
Failure Detectors for Distributed Systems

Anurag Aggarwal

Department of Computer Science & Engg.

Indian Institute of Technology

Kanpur - 208016

Email: anuragag@cse.iitk.ac.in

Diwaker Gupta

Department of Computer Science & Engg.

Indian Institute of Technology

Kanpur - 208016

Email: gdiwaker@cse.iitk.ac.in

Abstract— Failure detectors are an integral part of any fault-

tolerant distributed system. Most of the implementable failure

detectors are based on simple timeouts. The timeout period is a

critical factor for the performance of a failure detector. In this

paper we briefly look at the classes of failure detectors that have

been proposed in theory and some of their implementations. We

then study the Quality of service(QoS) of failure detectors. We

first look at some QoS metrics that have been proposed and how

they relate to the performance of the failure detector. Then we

survey recent propositions that try to find optimal timeout values

which satisfy some QoS constraints

I. I NTRODUCTION

Designing fault-tolerant distributed applications has been

the goal of application developers almost ever since the

inception of the area of distributed systems but it has not

turned out to be easy to do so. Developing a failure detector

which can identify the faulty processes seems to be the first

step toward building such a system. Failure detectors have

also gained importance in recent times due to their application

in solving problems likeConsensusand Atomic Broadcast.

Consensus inasynchronous systemswhere there is no bound

on the message delay is an attractive model because it has

simple semantics and is more general than the synchronous

model. But according to the FLP result [1] it is known that

Consensus can’t be solved in an asynchronous system subject

to even a single failure. The intuition behind this result is that it

is impossible for an application to distinguish between a “slow

process” and a “failed process”. To circumvent this result,

research has focused on solving Consensus in partially syn-

chronous systems by relaxing some conditions of asynchrony.

Most of these models use a failure detector for identifying

failed processes. Thus we find that the failure detectors are

central to the paradigm of Distributed Computing. In this paper

we will look at the impact of timeout value on the performance

of the failure detectors and how to choose a timeout value to

satisfy the given QoS constraints.

This paper is organized in 7 sections. Section II discusses

the concept of Failure Detectors along with the some imple-

mentation issues. In section III we take a look at the QoS for

Failure Detectors and how do they affect the performance of

the failure detectors. In section IV and section V we discuss

two approaches for finding the optimal timeout value given

some parameters. In section VI we briefly discuss some other

approaches and finally section VII gives some concluding

remarks and future work.

II. FAILURE DETECTORS

A. Theoretical Concepts

The unreliable failure detectorsintroduced in [2] run as

a module with each process and return a list of suspected

processes. Depending upon the properties the failure detectors

need to satisfy, they have been classified into different classes.

Out of these classes the ones that are of interest are3P and

3S. 3P includes all the failure detectors that after some un-

known but finite time,make no mistake i.e. the list of suspects

includes all the crashed processes and no correct processes.

3S is the weakest failure detector to solve Consensus problem

in asynchronous distributed systems [3]. (Failure Detectors

with different aims and properties are presented in [4])

Garg and Mitchell [5] introduced a class of failure detectors

which can actually be implemented in asynchronous systems.

But apart from that there are not many useful failure detectors

that can be implemented in asynchronous systems because

they would otherwise contradict the impossibility result [1].

So additional assumptions about the underlying system are

taken which can be used to implement the class of failure

detectors in which we are interested.

B. Implementation Issues

The implementation of failure detectors is generally based

on timeouts. There are twoflow policiesbetween the failure

detectors and monitored components which abstract behaviors

of monitoring protocols used by failure detectors to monitor

system components and the way the information about com-

ponent failures is propagated in the system [6]. These models

are known aspushandpull models.

Fig. 1. Push Model

1) The Push Model:In the Push model, monitored compo-

nents are active and the monitor (failure detector) is passive.

Each monitored component periodically sends heartbeat mes-

sages to the failure detector which is monitoring the process.

The failure detector suspects a process when it does not receive

a heartbeat message from the monitored component within a

certain time interval (timeout)T . If the failure detector receives

a message from a suspected process then it removes it from

the suspected list and starts monitoring it again(figure 1).

Fig. 2. Pull Model

2) The Pull Model: In the Pull model, monitored com-

ponents are passive while the monitor or failure detector is

active. The monitor sends liveness requests(“Are you alive?”

messages) periodically to monitored components. If a mon-

itored component replies, it means that it is alive. When

the monitor does not receive a reply from the monitored

component within a certain time interval(timeout) it starts

suspecting the monitored component(figure 2).

3) Comparison of the two approaches:The Push model

requires that only the monitored component send messages

to the monitor whereas in Pull model both the monitor

and monitored component send messages. So it appears that

Push model is more efficient as it involves onlyone-way

messages whereas Pull model requirestwo-waymessages. But

the argument in favor of Pull model is that the monitor need

not send the liveness request regularly. Instead it can choose

to do it when it really needs to know whether the process

is alive. Also there are variations of Pull model that try to

make it even more efficient. Felber et al. [6] discuss alazy

failure detection protocol in which processes monitor each

other by using application messages whenever possible to get

information on process failures. This protocol requires that

each message be acknowledged. In the absence of application

messages two processes control messages are used instead.

Thus this protocol tries to reduce the number of messages

exchanged but its performance depends largely on the nature

2

of the application. There have also been attempts to use a

combination of the two models [6] to have the good features

of both the models.

III. Q OS FOR FAILURE DETECTORS

Fig. 3. Detection timeTD

Until very recently research on failure detectors was mainly

concerned about theireventualbehavior(e.g. a failure detector

will eventually detect a failed process). These notions as-

sisted in gaining a clear understanding of the implementable

failure detectors in asynchronous systems which have no

timing assumptions. However many applications have some

timing constraints and for these applications determining the

eventualbehavior is not good enough. For example, if an

application needs to solve consensus within a minute then

a failure detector, which gives a guarantee of detecting a

crasheventually, is useless for the application. Due to these

application requirements failure detectors must satisfy some

Quality of Service(QoS) constraints.

Fig. 4. Mistake durationTM and mistake recurrence timeTMR

The QoS metrics should,in general, specify (a)howfast it

detects a failure and (b)howgood it is at avoiding the false

suspicions. In other words we need to quantify the properties

of speedand accuracy of failure detectors. Note that the

speed of a failure detector is with respect to crashed or failed

processes whereas the accuracy is with respect to correct

processes. A failure detector’s speed is easy to measure. It is

the time elapsed from the instant when a processp crashes

to the time when the failure detector starts suspectingp

permanently. This QoS metric is called thedetection time

(figure 3). Quantifying theaccuracy of failure detectors is

more difficult. Consider the scenario in which a failure detector

at processq checks if the processp is dead or not. Supposing

that p is alive, a natural way of quantifying the accuracy of

failure detector atq is the probability that it correctly reports

that the processp is alive when queried randomly. This QoS

metric is called thequery accuracy probability. But consider

the two failure detectors shown in the figure 5. Both of them

have a query accuracy probability of 0.75 butFD1 makes

mistakesless frequentlythanFD2. For some applications the

rate of making mistakes might be more useful. So the metric

needed to quantify this rate of making mistakes is termed as

mistake rate(figure 6). But again note that this metric alone

is not sufficient to characterize accuracy of failure detector.

In figure 6 the two failure detectors have the same mistake

rate butFD2 has a more desirable property of shortmistake

duration i.e. FD2 corrects its mistake earlier thanFD1. It is

clear from the above examples that the metrics used to quantify

failure detectors is not an easy task and depends largely on

the requirements of the application. In the following section

we give some more QoS metrics that are of interest to the

application developers in general.

Fig. 5. FD1 andFD2 have same query accuracy probability of 0.75, but
the mistake rate ofFD2 is four times that ofFD1

3

Fig. 6. FD1 and FD2 have same mistake rate of 1/16, but the query
accuracy probability ofFD1 andFD2 are .75 and .50 respectively

The QoS metrics are conditional upon the requirements of

the application and the scenario in which we are interested in.

We will take a look at two different settings and the metrics

relevant in those settings.

A. QoS Metrics considering a pair of processes

Chen et al.[7] have given an extensive list of metrics for

QoS of complete and efficient failure detectors. Although they

have a considered a model consisting of two processesp and

q interacting with one another, the metrics are relevant in most

of the scenarios. We will first take a look at the failure detector

model and the metrics proposed by them.

1) The failure detector model:Consider a system of two

processesp andq with a failure detector at processq monitor-

ing p. Also assume that during this period the processq does

not crash.

At any instant of time the failure detector can either suspect

(S) or trust(T) the processp. A transition occurs when the

output of the failure detector changes. AS-transition occurs

when the output of failure detector changes fromT to S.

Similarly, a T -transition occurs when the output of failure

detector changes fromS to T . It is also assumed that there

are finite number of transitions in a given time interval. Only

those failure detectors are considered which eventually reach

steadystate. By this we mean that after running for some

time the behavior of the failure detector is not dependent on

the initial conditions anymore. In other words the probability

law governing the behavior of the failure detectors does not

change over time once it reaches the steady state. The metrics

given below refer to the state of the failure detector when it

is in steady state.

2) Some metrics for QoS:

• Detection time(TD):As described earlier in this section

this is a measure of thespeed of a failure detector.

Mathematically,TD is a random variable representing the

time that elapses from the momentp crashes to the instant

when the final S-transition takes place and there are no

transitions afterwords(figure 3). If there is no such final S-

transition thenTD=∞;If the transition takes place before

p crashes thenTD=0.

• Mistake recurrence time(TMR):This metric is a measure

of the accuracy of the failure detector. Mathematically,

TMR is a random variable representing the time that

elapses from an S-transition to the next one(figure 4).

• Mistake duration (TM):This is also an accuracy metric

for failure detectors. Mathematically,TM is a random

variable representing the time it takes from an S-transition

to the next T-transition (figure 4).

• Average mistake rate(λM):This measures the rate at

which a failure detectors makes mistakes,i.e. it is the

average number of S-transitions per time unit. It is

important for the applications where each failure detector

mistake(each S-transition) is costly.

• Query accuracy probability(PA):This is the probability

that the failure detector’s output is correct at a random

time. It is important for applications which query the

failure detectors at random times

• Good period duration(TG):This measures the length of a

good period– period in which the failure detector makes

no mistakes. Mathematically,TG is a random variable

representing the time that elapses from a T-transition to

the next S-transition.

• Forward good period duration(TFG):For some short

lived applications it might be useful if it can complete

its work in the good period starting from a random point

in the good period. Mathematically,TFG is defined as a

random variable representing the time that elapses from

4

a random time at whichq trustsp, to the time of the next

S-transition.

B. QoS Metrics for distributed failure detectors

Gupta et al.[8] have proposed a model consisting of dis-

tributed failure detectors running on agroupof uniquely iden-

tifiable processes, which are subject to failures and recoveries

and communicate over an unreliable network. We will first

look at this model in detail and then go over some relevant

metrics in this case.

1) Failure detector model:The model here consists of a

largegroupof n members. Each member has a unique identity

and is known to all other members. Members may suffer crash

failures and recover subsequently. The probability of failure of

a random group member at a random time is given bypf . Also

the probability of a message getting lost due to some network

problem is given bypml.Also qf andqml refer to (1-pf) and

(1-pml) respectively.

2) Some QoS metrics:The requirements of efficiency of the

failure detector need to specified by the application in terms

of the following parameters:

• Speed:Every member failure is detected bysomenon-

faulty group member withinT time units after its

occurrence(T � worst-case message round trip time)

• Accuracy:At any time instant, for every non-faulty mem-

ber Mi not yet detected as failed, the probability that no

other non-faulty group member will (mistakenly) detect

Mi as faulty within nextT time units is at least (1-

PM(T)).

• Network load:Theworst-case network load Lof a failure

detector protocol is the maximum number of messages

transmitted by any run of the protocol within any time

interval of lengthT , divided byT . This loadL should

be minimum or optimal.

C. Choice of Primary Metrics

The metrics that are of importance are not always indepen-

dent. We need to determine the relationship between metrics

so that we can identify the sets of independent metrics and

just monitor those. The relationships are also dependent on

the network model considered. Chen et. al [7] have shown

that average mistake rate, query accuracy probability, good

period duration and forward good period duration can be

expressed in terms of detection time, mistake recurrence time

and mistake duration. So the three metrics detection time,

mistake recurrence time and mistake duration are chosen as

the primary metrics. Another reason for choosing them as the

primary metrics is that if one failure detectorFD1 is better that

another failure detectorFD2 in terms of these three metrics

then it would also be better in terms of the other metrics. So

the comparison of two failure detectors becomes easier if we

choose the above stated primary metrics.

IV. QOS FOR FAILURE DETECTORS FOR A PAIR OF

PROCESSES

The model proposed by Chen et al.[7] was discussed in the

section III. We now take a look at the failure detector protocol

satisfying the QoS constraints provided by them.

A. Problem with the common Push protocol

The Push protocol discussed in section II has two problems,

one regarding its accuracy and another related to its detection

time. Consider thei-th heartbeat messagemi sent from

processp to processq. The timer formi is started as soon as

soon asmi−1 is received by the processq. This would mean

that the timeout formi is dependent not only on the delay

of mi itself but also on the delay of messagemi−1 which is

clearly not desirable. The other problem is in the case when

a process sends a heartbeat just before crashing. If the delay

of this message isd and the timeout isTO then the worst

case detection time for the algorithm isd+TO. Dependency

of detection time on message delay is not desirable as this can

be arbitrarily large. The proposed algorithm does away with

this dependencies.

5

B. The Probabilistic Network Model

We assume that the link connecting processesp andq does

not duplicate messages but can delay or drop some messages.

The message loss and message delay are characterized by (1)

message loss probability,pL and (2) a random variable,D,

denoting the expected delay of a message. Although the locals

clocks need not be synchronized but there should not be any

clock drift.

C. The Algorithm

The monitored processp periodically sends heartbeat mes-

sagesm1, m2, m3, ... toq everyη time units. Letσi denote the

send times of the messages. The monitoring process maintains

the sequenceτi=σi+δ whereδ is a parameter of the algorithm.

Consider a time period [τi,τi+1). At time τi, q checks whether

it has received a messagemj with j ≥ i. If it has thenq trusts

p throughout the interval [τi,τi+1). If it does not receive any

such message thenq starts suspectingp. If a messagemj is

received beforeτi + 1 then q starts trustingp till the time

τi+1 otherwisep is suspected for the whole time interval. The

intuition behind the algorithm is that we want to consider only

those messages which are stillfresh. The detailed algorithm

with parametersη andδ is called NFD-S and is given in figure

7

Processp:
(1) for all i ≥ 1, at time σi = i.η, send heartbeatmi to q;
Processq:
(2) Initialization: output = S;
(3) for all i ≥ 1, at timeτi = σi + δ:
(4) if did not receivemj with j ≥ i then output ← S;
{suspectp if no fresh message is received}
(5) upon receive messagemj at time t ∈ [τi, τi+1) :
(6) if j ≥ i then output← T ;

Fig. 7. Failure Detector algorithm NFD-S with parametersη andδ

D. The QoS Analysis of the Algorithm

Definitions

1) For anyi ≥ 1,let k be the smallest integer such that for

all j ≥ i + k, mj is sent at or after timeτi

2) For anyi ≥ 1,let pj(x) be the probability thatq does not

receive messagemi+j by time τi + x, for everyj ≥ 0

and everyx ≥ 0; let p0 = p0(0).

3) For anyi ≥ 2,let q0 be the probability thatq receives

messagemi−1 before timeτi

4) For anyi ≥ 1,let u(x) be the probability thatq suspects

p at timeτi + x, for everyx ∈ [0, η).

5) For any i ≥ 2,let ps be the probability that an S-

transition occurs at timeτi.

Proposition

1) k = dδ/ηe.

2) For all j ≥ 0 and for all x ≥ 0 , pj(x) = pL + (1 −

pL)Pr(D > δ + x− jη).

3) q0 = (1− pL)Pr(D < δ + η).

4) For all x ∈ [0, η), u(x) =
∏k

j=0 pj(x).

5) ps = q0.u(0)

Properties of NFD-S

1) The detection time is bounded byTD ≤ δ + η

2) The average mistake recurrence time is

E(TMR) =
η

ps

3) The average mistake duration is

E(TM) =

∫ η

0
u(x)dx

pS

E. Configuring the failure detector to satisfy QoS requirements

We are given the QoS requirements of the failure detector

and we need to compute the parametersη andδ of the NFD-

S algorithm so that the QoS are satisfied. We assume that (a)

The local clocks of the processes are synchronized and (b) The

message loss probabilitypL and the distribution of message

delaysPr(D ≤ x) are given. The QoS requirements that are

specified are

1) TU
D , the upper bound on detection time

2) TL
MR, the lower bound on mistake rate

3) TU
M , the upper bound on the average mistake duration

Note that we would like to maximize the value ofη satisfy-

ing the above requirements so that the number of messages

6

are minimized. To compute such a solution the following

procedure is followed:

Step 1 : Computeq′0 = (1− pL)Pr(D < TU
D), and letηmax =

q′0T
U
M . If ηmax = 0 then output “QoS cannot be achieved”

and stop; else continue.

Step 2 : Let

f(η) =
η

q′0
∏dT U

D /ηe−1
j=1 [pL + (1− pL)Pr(D > TU

D − jη)]

Find the largestη ≤ ηmax such thatf(η) ≥ TL
MR. Such

an η always exists. To find this we can use some simple

numerical method, such as binary search.

Step 3 : Setδ = TU
D − η, and outputη andδ .

F. Dealing with more generic situation

In the previous section for finding the parametersη and

δ we needed to knowpL, probability of message loss and

Pr(D ≤ x),the probability distribution of the message delays.

We can estimate thePr(D ≤ x) in terms of pL,V (D)

(Variance of message delays) andE(D) (Expected value of

message delays). We can then go on to estimatepL, E(D)

and V (D) by looking at the history of the algorithm. This

way we don’t need the prior information about the message

behavior. The other assumption about the local clocks being

synchronous still remains there. We needed this so as to set the

receiving timesτi by shifting the sending times of heartbeat.To

do away with this assumption we can use theexpected arrival

times of the heartbeats instead of the actual time. Here the

assumption is that there is no clock drift which is a reasonable

assumption to make. The new algorithm is called NFD-U. If

we don’t know theexpected arrival timesof the messages then

we can estimate them as well using the history of message

arrival times. The algorithm using theestimatesof expected

arrival times is referred to as NFD-E.

G. Results

Both the new failure detector algorithms proposed (NFD-

S and NFD-E) and the simple algorithm commonly used

were simulated. The values of the various parameters used for

Fig. 8. The average mistake recurrence times obtained by : (a) simulating
the new algorithms NFD-S and NFD-E (shown by + and×), (b) simulating
the simple algorithm (shown by -◦- and -♦-), and (c) plotting the analytical
formula for E(TMR) of the new algorithm NFD-S (shown by –).

setting up the simulation environment and reasons for choosing

them are as follows :

1) η = 1 : To normalize the inter-sending time in both the

algorithms

2) pL = 0.01 : Close to the value in practical systems

3) Pr(D ≤ x) = 1− e−x/E(D) for all x ≥ 0 : Character-

istic of message delays in many practical systems and

also allows easy comparison of simulation results

4) E(D) = 0.02 : Again chosen close to the values in

practical systems (e.g. Internet)

For comparing the results of simulation, the parameters of

the algorithms are chosen such that they satisfy the same

boundTU
D on the detection time. The following observations

could be made from the simulation runs for values ofTU
D

ranging from 1 to 3.5 :

• The accuracy of the algorithms NFD-S and NFD-E are

very similar and the results of both the algorithms match

the analytical formula forE(TMR) given earlier in this

section

• The simple algorithm as such does not have an upper

bound on detection but by a slight modification a bound

can be imposed. The idea is to have acutoff timec such

that any heartbeat which is delayed by more than this time

is discarded. As a result the detection timeTD is bounded

by TO+c. For the simulation two cutoff times :c = 0.16

7

andc = 0.08 were chosen. The algorithms corresponding

to them are referred to as SFD-L and SFD-S respectively.

The simulation results show that the accuracy of the new

algorithms is better than both SFD-L and SFD-S.

V. SCALABLE AND EFFICIENT DISTRIBUTED FAILURE

DETECTOR

Gupta et al.[8] present a failure detector which is useful in

distributed systems. Large scale distributed applications need

a light-weight failure detector algorithm which minimizes the

network load in addition to being efficient. These detectors

need to have goodscalability so that they can be used even

if more nodes become part of the application. A distributed

algorithm has been proposed that tries to balance the load on

different machines and satisfies application-defined efficiency

constraints. We have already presented the model and the met-

rics that this model uses. Now we will discuss the algorithm

and the bounds that it satisfies.

A. Quantification of Network Load

As discussed earlier the aim of this algorithm is to guarantee

that the worst case network loadL imposed is close to the

optimal, with equal expected load per member. In this regard

a theorem relating the optimal worst case network loadL∗ is

stated below:

THEOREM : Any distributed failure detector algorithm for

a group of sizen(� 1) that deterministically satisfies the

completeness, speed, accuracyrequirements above, for given

values ofT andPM(T)(� pml), imposes a minimal worst-

case network load (messages per time unit, as defined above)

of:

L∗ = n.
log(PM(T))
log(pml).T

Furthermore, there is a failure detector that achieves this

minimal worst-case bound while satisfying thecompleteness,

speed, accuracy requirements. (For proof of this theorem

refer to [8])

L∗ is thus the optimal worst-case network load required to

satisfy thecompleteness, speed, accuracyrequirements.

To measure the performance of a protocol in terms of network

load, sub-optimality factorof a failure detector that imposes

a worst-case network load ofL is defined asL
L∗ For a simple

heartbeat implementation, the sub-optimality factor varies as

θ(n) for any values ofpml,pf andPM(T).

B. A Randomized Distributed Failure Detection Algorithm

.
Integerpr; /* Local period number */

EveryT ′ time units atMi :

0. pr = pr + 1
1. Select random memberMj from view

Send a ping(Mi, Mj , pr) message toMj

Wait for the worst-case message round-trip time for
an ack(Mi, Mj , pr) message

2. If have not received an ack (Mi, Mj , pr) message yet
Selectk members randomly from view
Send each of them a ping-req (Mi, Mj , pr) message
Wait for an ack (Mi, Mj , pr) message

until the end of periodpr

3. If have not received an ack (Mi, Mj , pr) message yet
DeclareMj as failed

Anytime atMi :

4. On receipt of a ping-req (Mm, Mj , pr) (Mj 6= Mi)
Send a ping(Mi, Mj , Mm, pr) message toMj

On receipt of an ack (Mi, Mj , Mm, pr) message
from Mj

Send an ack (Mm, Mj , pr) message to received toMm

Anytime atMi :

5. On receipt of a ping (Mm, Mi, Ml, pr) message
from memberMm

Reply with an ack (Mm, Mi, Ml, pr) message toMm

Anytime atMi :

6. On receipt of a ping (Mm, Mi, pr) message from
memberMm

Reply with an ack (Mm, Mi, pr) message toMm

Fig. 9. Protocol steps at a group memberMi. Each message also contains
the current incarnation number of the sender.

For this algorithm thespeedcondition is relaxed to detect

8

a failure within anexpected(rather than exact) time bound of

T time units after the failure. It satisfies thecompletenessand

accuracyconstraints and imposes an equal expected load on

each group member. The worst case network loadL differs

from the optimalL∗ by a sub-optimality factor independent

of group sizen. The failure detector algorithm uses two

parameters: protocol periodT ′ (in time units) and integer

k, which is the size of failure detection subgroups. These

parameters are knowna priori to all group members. Here

the clocks need not be synchronized but should not have any

drifts.

The algorithm is formally described in figure 9. At the start

of a protocol period of lengthT ′ a memberMi selects a

random member, sayMj , and sends a ping message to it. IfMi

does not receive a replying ack fromMj within some time-out

(determined by the message round-trip time), which is� T ,

it selectsk members at random and sends to each a ping-

req message. Each of the non-faulty members among thesek

which receives the ping-req message subsequently pingsMj

and forwards the ack received fromMj , if any, back toMi. In

the protocolk random members are chosen to send a ping to

Mj rather than sendingk repeat ping messages so that if there

are different message loss probabilities at different members

they get evenly distributed out.

C. Analysis

1) The expected time between failure of memberMj and

its detection by some non-faulty member is

E[T] = T ′.
1

1− e−qf
= T ′.

eqf

eqf − 1

So we can get a configurable value forT ′ as a function

of T , pf

2) Let C(pf) = eqf

eqf −1
. Then

PM(T) ' qf .(1− q2
ml).(1− qf .q4

ml)
k.C(pf)

This gives us

k =
log[PM(T)

qf .(1−q2
ml).

e
qf

e
qf −1

]

log(1− qf .q4
ml)

3) The sub-optimality factor is given by

L

L∗ = g(pf , pml) +
f(pf , pml)
−log(PM(T))

whereg(pf , pml) is :

[4.
log(pml)

log(1− qf .q4
ml)

.
eqf

eqf − 1
]

andf(pf , pml) is :

[{2−4.
log(qf .(1− q2

ml).
eqf

eqf −1
)

log(1− qf .q4
ml)

}×(−log(pml)).
eqf

eqf − 1
]

Therefore, the sub-optimality factor is independent of

the number of group sizen(� 1). More analysis

shows that even the expected network load E[L] can

be upper-bounded from the optimalL∗ by a factor that

is independent of the group sizen.

D. Results

The analysis of the protocol shows that it imposes a worst-

case network load that differs from the optimal by a sub-

optimality factor greater than 1. For very stringent accuracy

requirements (PM(T) as low ase−30), reasonable message

loss probabilities and process failure rates in the network (upto

15% each), the sub-optimality factor is not as large as that of

the traditional distributed heartbeat protocols. The test results

of the implementation of the algorithm are still awaited.

E. Comparison with the previous approach

The network model and the corresponding algorithm for

the model proposed by Chen et al. [7] takes into account

only two processes whereas this algorithm is unique and more

practical in that it works for a group of processes. However,the

previous work is significant as it is the first to propose QoS

metrics for failure detectors formally and considers many QoS

metrics that are useful for applications. The second approach

mainly focuses on the scalability metric and does not discuss in

9

detail the reasons for choosing the other metrics. Also the first

approach is more general in the sense that it does not require

any knowledge of the network behavior and can estimate the

parameters likepL. On the other hand the second approach

requires the network behavior parameters for estimating the

algorithm parameters. So we see that both the approaches

have their pros and cons and have relevance in their respective

domains.

VI. OTHER APPROACHES

A. Globus failure detection service

Fig. 10. Globus failure detection service

Stelling et al. [9] proposed a failure detection service for

the Globus toolkit. Their model treats two components of the

same computer in a different way than two components on

two different computers. This is done for efficiency reasons

and is more closer to the real life situation where more than

one components on the same machine need to be monitored.

The architecture of the proposed failure detector service has

two layers: the lower layer includeslocal monitorsand the

upper layer includesdata collectors(see figure 10). The local

monitor is responsible for monitoring the host on which it runs

as well as selected processes on that host. It periodically sends

heartbeat messages to data collectors including information on

the monitored components. The data collectors receive heart-

beats from local monitors, identify failed components, and

notify applications about relevant events concerning monitored

components. This approach improves the failure detection time

in a grid. However, its major drawback is that the architecture

is static and is not adaptable to a dynamic environment in

which components can join and leave at runtime.

B. Gossip-style protocols

Fig. 11. Gossip-style protocols

Renesse et al. [10] distinguish two variations of gossip-style

protocols:basic gossipingandmulti-level gossiping(see figure

11). In the basic gossiping protocol, a failure detector module

is resident at each host in the network. It maintains a list

with an entry for each failure detector module known to it.

This entry includes a counter called the heartbeat counter that

will be used for failure detection. EveryTgossip seconds, each

failure detector module picks another failure detector module

randomly and sends it a list after incrementing its heartbeat

counter. The receiving failure detector module merges its

local list with the received list and adopts the maximum

heartbeat counter for each member. Occasionally each member

broadcasts its list to recover from eventual network partitions.

Each member also maintains, for each other member in the

list, the last time that its heartbeat counter was increased.

If the heartbeat counter has not increased for some time

interval(Tfail), the member is considered to have crashed.

10

To adapt it to large scale network, a variant of the basic

gossiping protocol called multi-level gossiping protocol is

proposed. The multi-level gossiping protocol uses the structure

of Internet domains and subnets and their mapping into IP

address to identify domains and subnet and map them into

different levels. Most gossip messages are sent by the basic

protocol within a subnet, and few gossip messages are sent

between subnets, and fewer between domains. The values

of the parametersTgossip and Tfail are chosen so that the

erroneous failure detection is less than some small threshold

Pmistake. Gossip style protocols have many advantages. They

are resilient against a small number of message loss and

process failures. The probability that a member is falsely

reported as having failed is independent of the number of

processes. This algorithm also scales well in both detection

time and network load.

VII. C ONCLUSION

This paper looked into the issues concerning the imple-

mentation of failure detectors and their QoS specification. As

this field is still in germinal stages, very little work has been

done in it. We try to identify the important QoS metrics and

discuss two failure detector protocols which try to ascertain the

timeout values using the application specified QoS constraints.

The effectiveness and the utility of each solution was also

addressed. It was clear that the QoS metrics that need to be

considered depend upon the nature and requirements of the

application.

A. Future Work

As our future work we would try to extend the approach

used by [7] to failure detectors based on Pull model and

come up with optimal timeout values based on the application

specified QoS parameters. We would also try to explore

some more QoS metrics that could be of use to applications

and develop protocols which can satisfy constraints on these

metrics.

ACKNOWLEDGMENT

We would like to thank Dr. Vijay Garg for his guidance and

support in this work.

REFERENCES

[1] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of

distributed consensus with one faulty process,”Journal of the ACM

(JACM), vol. 32, no. 2, pp. 374–382, 1985.

[2] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable

distributed systems,”Journal of the ACM, vol. 43, no. 2, pp. 225–267,

1996.

[3] T. D. Chandra, V. Hadzilacos, and S. Toueg, “The weakest failure

detector for solving consensus,”Journal of the ACM (JACM), vol. 43,

no. 4, pp. 685–722, 1996.

[4] M. Raynal, “Quiescent uniform reliable broadcast as an introduction to

failure detector oracles,”Lecture Notes in Computer Science, vol. 2127,

pp. 98–??, 2001.

[5] V. K. Garg and J. R. Mitchell, “Implementable failure detectors in

asynchronous systems,” inProc. 18th Conference on Foundations of

Software Technology and Theoretical Computer Science, ser. Springer-

Verlag LNCS, no. 1530. Chennai, India: Springer-Verlag, 1998, pp.

158–169.

[6] P. Felber, X. D́efago, R. Guerraoui, and P. Oser, “Failure detectors as

first class objects,” inProceedings of the International Symposium on

Distributed Objects and Applications (DOA’99), Edinburgh, Scotland,

1999, pp. 132–141.

[7] W. Chen, S. Toueg, and M. K. Aguilera, “On the quality of service

of failure detectors,” inProceedings of the International Conference on

Dependable Systems and Networks (DSN 2000). New York: IEEE

Computer Society Press, 2000.

[8] I. Gupta, T. Chandra, and G. Goldszmidt, “On scalable and efficient

distributed failure detectors,” inProceedings of 20th Annual ACM

Symposium on Principles of Distributed Computing. ACM press, 2001,

pp. 170–179.

[9] P. Stelling, C. DeMatteis, I. T. Foster, C. Kesselman, C. A. Lee, and

G. von Laszewski, “A fault detection service for wide area distributed

computations,”Cluster Computing, vol. 2, no. 2, pp. 117–128, 1999.

[10] R. V. Renesse, Y. Minsky, and M. Hayden, “A gossip-style failure

detection service, Tech. Rep. TR98-1687, 28, 1998.

11

