identify failed components, anBach member also maintains, for each other member in the
notify applications about relevant events concerning monitorést, the last time that its heartbeat counter was increased.
components. This approach improves the failure detection tiffiethe heartbeat counter has not increased for some time

in a grid. However, its major drawback is that the architectuiaterval(l’t,;;), the member is considered to have crashed.

10

To adapt it to large scale network, a variant of the basic ACKNOWLEDGMENT

gossiping protocol called multi-level gossiping protocol is \we would like to thank Dr. Vijay Garg for his guidance and
proposed. The multi-level gossiping protocol uses the structWgnport in this work.

of Internet domains and subnets and their mapping into IP
. . . _ REFERENCES
address to identify domains and subnet and map them into

different levels. Most gossip messages are sent by the badle M- J- Fischer N A. Lynch, and M. S. Paterson, “Impossibility of

distributed consensus with one faulty proceskurnal of the ACM
protocol within a subnet, and few gossip messages are sent (JACM), vol. 32, no. 2, pp. 374-382, 1985.
between subnets, and fewer between domains. The valu@s T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable
distributed systemsJournal of the ACMvol. 43, no. 2, pp. 225-267,

1996.
erroneous failure detection is less than some small thresho[gi T. D. Chandra, V. Hadzilacos, and S. Toueg

of the parameterd,,..;, and Ty,; are chosen so that the

“The weakest failure
Poistace. GOSSIp style protocols have many advantages. They detector for solving consensuslburnal of the ACM (JACM)vol. 43,
are resilient against a small number of message loss and "o % PP- 685-722, 199%.

4] M. Raynal, “Quiescent uniform reliable broadcast as an introduction to
process failures. The prObabi“ty that a member is faIser failure detector oracles’ecture Notes in Computer Sciene®l. 2127,
reported as having failed is independent of the number of pp. 98-??, 2001.
O[ﬁ] V. K. Garg and J. R. Mitchell, “Implementable failure detectors in

processes. This algorithm also scales well in both detecti
asynchronous systems,” iRroc. 18th Conference on Foundations of

time and network load. Software Technology and Theoretical Computer Sciesee Springer-

Verlag LNCS, no. 1530. Chennai, India: Springer-Verlag, 1998, pp.

VII. CONCLUSION 158-169.
[6] P. Felber, X. Bfago, R. Guerraoui, and P. Oser, “Failure detectors as

This paper looked into the issues concerning the imple- first class objects,” irProceedings of the International Symposium on
Distributed Objects and Applications (DOA'99%dinburgh, Scotland,
1999, pp. 132-141.

this field is still in germinal stages, very little work has been7] w. Chen, S. Toueg, and M. K. Aguilera, “On the quality of service
done in it. We try to identify the important QoS metrics and of failure detectors,” irProceedings of the International Conference on
Dependable Systems and Networks (DSN 2000)ew York: IEEE
Computer Society Press, 2000.

timeout values using the application specified QoS constraint®] I. Gupta, T. Chandra, and G. Goldszmidt, “On scalable and efficient

The effectiveness and the utility of each solution was also distributed failure detectors,” irProceedings of 20th Annual ACM
Symposium on Principles of Distributed ComputingCM press, 2001,

mentation of failure detectors and their QoS specification. As

discuss two failure detector protocols which try to ascertain the

addressed. It was clear that the QoS metrics that need to be

pp. 170-179.
considered depend upon the nature and requirements of tfs¢ p. Stelling, C. DeMatteis, I. T. Foster, C. Kesselman, C. A. Lee, and
application. G. von Laszewski, “A fault detection service for wide area distributed

computations,Cluster Computingvol. 2, no. 2, pp. 117-128, 1999.
[10] R. V. Renesse, Y. Minsky, and M. Hayden, “A gossip-style failure
A. Future Work detection service, Tech. Rep. TR98-1687, 28, 1998.
As our future work we would try to extend the approach
used by [7] to failure detectors based on Pull model and
come up with optimal timeout values based on the application
specified QoS parameters. We would also try to explore
some more QoS metrics that could be of use to applications
and develop protocols which can satisfy constraints on these

metrics.

11

