1226

IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 11, NOVEMBER 1996

Implementing Fail-Silent Nodes
for Distributed Systems

Francisco V. Brasileiro, Paul Devadoss Ezhilchelvan,
Santosh K. Shrivastava, Member, IEEE Computer Society, Neil A. Speirs, and S. Tao

Abstract—A fail-silent node is a self-checking node that either functions correctly or stops functioning after an internal failure is
detected. Such a node can be constructed from a number of conventional processors. In a software-implemented fail-silent node,
the nonfaulty processors of the node need to execute message order and comparison protocols to “keep in step” and check each
other, respectively. In this paper, the design and implementation of efficient protocols for a two processor fail-silent node are
described in detail. The performance figures obtained indicate that in a wide class of applications requiring a high degree of fault-
tolerance, software-implemented fail-silent nodes constructed simply by utilizing standard “off-the-shelf” components are an
attractive alternative to their hardware-implemented counterparts that do require special-purpose hardware components, such as

fault-tolerant clocks, comparator, and bus interface circuits.

Index Terms—Distributed processing, fault-tolerance, fail-silence, reliability, replicated processing.

1 INTRODUCTION

REPLICATED processing on distinct processors whereby
outputs from faulty processors can be prevented from
appearing at the application level (by employing means such
as comparing or voting the outputs produced by the proces-
sors), provides a practical means of constructing systems
capable of tolerating Byzantine (also referred to as fail-
uncontrolled) processor failures. Such an approach can be
used for constructing a fail-controlled node composed of a
number of conventional processors on which application
level processes are replicated. A particular case of a fail-
controlled node is a w + 1 processor fail-silent node that either
works correctly, or stops functioning (becomes silent) soon
after an internal failure is detected. This behavior of a node is
guaranteed so long as no more than 7 processors in the node
fail. A two processor fail-silent node (r = 1) offers a practical
and economical solution to the problem of constructing fail-
controlled nodes, as such, in this paper we will concentrate
on the design, implementation, and performance evaluation
of two-processor nodes. In particular, we will describe practi-
cal designs of software implemented two-processor fail-silent
nodes suitable for use in distributed systems that meet the
abstraction of fail-silence in the following sense: A node pro-
duces either correct messages which can be verified as such
by destination nodes, or it ceases to produce new correct
messages, in which case destination nodes can detect any
messages it may produce as unwanted. '
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The paper is structured as follows. We begin by review-
ing related work in the area of reliable node design, con-
trasting it with our approach, and summarizing the main
contributions of the paper. We then describe the basic prin-
ciples that underpin our fail-silent nodes, and then present
what we term a reference implementation of a fail-silent node;
this implementation makes use of a standard, synchro-
nized, clock based message order protocol. After describing
how the performance of this protocol itself can be im-
proved, we present two new, much faster order protocols,
based on logical clock and leader-follower (master-slave)
approaches. Following this, we describe the design of a
comparison protocol that makes use of the master-slave
approach for message comparison. We then present the
results obtained from our experimental work on compara-
tive performance evaluation of the various implementa-
tions of the fail-silent nodes; conclusions from our work are
presented in the final section of the paper.

2 RELATED WORK

A fail-controlled node that uses replicated processing with
comparison/ voting must incorporate mechanisms to keep its
replicas synchronized, so as to avoid the states of the replicas
from diverging. Asynchronous events (e.g., interrupts, time-
outs), processing of nonidentical messages are some of the
reasons that could lead to replica state divergence. Synchro-
nization at the level of processor micro-instructions is logi-
cally the most straightforward way to achieve replica syn-
chronism. In this approach, processors are driven by a com-
mon clock source which guarantees that they execute the
same steps at each clock pulse (of course, the logic of the in-
dividual processors must be deterministic). Outputs are
evaluated (compared/voted) by a—possibly replicated—
hardware component at appropriate times (e.g., at each bus
access). Asynchronous events must be distributed to the
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processors of a node through special circuits which ensure
that all the correct processors will perceive such an event at
the same point of their instruction stream [12], [23]. Since
every correct processor of a node executes the same instruc-
tion stream, all the programs that run on the nonredundant
version can be made to run, without any changes, on the
node. This is the major advantage gained by synchronizing at
the level of micro-instructions. Such implementations of two
processor fail-silent nodes have been in use widely; Stratus
[27] and Sequoia [2] are two well-known examples. In these
systems, a common (reliable) clock source is used for driving
a pair of processors which execute in lock-step. Access to the
bus is controlled by a (reliable} comparator circuit which only
enables access to the bus if the signals generated by the two

processors are the same. Another example of a fail-controlled .

node is presented in [6]; this design employs tight synchroni-
zation of redundant processors and in addition, uses coding
techniques for detecting/ correcting memory bit corruptions.

There are, however, a few problems with the micro-
instruction level approach to synchronization. First, as indi-
cated before, individual processors must be built in such a
way that they will have a deterministic behavior at each clock
pulse, so that they will produce identical outputs (“don’t
care” transitions, for instance, where a bit can be either one or
zero, are not allowed in the design of the processors). Second,
the introduction of special circuits such as reliable compara-
tor/voter, reliable clock, asynchronous event handlers, and
bus interfaces increases the complexity of the design, which
in the extreme can lead to a reduction in the overall reliability
of a node. Third, every new microprocessor architecture re-
quires a considerable re-design effort. Fourth, because of
their tight synchronism, a transient fault is likely to affect the
processors in an identical manner, thus making a node sus-
ceptible to common mode failures.

Approaches that do not use processor replication but
rely instead on various application specific forms of checking
mechanisms (e.g., watchdog timers) for detecting the erro-
neous behavior of a processor have, therefore, been consid-
ered [e.g., 17]. The error detection coverage of one such
node has been estimated to be better than 99% [11]. How-
ever, these approaches are application specific (rather than
general purpose) and do not completely eliminate the sec-
ond and third problems referred to above.

An alternative approach that seeks to reduce (or elimi-
nate altogether) the hardware level complexity associated
with the approaches discussed above is to maintain replica
synchronism at a higher level, for instance at the process, or
task level by making use of appropriate software imple-
mented-protocols. Such software-implemented nodes can
offer several advantages over their hardware-implemented
counterparts:

1) technology upgrades appear to be easy; since the
principles behind the protocols do not change, the
protocol software can be ported relatively easily to
any type of processor (including the ones expected to
be available in the future);

2) we note that by employing different types of proces-
sors within a node, there is a possibility that a meas-
ure of tolerance against design faults in processors
can be obtained, without recourse to any specialized
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hardware assistance; and

3) since replicated computations do not execute in lock-
step, a node is likely to be more robust against tran-
sient failures [11].

The task synchronization approach was pioneered by the
designers of the SIFT failure-masking node [28]. In SIFT,
application processes are structured as a set of cooperative
cyclic tasks. Each task performs a deterministic computa-
tion. The execution of a particular iteration of a task con-
sists of inputting some data (possibly generated by previ-
ous iteration of other tasks), processing the data, and out-
putting some results. Fault-tolerance is achieved by voting
on the input data. Thus, task replicas must be synchronized
at the beginning of each iteration (start of a frame). To
achieve this, SIFT maintains a global timebase, and uses a
static, priority based scheduling, which schedules tasks at
predefined time frames. The global timebase is implemented
by keeping the clocks of all the correct processors synchro-
nized by a software implementation of a Byzantine resilient
clock synchronization protocol. In normal operation, the
system only allows interruptions from clocks, which are
handled by all correct processors at the beginning of the
same time frame. Because of its application dependent de-
sign, the SIFT architecture can only be applied to a restricted
range of applications. This is also the case for the VOTRICS
system [25] which follows the design principles of SIFT to
provide fault-tolerance in a different, but still specific, class of
applications (railway signaling systems).

In our work, we have taken the SIFT approach further by
investigating the design of a family of failure-masking and
fail-silent nodes (called Voltan [21], [22], [24]) that are capa-
ble of supporting quite general purpose message passing
programs. Voltan nodes are composed of “off-the-shelf”
processors connected via communication links. The proces-
sors of a node execute message agreement and ordering
protocols to guarantee that correct replicas of application
processes will receive and process input messages in identi-
cal order. The output messages produced by process repli-
cas are evaluated either by a comparator (a fail-silent node),
or a voter (a failure-masking node) at each processor.

There is, however, a concern over the performance of
software-implemented nodes due to the overheads im-
posed by redundancy management protocols. Indeed, in
terms of performance, hardware-implemented nodes will
always outperform their software equivalents (a hardware-
implemented node will be capable of working at nearly the
same speed as its constituent processors). In SIFT for in-
stance, redundancy management protocols can consume as
much as 80% of the processor throughput [15]. Hybrid so-
lutions have been proposed to circumvent this problem.
MAFT [10], FTP-AP [13], and Delta-4 [16] are hybrid archi-
tectures that share the same basic design. These architec-
tures are structured around a micro-instruction synchro-
nized hard core, on top of which conventional processors
are replicated. The micro-instruction synchronized hard
core is responsible for executing redundancy management
functions (e.g., message voting). This certainly improves the
performance; however, the hard core reintroduces the
problems associated with the hardware-implemented
nodes.
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In this paper, we present the design and implementation
of software-implemented two-processor fail-silent nodes
that are both efficient (in terms of performance) and capa-
ble of executing general purpose message passing software.
We have performed a careful analysis of the performance of
our original implementation of Voltan nodes (the reference
implementation) and have examined several ways of im-
proving its performance. This has led to the design of two
novel message order protocols which are considerably
more efficient than the original protocol. A property of a
fail-silent node that has been exploited in our design for
obtaining efficiency is that it is required to just detect a fail-
ure rather than mask it. We present these protocols and the
resulting performance of the nodes. The performance fig-
ures obtained lead us to believe that in a wide class of ap-
plications requiring a high degree of fault tolerance, soft-
ware implemented fail-silent nodes constructed simply by
utilizing standard “off-the-shelf” components and em-
ploying one of the new order protocols (particularly the
leader-follower protocol) do represent an attractive alter-
native to their hardware implemented counterparts.

3 BAsIC PRINCIPLES

3.1 System Model and Assumptions -

We assume that a failed processor (and, therefore, the proc-
esses running on that processor) can exhibit Byzantine be-
havior; but we do make the assumption that each nonfaulty
processor in a node is able to sign a message it sends by af-
fixing the message with a message dependent unforgeable
signature; a nonfaulty processor is also assumed to be able
to authenticate any signed message it receives. Digital sig-
nature based techniques [18] provide a very comprehensive
way of meeting this functionality. We assume that norepli-
cated distributed computations are composed of a number
of processes that interact only via messages. As an example,
the function of a typical “server”process is to cycle by se-
lecting an input message from any one of its input ports,
process it and, if necessary, output one or more messages
on its output ports. It is necessary to assume that the com-
putation performed by a process on a selected message is
deterministic. This is the well known state machine model

(where a state machine is a process) for which the precise

requirements for supporting replicated processing are
known [20]. Basically, in the replicated version of a process,
multiple input ports of the nonreplicated process are
merged into a single port and the replica selects the mes-
sage at the head -of its port queue for processing. So, if all
the nonfaulty replicas have identical initial states then
identical output messages will be produced by them, pro-
vided the queues of all correct replicas can be guaranteed to
contain identical messages in an identical order. Thus, rep-
lication of a process requires the following two conditions
to be met: ’

Agreement: All the nonfaulty replicas of a process receive
identical input messages;

Order: All the nonfaulty replicas process the messages in an
identical order.
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Practical distributed programs often require some addi-
tional functionality such as using time-outs when waiting
for messages. Time-outs and other asynchronous events,
high priority messages, etc. are potential sources of non-
determinism during input message selection, making such
programs difficult to replicate. In previous papers [22], [26],
we have described how our nodes can be enhanced to pro-
vide the necessary functionality for dealing with such cases.
In this paper, we will assume the simple state machine
model discussed above.

We assume that each processor of a fail-silent node has
network interfaces for internode communication over
(possibly redundant) networks. In addition, the processors
of a node are internally connected by communication links
for intranode communication needed for the execution of
the redundancy management protocols (e.g., message or-
dering and comparison). We assume that the maximum
intranode communication delay over a link is known and
bounded: If a nonfaulty process sends a message over a
nonfaulty link to a nonfaulty process of a neighbor proces-
sor then the message will be received within § time units.
For simplicity, we will assume that the lower bound on the
actual transmission delay, 83, is zero: 0 < 85 < 8 (so 8 also
represents the maximum variation in message transmission
delays over a link). Link failures will be categorized as
processor failures: A link failure that prevents a message
sent from a processor to be received by its neighbor in the
node will be considered as a failure of the sender processor.

Fig. 1 shows an example of a distributed system with
three two-processor fail-silent nodes (P, S, and Q), con-
nected by a dual redundant network (C1, C2). On such an
architecture, “node level” processes can be replicated on
distinct nodes for increased availability (a node level proc-
ess itself is composed of two processes, one on each of the
underlying processors, and' behaves like a fail-silent proc-
ess). In particular, such a system-architecture can be used
for building highly available services by constructing K-
resilient node processes: A K + 1 replicated node level proc-
ess (K > 0) can tolerate a maximum of K replica failures
before a subsequent failure makes the services it is provid-
ing becoming unavailable. In a separate paper, we have
shown how protocols for group communication between
node level processes, necessary for supporting such serv-
ices, can be implemented to run on two processor fail-silent
nodes [7].

p1 i p2

C1

Cc2

ql a2 Q

Fig. 1. A distributed systems architecture employing fail-silent nodes.
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3.2 Basic Software Architecture

We now describe the basic software architecture of a two-
processor fail-silent node. In addition to application level
computational processes, each processor of a node executes
five system processes described below:

1) Sender Process: This process takes the messages pro-
duced by the computational processes of that proces-
sor, signs them, and sends them via the link to the
neighbor processor of the node for comparison.
Comparator Process: This process compares authentic
messages sent by the neighbor processor with their
counterparts produced locally. If a message compari-
son succeeds, the singly signed authentic message re-
ceived from the neighbor is counter signed (by con-
sidering the first signature as a part of the message)
and this double signed message, termed a valid mes-
sage, is handed over to the local Transmitter process
for network delivery to destination nodes. A compari-
son that detects a disagreement indicates a failure.
Similarly, an absence of a message for comparison
(after a node specific time-out interval) also indicates
a failure. Once a failure is detected, the comparator
process stops, and so does the sender process. No
new valid messages can be produced by the node.

3) Transmitter Process: This process is responsible for
sending the double signed messages over the network
to destination nodes. As each processor has a Trans-
mitter process, a node with correct processors will
produce two copies of its every output message. In
our subsequent discussions on timing analysis of a
node, a node output will refer the valid copy that is
produced first.

4) Receiver Process: This process authenticates mes-
sages received from the network or from the link and
discards any unauthentic or duplicate messages.
Authenticated messages from the network (valid
messages) are sent to the local Order process.
Authenticated singly signed messages from the link
are sent to the Comparator.

5) Order Process: This process executes an order protocol
with its counterpart in the other processor of the node
in order to construct identical queues of valid messages
for processing by the computational processes. Since
such a protocol entails the Order process to relay valid
messages to its counterpart, it is sufficient for a mes-
sage to be received from the network by any one of the
processors of a node for it to be ordered at both the
processors (the only exception is the asymmetric order
protocol without feedback, to be discussed later, which
requires a message to be received by a nominated proc-
essor—the leader—for ordering).

2

~

The architecture can be adapted for the more general
case of T + 1 processor fail-silent node; such a node will
produce valid messages with © + 1 processor signatures.

3.3 Node Failure Semantics

We assume that application processes of correctly func-
tioning nodes assign monotonically increasing sequence
numbers to new messages they produce; this property en-

1229

ables correctly functioning destination nodes to discard
replicas of any previously received messages. Let an appli-
cation process running on a correctly functioning unrepli-
cated node take t units of time to compute the response to
an input message. The corresponding correct output from a
fail-silent node will take at most ¢’ =t + f4,, units of time,
where £, taeiy > 0, is the bounded worst-case delay intro-
duced by the redundancy management protocols. If the
output from the fail-silent node is produced later than t’,
then the node will be said to have suffered a performance
failure [4]. A fail-silent node can be in one of the three states
(see Fig. 2).

1) Normal State: In this state, a node produces correct
outputs. Detection of an internal failure (by the com-
parator process) causes the node to irreversibly enter
either the failing state or the silent state. '

2) Failing State: This is an intermediate state in which
the node can suffer at most one performance failure.
From this state, the node eventually enters the termi-
nal silent state.

3) Silent State: No new valid messages are produced by
the node. Any messages produced by the node can
only be invalid or copies of previously produced
valid messages: Any functioning destination node can
detect these messages as unwanted.

Fig. 2. Fail-silent node states.

The reason for the existence of the intermediate failing
state is as follows: A faulty processor can contain a message
from the correct processor sent for comparison (a message
that was sent before the correct processor stopped). The
faulty processor can output this as a valid double signed
message at any future time. The Sender and Comparator
processes of each processor must, therefore, incorporate
intranode message synchronization measures to ensure that
each processor of a node at any time has no more than one
message which has been sent to the neighbor for compari-
son but has not yet been compared locally; in this way, the -
number of performance failures in the failing state can be
limited to at most one. '

The fact that a fail-silent node can suffer a single per-
formance failure in the intermediate state need not be a
cause for concern in most applications. Consider a system
of “fail-crash” nodes without an intermediate state. A client
application with timing constraints and expecting a re-
sponse from such a node would still be expected fo contain
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timeliness  checks for detecting an absent response. The
same checks will be adequate for the case of fail-silent
nodes for filtering out late responses. If application pro-
grams have no timing constraints, then a performance fail-
ure suffered by a fail-silent node in the failing state will not
cause any inconsistencies. '

Thus, a system of software implemented fail-silent nodes
can be regarded as capable of implementing the abstraction
of fail-silence in the following sense: A node produces ei-
ther correct messages, which can be verified as such by
destination fail-silent nodes, or it ceases to produce new
correct messages, in which case, destination nodes can de-
tect any messages it may produce as unwanted.

It is possible to design specialized fault-tolerant network
interfaces that could prevent further messages from being
output by a node once one of the processors detects a fail-
ure. Minimally, we need to provide a network interface
with a single switch that can unilaterally and irreversibly be
switched off by a control signal sent by either of the proces-
sors in the node.

Any software solution to the design of a node that has
no intermediate failing state will require additional redun-
dancy. For example, one could delegate the responsibility
of message comparison and output to a separate node that
does not fail. A 2x + 1 failure-masking node (capable of
masking up to n processor failures within a node) could
provide the services of message comparison and output to a
collection of m + 1 processor nodes. Indeed, the failure-
masking node can provide other services, such as recording
the status of fail-silent nodes. This design very much re-
sembles that of a system of fail-stop nodes [19] that can
switch from the functioning to the halted state, and can
provide failure-status indication.

3.4 Rationale Behind the Experimental Work

In the rest of the paper, we will be describing our experi-
mental work on evaluating a number of designs for two-
“processor fail-silent nodes. However, before that, a brief
discussion on the rationale behind our experimental work
is worth a mention. We note that the performance of a fail-
silent node will depend on how quickly messages can be
ordered and compared. Ordering can be achieved in several
ways. The basic idea is to have an agreement protocol
which guarantees that all correct replicas receive the same
set of messages and then accomplish ordering by assigning
monotonically increasing sequence numbers to messages. It
is also necessary to devise a method to establish when a
message becomes stable, i.e., when it is guaranteed that no
valid messages with sequence numbers less than a certain
value, seq, will ever be received, so that all messages with
sequence numbers less than seq can be processed in a con-
sistent order among all the replicas. General methods for
assigning sequence numbers to messages, and associated
stability tests for different system assumptions have been
discussed in [20]. We have used these ideas and applied
them to the special case of two-processor fail-silent nodes.
The delay imposed by the comparison protocol will mostly
be made up of the time spent in message exchanges plus
any delay introduced by the intranode message synchroni-
zation measure necessary to ensure that each processor of a
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node at any time contains no more than one message from
the neighbor for comparison.

We took the following approach in our quest for a de-
sign that minimized both ordering and comparison delays.
First, we performed a reference implementation based on a
design that was relatively easy to understand. For this rea-
son, in the reference implementation we used a simple or-
der protocol for messages and a simple comparison proto-
col that did not incorporate any synchronization measure
for limiting the number of received messages from the
neighbor to just one (potentially, such a node can suffer
more than one performance failure in the failing state). We
then investigated a number of ways of reducing message
ordering delays. After this, we investigated message com-
parison protocols with synchronization measures. Our
work on order protocols proved highly significant in com-
ing up with a clean and efficient solution. Having selected a
design for the comparison protocol, we undertook com-
parative performance evaluation of four node designs, all
using this comparison protocol but with different order
protocols for input messages, starting with the one used in
the reference implementation. We had carefully designed
the software of the reference implementation in a modular
fashion; this made it relatively easy for us to replace or
modify modules to incorporate the necessary changes [24].

4 REFERENCE IMPLEMENTATION

4.1 Software Architecture

The overall software architecture of a fail-silent node is de-
picted in Fig. 3, where the major software modules within a
processor of a node and their interactions are summarized.
A processor maintains several message queues and lists:

1) Received Message Queue (RMQ): Contains- valid
messages intended for ordering, received from the
network.

2) Delivered Message Queue; (DMQ),): Contains ordered
messages to be consumed by the application process
Service;.

3) Processed Message Queue (PMQ): Contains unsigned
output messages produced by local application proc-
esses. These messages must be validated by the Com-
parator process before transmission to the final desti-
nation. So, the Sender process is responsible for
transmitting messages in PMQ to the neighbor proc-
essor, as well as to the local Comparator process.

4) External Candidate Message List (ECL): Contains sin-
gly signed messages that have been received from the
neighbor processor for validation.

5) Internal Candidate Message List (ICL): Contains un-
signed messages, each waiting for a matching signed
message to arrive in ECL.

6) Compared Message Queue (CMQ): Contains success-
fully compared and double signed messages (valid
messages) ready to be transmitted over the network.

4.2 Comparison Protocol

The reference implementation uses a very a simple com-
parison protocol: Referring to Fig. 3, the Sender process of a
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From the Network To the Network

From the Link

Fig. 3. Software architecture of a processor in a node.

processor transmits messages from the PMQ to the neigh-
bor, where they get buffered in the neighbor’s message pool
ECL. The Comparator process maintains, for each applica-
tion process Service;, the sequence number of the next mes-
sage to compare (recall that application processes assign
monotonically increasing sequence numbers to new mes-
sages they produce). Using this criterion, the Comparator
matches messages with identical sequence numbers from
ECL and ICL; a comparison that detects a disagreement
indicates a failure. Similarly, an absence of a message for
comparison (after a node specific time-out interval) also
indicates a failure. Once a failure is detected, the compara-
tor process stops, and so does the sender process.

In this simple protocol, the ECL of a processor is per-
mitted to contain more than one correct message from the
neighbor; thus, potentially, a faulty processor can output
more than one late valid message. In a later section, we will
describe the additional synchronization measure necessary
to prevent this from happening.

4.3 Order Protocol with Synchronized Clocks

Our reference implementation of the order protocol, to be
described in this section, makes use of the well-known ap-
proach of using synchronized clocks for message ordering.
The clocks of both processors in the node are assumed to be
synchronized such that the magnitude of the measurable
difference between readings of clocks at any instant is
bounded by a known constant, say €. Because the nonfaulty
processor stops as soon as a failure is detected, the clock syn-
chronization protocol need not be fault-tolerant, and can be
assumed to execute in a fault-free environment. It has been
shown that the lower bound on € is 3/2 [5]; so in a fault-free
environment, € can be taken as 8/2 provided the intersyn-
chronization period is kept small enough so that the effects
due to differences in the running rates of clocks can be ig-
nored. The Order process of a processor timestamps a mes-
sage to be ordered with its local clock reading. A copy of the
timestamped message is sent over the link to the Order proc-
ess of the other processor in the node. If T is the timestamp of
the message received from, or sent to the Order process of

1231

the other processor, then the message becomes stable at
local clock time T + A, where A = 8 + €. Once a message with
timestamp T becomes stable, no valid messages with
timestamp T' < T can be received by an Order process. Sta-
ble messages are enqueued in the appropriate DMQ; in
increasing timestamp order (with the action being taken to
discard, rather than to enqueue a stable message, if its rep-
lica has already been enqueued).

The Order process is composed of three cyclic processes:
Relayer, Transfer, and Deliver (see Fig. 4). The Relayer proc-
ess picks up messages from the RMQ, timestamps them,
and sends them to the other processor in the node. It also
inserts the message into the Ordered Message List (OML).
The Transfer process receives relayed messages from the
link, and performs a timeliness check that rejects any mes-
sage received too early (messages with timestamp less than C
— ¢, where C is the current reading of the processor’s clock)
or received too late (messages with timestamp greater
than C + A). Accepted messages are inserted into the OML.
The Deliver process takes stable messages (messages with
timestamp less than C — A) from the OML, removes dupli-
cates, and enqueues the messages on the appropriate
DMQ;s in increasing order of timestamps.

To the Link

Order

Fig. 4. Order protocol with synchronized clocks.

To compare the ordering speeds of various protocols in
failure-free situations, we will define the actual stability delay
(Z,) for an order protocol in terms of a reliable reference
clock. (Such a clock could be a correct processor’s physical
clock.) When both the processors of a node are correct, ¥, of
an order protocol for a given message from the network is
defined as the reference clock time that elapsed between the
instant a copy of the message is first received by one of the
processors of the node and the instant that message gets
ordered and enqueued in the appropriate DMQ;s of both
the processors in the node. Throughout this paper, we will
assume that the effects of differences in the runnning rates
between the reference clock and any correct processor’s
clock are negligible when intervals such as €, 8, and A are
measured. With this assumption, Z, of the order protocol
just presented will be:

%, = A + min{ae,, A,};
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where 2, (A, 2 0) is the magnitude of the message reception
skew according to the reference clock, i.e., the difference
between the reference clock times when each processor in
the node receives a copy of the message from the network,
g, (0 < g, < g) is the magnitude of the actual clock synchroni-
zation error at the time the message is first received from
the network, and « is the ahead factor which is 1 if the clock
of the processor that first received the message from the
network is ahead of the other processor’s clock, or zero if
either the first processor’s clock is not ahead or A, = 0. Note
that if only one processor receives the message from the
network and the other does not, then A, = oo, but the mes-
sage will be ordered at both the processors:

We will also define X, and X, to be, respectively, the
lower and the upper bound of the actual stability delay of
an order protocol (X, <X, <X ). Therefore, for the above
protocol we have:

Zmin:A;zmax=A+£}andASZaSA+£,

The fixed overhead of at least A units of time implicit in
this order protocol has motivated us to seek enhancements.
We begin by describing a method for improving the above
protocol and then describe new protocols that do not re-
quire the clocks of a node to be kept synchronized.

5 IMPROVED ORDER PROTOCOLS

5.1 Improving the Synchronized Clock Algorithm

The arrival of a relayed message can be used to reduce the
constant stability delay A imposed by the order protocol.
We shall assume that messages sent over the link are re-
ceived in the sent order. Given this fifo assumption, the
timestamp of a received relayed message can be used to
define a new lower bound on the actual stability delay. Fig. 5
will be used to illustrate the idea.

In case (a), a relayed message with timestamp T is re-
ceived and the local clock reading, C, is greater than T. As no
more messages will be received for ordering from the neigh-
bor bearing a timestamp smaller than or equal to T, and any
new local message for ordering will get a timestamp greater
than or equal to C, all messages from that sender for or-
dering (in OML, Fig. 4) with timestamps smaller than or
equal to T are stable.

Case (b) shows the case where a message with timestamp
T is received for ordering from the neighbor and C < T. In
this case, all messages for ordering with timestamp smaller
than C are stable. Note that in this case, it is guaranteed that
the neighbor’s clock is ahead of the processor’s clock, and
also that the message could not have taken more than /2
time in transmission across the link. (Otherwise, it is not
possible to have C < T with & being 8/2.) Therefore, updat-
ing the local clock to T + 1 will not cause the magnitude of
the clock difference to increase beyond &/2, i.e., beyond €.)
With this update, a relayed message with timestamp T re-
ceived by a processor will define a new stabilization inter-
val such that all the messages with timestamp smaller than
or equal to T are stable (case (c)). In other words, any mes-
sage relayed from one processor to the other becomes stable
at the receiving processor as soon as it is received.
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(a) 1 )
Local Clock Time
C-A

Local Clock Time

©

Local Clock Time

C-A
Stable timestamps in accordance with synchronised clock protocol

Stable timestamps assuming FIFO channels
Non-stable timestamps

Fig. 5. Stability intervals.

To derive X, for the modified protocol, let the processor
that is first to receive a message from the network receive it
at reference clock time T,. The other processor will receive
the relayed message at time T, + &, (where 83, 0<8,< 8§, is
the actual link transmission delay) and can immediately
order it. The first processor will be able to order the mes-
sage at time T, + A or at time T, + A, + §, if it receives the
relayed message from the other processor before T, + A. So,
we have:

Z,=min{A, A, + 8,}; and, Zpin = 0; Tppae = 4;and 0 < I, < A

5.2 Order Protocol with Logical Clocks

We can take the idea discussed before a step further and
eliminate the requirement of having the physical clocks of
the processors forming a node to be kept synchronized, and
instead use logical clocks for generating timestamps [14].

In this order protocol, each processor of a node main-
tains two logical clocks (counters), namely the local logical
clock (LLC) and the remote logical clock (RLC), which are
initialized to 1 and 0, respectively. LLC is used to timestamp
messages relayed to the neighbor for ordering, while RLC is
used to store an “estimation” of the neighbor’s LLC. These
clocks are updated in the following way: Whenever a proc-
essor relays a message to its neighbor, it timestamps the
message with the current value of LLC , and increments
LLC by one; whenever a message with timestamp T is re-
ceived from the neighbor, RLC is set to T and LLC is set to
the maximum of its current value and T + 1. These updates
ensure the following properties:

1) messages are relayed to the neighbor bearing in-
creasing timestamps; and

2) the value of RLC of a processor is smaller than that of
the LLC as well as that of its neighbor’s LLC.

Property 2 guarantees that all messages for ordering
with timestamps smaller than or equal to RLC are stable.
So, as before, a relayed message becomes stable at the re-
ceiver processor as soon as it is received, and the actual
stability delay will be:

Y, =A, + 0,

The protocol as presented above has one shortcoming.
Messages at a processor can become stable only after the
arrival of a relayed message from the neighbor (because
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RLC is updated only when a message relayed from the
neighbor is received). However, a processor can only relay
a message if it receives it from the network, so if only one of
the processors receives a message from the network (A, = <o),
it will be prevented from stabilizing that message. To solve
this problem, we discuss a scheme based on time-outs that
allows a processor to update RLC even if the other proces-
sor does not relay a message [20].

When a processor (say Py) relays a message (say m;) with
timestamp T to its neighbor (say I,), it schedules an update
of RLC to value T to occur at time ¢ + 23, where t is the value
read on its physical local clock when m, was relayed. At time
t+ 25, RLC is updated to T only if its value is less than T. The
28 time-out interval follows from the fact that after receiving
m; with timestamp T, LLC of P, will have the value of at least
T + 1; therefore, any message with timestamp smaller than or
equal to T relayed from P, to P; (say m,) will have been re-
layed before P, received ;. In the worst case, this would be
done just before the reception of m,, with m; and m, each
taking  units of time. Thus, P; must wait for at least 28 units
of time before advancing its RLC.

The Order process of this protocol is also composed of the
three cyclic processes which work in a fashion similar to
those discussed in the previous protocol (see Fig. 4). The Re-
layer process picks up a message on its RMQ), timestamps it
with the value T read on LLC, and places the message on its
OML. Then, a copy of the timestamped message is sent over
the link to the neighbor processor. Finally, the processor’s
LLC is incremented by one, and an update of RLC to T is
scheduled to be executed in 20 units of time. The Transfer
process receives a relayed message with timestamp T from
the link, performs a timeliness check (a message is consid-
ered timely if its timestamp is greater than the current value
of RLC), and if timely, places it in the processor’'s OML. LLC
and RLC are then updated if necessary as discussed before.
Messages in OML with timestamps less than or equal to
RLC are stable. Thus, we deduce: '

5, =min{28, A, + 0,}; Zin=0; L0 =28, and 0 < X, <28,

5.3 Asymmetric Order Protocol

We now present a protocol where we assign different roles
to each of the two processors forming a node. We will term
one processor the leader and its neighbor the follower. It is
the responsibility of the leader to determine the order of
processing messages. Having selected a message for proc-
essing, the leader sends a copy of the message to the fol-
lower (the inspiration for this way of building a fail-silent
node comes from the leader-follower replication protocol
for application level processes used in the Delta-4 system
[1], [16]). Due to the simplicity of this ordering mechanism,
there is no need for a special Order process within a proces-
sor. Instead, we will have Receiver processes with different
functionality in the leader and in the follower.

The node works as follows (see Fig. 6); the leader main-
tains a counter whose value is used for assigning unique
identifiers to input messages. An authentic double signed
message received by the Receiver of the leader is tagged
with the counter’s value, and the counter is incremented by
one. The message is then deposited in the appropriate
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DMQ; in increasing order of tag values and a copy of the
message is also sent to the follower across the link. Output
messages from an application process, Service;, follow the
same path as discussed before. Tagged messages from the
leader reach the follower where they also get deposited in
the appropriate DMQ;s. Message buffers ECL, ICL, CMQ,

and the comparator process have the same role as before.
From the From the To the
Network * Network * Network

From the Link From the Link

To the
Network

To'the
Follower Link

To the
Leader Link

Fig. 6. Leader-follower fail-silent node.

The asymmetry introduced by assigning different roles
to the two processors of a node requires us to introduce an
extra mechanism in the follower for detecting late or nonar-
rival of a message for ordering from the leader. A Timing
process (see Fig. 6) is introduced in the follower. The fol-
lower’s Receiver process deposits each authentic double
signed input message received from the network in the Ex-
ternal Received Message List (ERML) with an associated
time-out 1. Copies of messages received from the leader via
the link and on their way to DM(Q,, are deposited in the
Internal Received Message List (IRML). The Timing process
picks up each message in the IRML and resets the time-out
associated with its counterpart (if any) in the ERML. If a
time-out expires, the follower assumes that the leader has
failed to send a message for ordering, and stops the activi-
ties of all the processes in its processor.

Unlike the previous protocols, in order to calculate the
actual stability delay of this protocol it is relevant to iden-
tify the processor that first receives a copy of a particular
input message. We will define A as the difference between
the time that the leader receives a copy of a particular input
message, and the time that the follower receives a copy of
the same message. The actual stability delay for this proto-
col is then given by:

e _J0,if A <O
Y, =Xp =X +3, and X; = {)‘LF’ otherwise;
where X; and Xy are the actual stability delay for leader and
follower, respectively.

The above protocol can be embellished to deal with the
case where a correctly functioning leader does not receive a

message from the network, but the follower does, which
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leads to the node becoming silent. The follower processor
can try to prevent a shut down by feeding the leader with
the missing input message. In this “feedback” version of the
leader-follower protocol, after a time-out 7 has expired, the
follower sends a copy of the missing input message to the
leader in order to have it properly ordered (for simplicity,
this path is not shown in Fig. 6). ‘A second time-out 7', T > 25,
is associated with the message. If this time-out also expires,
then the follower may assume that the leader has failed,
and the follower will cease its own activities. The stability
delays become:

0, if ks <0

L,=Zy =1 48 minfA;p, T +8,), otherwise;.

ar

and X; = {

Also,

Yin=0,%,

max

i =1+1,and 0<E <1+ 1.

A sensible strategy is for the follower to set © = 0 (thus,
as soon as the follower receives a message from the net-
work, it checks for the presence of the corresponding re-
layed message from the leader) and v = 29, thus Z,,, for
this protocol becomes identical to the logical clock protocol.

6 AsYMMETRIC COMPARISON PROTOCOL

The comparator protocol discussed before permitted a node
in the failing state to commit more than one performance
failure. One way of preventing this from happening is to
use a comparison protocol that guarantees that a processor
sends a given message for comparison to its neighbor only
after all previously sent messages have been successfully
compared locally. In order to prevent deadlocks, it is also
necessary that the processors first agree on the order in
which they have to exchange messages for comparison. In
our architecture, a logical way of achieving this agreement
would be to insert an order process between the PMQ and
the Sender process of each processor. The asymmetric or-
dering approach discussed in the previous section provides
a very convenient way of integrating ordering with com-
parison. Accordingly, we present a comparison protocol
based around the leader-follower technique. It is worth
noting that our comparison protocol can be used within a
node that uses any order protocol for input messages
(synchronized clock, logical clock, or the leader-follower);
this is because ordering for input messages is independent
from ordering for output messages. The description to be
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given here concentrates on the message synchronization as-

pects of the protocol, the other aspects remain unchanged.

For the purpose of message comparison then, one proc-
essor is assigned the role of a leader, and the other, the fol-
lower. In the leader, the messages in the PMQ follow the
same path as before (see Fig. 3). However, the following
synchronization between the Sender and the Comparator is
introduced: The Sender is allowed to send a new message
over the link for comparison only if permitted by the Com-
parator, and this permission is granted by the Comparator
after it has finished comparing the current message.

On the follower’s side, messages produced by applica-
tion processes follow a slightly different path, as shown in
Fig. 7. The Comparator compares the message in the ECL

(sent by the leader) with the locally produced one in the
ICL; if the comparison succeeds, the valid message is de-
posited in the CMQ for network delivery and the locally
produced message is deposited in the PMQ for delivery
over the link to the leader. This message will arrive in the
ECL of the leader, get compared and, if successful, the
Comparator process of the leader will then permit the local
Sender process to send the next message for comparison.

To the Network

Fig. 7. Message comparison.

7 PERFORMANCE EVALUATION

In this section, we present the performance figures obtained
after a set of experiments - we have run. Our main objective
has been to assess the degradation in performance suffered
by a node as it is called upon to execute the redundancy
management software not present in an ordinary processor.
Currently, simple checksums are being used as signatures
and so have a minimal impact upon system performance.
The need for more complex signature mechanisms has not
yet been assessed.

We have implemented fail-silent nodes on T800 Inmos
transputers and evaluated their performance under four
protocols for ordering input messages:

1) the reference implementation based on clock syn-
chronization algorithm;

2) logical clocks;

3) leader-follower; and

4) leader-follower with feedback.

All these implementations made use of the asymmetric
message comparison protocol discussed before (for the
cases 3 and 4, the processor acting as the leader for ordering
was also the leader for comparison). The two processors of
a node are directly connected to each other by transputer
links, thereby providing a fast internal path for intranode
communication.

The first experiment consists of a client application proc-
ess executing on a node, and requesting a simple service
from a server application process which executes on a dif-
ferent node. The client process issues a request to the server
process and waits for the response. The server process re-
ceives a request from the client, services it (the actual com-
putation performed is minimal), and sends the response
back to the client. Upon reception of the response message,
the client issues a new request. We have measured the fol-
lowing time intervals for the server process:
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TABLE 1
PERFORMANCE FIGURES FOR A CLIENT-SERVER SYSTEM
Model/Delays(ms) ID oD ND dav | hav
Synchronized Clocks 20.21 4.09 24.30 3.47 1.44
Logical Clocks 7.64 3.18] 10.82 3.94 1.50
Leader-Follower 4.34 2.06 6.40 2.32 1.23
Leader-Follower (feedback) 4.79 2.48 7.27 3.07 0.89

1) Input delay (ID): The Input delay measures the time
interval between a message entering the node (the
earliest of the reception times at the processors) and
the message being last removed from DMQ; by one of
the processors. The delay is made up of the actual
stability delay for a message (Z,) plus the time taken
up by authentication and queue manipulation within
the node; it reflects the overhead involved in ordering
messages at a node.
Output delay (OD): The Output delay measures the
time interval between a message becoming ready for
comparison at both the processors (i.e., largest of the
two times the message is entered in the PMQ) and the
message being output by the node (i.e., being first
output by one of the processors). It reflects the time
taken for a message to be compared, and output.

3) Node delay (ND): Finally, the Node delay is simply the
sum of the input and output delays (ID + OD). It re-
flects the earliest response from a node to a given input
message, 1.e., the overhead associated with replication.

2

~

We have collected data for 10 runs of experiments; each
run involves the client node sending 100 request messages of
64 bytes. For each one of the time intervals discussed above,
we have averaged the values measured for each of the re-
quests processed. We have also measured the average link
transmission delay (3,,), and the average message reception
skew (). The average delays obtained are summarized in
Table 1, where the figures are expressed in milliseconds.

1) Unreplicated Node: We have also executed the ex-
periment using single processor nodes. As we would
anticipate, for the case of ordinary processors, the
overheads are small; they exist because it is still nec-
essary to enqueue and dequeue messages in the sys-
tem. The measured node delay for the server
amounted to about 1 ms, of which about 0.7 ms was
due to input overheads, whilst about 0.3 ms was due
to output overheads.

Nodes with synchronized clock order protocol: Ex-
periments under worst case circumstances deter-
mined the smallest safe value for & to be 12 ms. This
reference implementation of a node uses a simplified
version of the clock synchronization algorithm pre-
sented in [9]. As stated before, € can be set to §/2,
hence we fixed € = 6 ms which gives the stability de-
lay, A, of 18 ms (since A = 8 + £). Measurements indi-
cated that the actual stability delay is almost the same
as A, so the values shown in Table 1 for ID indicate
that the overheads due to message authentication and
queue manipulation take up to 2.21 ms.

Nodes with logical clock order protocol: Using logi-
cal clocks, the actual stability delay would be around
8,y + A,y Assuming the overheads due to message

2

~

3

=

authentication and queue manipulation to be same as
above, the results given in Table 1 show that this ex-
pectation of X, is almost realized in practice. Unlike
the previous protocol, this and the asymmetric proto-
cols have their performance proportional to the actual
values of transmission delays and message reception
skews.

4) Nodes with leader-follower order protocols: For the
asymmetric order protocols, it is necessary to examine
separately the performance of leader and follower
processors since they are executing different proto-
cols. From the analysis presented in the previous sec-
tion, ID corresponds to the follower’s stability delay
(Z,=Zp=Z; + §,), plus any overhead due to message
authentication and queue manipulation. In our ex-
periment, the two nodes were directly connected by
leader-to-leader and follower-to-follower transputer
links. Therefore, because the follower always outputs
messages before the leader, most of the time it will
also be the follower who will receive a copy of a par-
ticular input message first. Thus, most of the time we
will have Ay g > 0, and consequently X, = A g + 6, The
values shown in Table 1 indicate that the message
handling overheads for the asymmetric protocols
(0.79 ms for the leader-follower, and 0.83 ms for the
leader-follower with feedback) are close to those ex-
perienced by the unreplicated node. This is because
the functions of the order protocol are incorporated
into the Receiver process (the overheads are slightly
bigger because in the replicated node messages must
be authenticated). From the performance figures pre-
sented for the two leader-follower protocols, we see
that the extra message traffic introduced by the feed-
back mechanism has hardly any impact on the per-
formance of the node.

Despite the fact that all the implementations make use of
the same comparison protocol, figures in Table 1 show that
a node with an asymmetric order protocol for input mes-
sages suffers less output delay than the node with the
symmetric one. The reason for this is that the asymmetry
introduced for input ordering and for comparison helps the
follower at comparison time: By the time a message be-
comes available in the ICL (see Fig. 7), the leader’s message
will usually be available the ECL.

Our next experiment was performed to evaluate the im-
pact of the size of input messages (messages that need to be
ordered) on the performance of a node. The size of mes-
sages will affect intranode message transmission times,
consequently affecting both input and output delays.
Transputers use a byte-stream protocol for link-level com-
munication. On our system, the end-to-end message trans-
mission delay between two transputers varied from 1.8 ms
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Fig. 8. Impact of message size.

(messages of size 256 bytes) to 3.3 ms (messages of size 2,048
bytes). Using the same client-server system, we measured the
node delay for the various order protocols as the message
size was increased from 256 to 2,048 bytes (see Fig. 8).

The impact of message size on order protocols will not
be uniform. The increased transmission delay will have
little impact on the performance of the order protocol based
on synchronized clocks, because its stability delay is based
on the worst case transmission delay. Thus, the node delay
for the synchronized clock protocol suffers a moderately
small increase of 1.24 ms (from 24.76 ms to 26.00 ms),
mainly due to the increased output delay. On the other
hand, as we would expect, other protocols would be af-
fected more strongly: The values in Fig. 8 show an increase
of 3.57 ms for the logical clock protocol and increases of
4.17 ms, and 3.16 ms for the leader-follower, and the leader-
follower with feedback protocols, respectively.

In our last experiment, we measured the maximum
throughput: The maximum rate a node with a given order
protocol can order and compare messages. We have com-
pared the throughput of each node configuration with the
throughput of the unreplicated node. For this experiment
we have used a fixed message size of 64 bytes and a modi-
fied version of the client process. The client process now
does not wait for the response to arrive before issuing the
next request; rather it sends a continuous stream of request
messages. The experiment simulates the environment where
a server PTOCGSS always has input messages for processing.
We have measured the rate (messages per second) at which
messages were deposited in the CMQ by the comparator of
the processor that first output a message (see Fig. 3). This
output rate (OR) was then used to obtain the throughput
ratio TR: (OR/ ORunreplicated) where ORunreplicated is the output
rate measured for the unreplicated node. The figures ob-

tained are presented in Table 2,
Under a heavy load, the ordering protocols will have

their performance closer to the worst case. We see that the
performance of the node with logical clock protocol is al-
most the same as the synchronized clock based node. The
asymmetric protocols still outperform the other protocols.
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TABLE 2
THROUGHPUT OF A HEAVILY LOADED NODE

Model OR (msg/sec)| TR (%)

Unreplicated node 329 100.00
Synchronized Clocks 66 20.06
Logical Clocks 68 20.67
Leader-Follower 130 39.51
Leader-Follower (feedback) 111 33.74

8 CONCLUDING REMARKS

We have described our work on building efficient fail-silent
nodes. We first performed a reference implementation that
made use of a simple comparison and order protocols. We
have then investigated how the performance of the order
protocol can be improved; this led to a much simpler proto-
col based purely on logical clocks, obviating any need for
keeping intranode clocks explicitly synchronized. We have
also designed and implemented asymmetric order protocols.
We then described how the asymmetric ordering approach
can also be exploited for the construction of an efficient mes-
sage comparison protocol. Extensive experiments were per-
formed to evaluate the performance of nodes under these
order protocols. The results obtained indicate that adopting
the asymmetric leader-follower mechanism within a fail-
silent node for message comparison as well as for ordering
represents the best design choice. It must be stated here that
it is possible to design a symmetric comparison protocol that
does not require processors to decide order for exchanging
messages for comparison. In such a protocol, the Sender and
Comparator processes of a processor ensure that at any given
time there is no more than one message that has been sent for
comparison before being locally compared first. Combining
this protocol with other symmetric ordering protocols dis-
cussed earlier could result in other efficient node designs.
Our performance figures have been obtained after quite
a careful engineering of the message passing software. It is
unlikely, therefore, that significantly better performance
can be obtained through improved message passing
mechanisms, so the leader-follower node described here
probably indicates the limits of what can be achieved using
standard “off-the-shelf” processors and asymmetric proto-
cols. In our particular implementation, the performance im-
pact of using fail-silent nodes is to produce a delay in re-
sponse of about 6 ms per message in a lightly loaded system.
Second, under worst case loading, a fail-silent node can
achieve about 39% throughput rate of its nonreplicated
counterpart. It should be appreciated that this price in per-
formance becomes significant in only those distributed appli-
cations where processes interact frequently. If, on the other
hand, application processes are involved in computations
requiring little interactions, then the performance impact of
adding software-implemented fail-silence can be quite small.
Thus, bearing in mind the discussion presented at the start of
the paper on the advantages of software-implemented fail-
silent nodes over hardware-implemented nodes, we can an-
ticipate a range of applications for which these software-
implemented nodes offer an attractive alternative to their
hardware-implemented counterparts. We conclude by high-
lighting some of our recent work that further illustrates the
advantages of the software-implemented approach.
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The software approach makes it possible to apply the fail-
silence measures selectively, only to those processes that are
deemed critical in a given application. The Voltan system
software that uses the asymmetric leader-follower mecha-
nism is sufficiently lean to make it practical to use it as a
software library for constructing self-checking process-pairs.
Each member of a process-pair contains a number of threads
that together implement the entire Voltan message ordering
and self-checking mechanisms. We have implemented the
system software that permits a collection of distributed proc-
esses to be replicated transparently giving an equivalent col-
lection of self-checking Voltan processes [3].

The software approach also makes it possible to extend
the capabilities of a node with relative ease. We have pro-
posed a simple, but significant embellishment to the capa-
bility of a fail-silent node; the resulting node has been
termed a fail-stable node [8]. In addition to the fail-silence
property, a © + 1 processor fail-stable node has the second
property of providing a stable store: The node maintains a
log whose contents survive any internal failure. The log is
accessible to other nodes in the system, and can be used for
constructing the most recent states of processes running on
the node before the node stopped. The state information
provided by a halted node facilitates easy and prompt re-
starting of the stopped processes on other nodes. Such a
node, therefore, forms an attractive building block for con-
structing available distributed systems.
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