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ABSTRACT

In this dissertation, we defend the thesis that a fault-tolerant program is a com-

position of a fault-intolerant program and a set of fault-tolerance components. To

validate this thesis, we identify a basis set of fault-tolerance components, namely

detectors and correctors. We show that depending upon the desired level of fault-

tolerance, detectors, correctors, or both are necessary and suÆcient for designing a

rich class of fault-tolerant programs. Moreover, the fault-tolerant programs designed

using existing methods such as replication and Schneider's state machine approach

can be alternatively designed in terms of detectors and correctors.

Using these fault-tolerance components, we present a method for designing multi-

tolerant programs, i.e., programs that tolerate multiple types of faults while providing

potentially di�erent levels of tolerance to each type of fault. Our method accommo-

dates all types of faults, including process faults, communication faults, hardware

and software faults, network failure and security intrusions, and it can be used in sev-

eral application domains such as distributed systems, computer networks and parallel

systems.

Using several examples, we illustrate how our fault-tolerance components can be

used in the design of several fault-tolerant programs. Among these examples, we

discuss in detail the problem of distributed reset. A distributed reset operation reini-

tializes a distributed system to a given global state. Our distributed reset program
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is the �rst bounded state program that masks fail-stop and repair of processes and

stabilizes in the presence of transient faults. In other words, it guarantees that if only

fail-stop and repair faults occur then every reset operation is correct and if transient

faults occur then eventually the program reaches a state from where subsequent reset

operations are correct. Towards designing this distributed reset program, we have de-

signed multitolerant components that are useful in adding multitolerance to several

other applications.

We also argue that the decomposition of a fault-tolerant program into its fault-

tolerance components is useful in veri�cation of that program. Towards this end, we

present a case study that illustrates our experience in verifying Dijkstra's token ring

program with the theorem prover PVS.
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CHAPTER 1

INTRODUCTION

Fault-tolerance is the ability of a system to deliver desired level of functionality

in the presence of faults that subject it to a less than ideal environment. This ability

to function in an adverse environment is crucial in many systems, including telecom-

munication, electronic commerce, manufacturing and power systems. Moreover, as

these systems are becoming more interdependent and their expected level of service

is increasing, the need for fault-tolerance in these systems is also increasing.

Various methods have been proposed in the literature for designing fault-tolerance:

These methods include replication, Schneider's state machine approach [59], check-

pointing and recovery [37,62] and recovery blocks [57]. These methods are limited in

terms of the types of faults they can handle as well as the types of systems they can

be employed in.

For example, in a replication based system, the fault-tolerant system consists

of multiple copies of the fault-intolerant system and the output of the system is

obtained by composing the outputs of these fault-intolerant systems. Such replication

based methods can only deal with faults such as fail-stop of processes and Byzantine

processes. Moreover, replication based techniques can be used only in systems where

the fault-intolerant system is deterministic, i.e., for any given input there is only one
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correct output. Schneider's state machine approach which generalizes replication to

the client-server model also su�ers from the same limitations. In a checkpointing-

and-recovery based system, after the detection of a fault, the system is restored to

some previous state in its computation. For this reason, checkpointing-and-recovery

method can only deal with systems that are subject to detectable faults such as

fail-stop and repair of processes, channel failures and message loss.

These limitations of the existing methods are of a serious concern in the developing

modern fault-tolerant systems that are subject to various types of faults such as

process faults, communication faults, hardware faults, software faults, network failure,

security intrusions, safety hazards, con�guration changes and load variations. The

development of these systems is further complicated since these faults may occur at

any time: in particular, a fault of one type may occur while the system is recovering

from another. Also, it is often necessary to modify existing fault-tolerant systems

to deal with new types of faults that were not considered in the original design.

Moreover, application-speci�c methods for fault-tolerance are not desirable in the

design of these systems since they rarely allow the techniques used in one design to

be reused in other designs.

In sum, there is a need for a systematic method for the design of fault-tolerant

systems that

1. can deal with a rich class of faults,

2. can be used to make a rich class of systems fault-tolerant,

3. provides the potential to design eÆcient fault-tolerant programs,

4. can be used to incrementally add tolerance to a new type of fault, and
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5. is not application-dependent.

In this dissertation, we present such a systematic method that is based on identi-

fying the basic components in a fault-tolerant system.

1.1 Thesis

In this dissertation, we present a systematic method for designing fault-tolerance

that is based on the following thesis:

A fault-tolerant program is a composition of a fault-intolerant

program and a set of fault-tolerance components

This thesis suggests how the fault-tolerance components can be used in the design

of new fault-tolerant programs as well as in the analysis of a given fault-tolerant

program as follows:

1. The thesis suggests that given a fault-intolerant program (which provides the

functionality in the absence of faults but cannot deal with faults), if suitable

fault-tolerance components (which only provide the fault-tolerance capability)

can be designed and added to that fault-intolerant program then the resulting

program will be fault-tolerant.

2. The thesis also suggests that given a fault-tolerant program, it can be decom-

posed into a fault-intolerant program and a set of fault-tolerance components. It

follows that such a decomposition can be used to analyze a given fault-tolerant

program.
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Towards defending this thesis, in this dissertation, we address the following ques-

tions:

1. Is there a basis set of fault-tolerance components?

In this dissertation, we identify two fault-tolerance components, namely detec-

tors and correctors that form one such basis. We show that for a rich class

of fault-tolerant programs, including those that can be designed using existing

methods, these components are both necessary and suÆcient: the necessity is

shown by the fact that any program in this class contains detectors and/or cor-

rectors, and the suÆciency is shown by the fact that any program in this class

can be designed in terms of detectors and/or correctors (cf. Chapters 3 and 4).

2. How can these components be used in the design of fault-tolerant programs,

including multitolerant [11] programs, that tolerate multiple types of faults while

providing di�erent levels of tolerance to each type of fault?

We present a method that uses detectors and correctors and allows stepwise

addition of fault-tolerance properties to a given fault-intolerant program. The

method shows how to compute the speci�cation of the desired fault-tolerance

components and how to design these components in an hierarchical fashion in

terms of smaller components. It also provides the ability to incrementally add

fault-tolerance to an existing system (cf. Chapters 5 and 6).
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3. What are the bene�ts of designing a program in terms of detectors and correc-

tors?

Using detectors and correctors, we have presented fault-tolerant solutions for

several problems such as distributed reset [38], leader election [10], mutual ex-

clusion [12], data transfer [12], network management [42], resource synchroniza-

tion [41] and Byzantine agreement [39]. These solutions outperform previously

known solutions in terms of eÆciency or the tolerance level. In this dissertation,

we present some of these solutions in Chapters 5, 6 and 8.

4. What are the bene�ts in analyzing a program in terms of its detectors and cor-

rectors?

We have used the decomposition of a program into its components in the veri�-

cation of several fault-tolerant programs. Our experience shows that the decom-

position of a fault-tolerant program into detectors and correctors often provides

a better understanding of that program, and such a decomposition is also useful

in veri�cation. We �nd that the advantages of the component-based veri�cation

also apply in mechanical veri�cation of fault-tolerant programs. In Chapter 9,

we discuss our experience in the mechanical veri�cation of Dijkstra's token ring

program [25].

5. How does our method compare with existing methods for designing fault-tolerance?

The use of detectors and correctors is more general than existing methods in the

sense that programs designed using the existing methods can be alternatively

designed in terms of detectors and correctors. More speci�cally, we show how

programs designed using replication and Schneider's state machine approach
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can be alternatively designed in terms of detectors and correctors (cf. Chapter

7).

1.2 Outline of the Dissertation

We proceed as follows: In Chapter 2, we give a formal de�nition of programs,

problem speci�cations, faults and fault-tolerances. Using these de�nitions, in Chap-

ters 3 and 4, we identify a basis set of fault-tolerance components. We identify the

role of these components in Chapters 3, 4 and 5. In Chapter 6, we present our method

for designing multitolerance. In Chapter 7, we show how the use of detectors and

correctors relates to existing methods. Subsequently, in Chapter 8, we show how

we used the detectors and correctors in the design of a multitolerant and bounded

distributed reset program. In Chapter 9, we illustrate how the decomposition of

a fault-tolerant program into its fault-tolerance components is useful in mechanical

veri�cation. Finally, we make concluding remarks in Chapter 10.

6



CHAPTER 2

PRELIMINARIES

Recall the thesis presented in the previous chapter: \A fault-tolerant program is

a composition of a fault-intolerant program and a set of fault-tolerance component".

Towards validating the thesis, we �rst need to formally de�ne what a program is,

what a fault is, what it means for a program to be fault-tolerant, and how fault-

tolerance components are composed with a fault-intolerant program. In this chapter,

we provide these de�nitions that enable us to de�ne the fault-tolerance components

in the next two chapters.

First, we formalize a program based on the work by Chandy and Misra [22],

and then de�ne several program compositions that are used in adding fault-tolerance

components to a fault-intolerant program (cf. Section 2.1). Intuitively, a program is

represented in terms of its state transitions. We choose this notation as it readily in-

cludes programs in any imperative language. Then, we de�ne problem speci�cations

based on the work by Alpern and Schneider [3] (cf. Section 2.2). A problem speci�ca-

tion is represented as a set of state sequences. Subsequently, we adopt from the work

by Arora and Gouda and represent faults also as state transitions (cf. Section 2.3).

We choose this representation as it allows us to model a rich class of faults. Finally,

we de�ne what it means for a program to be fault-tolerant (cf. Section 2.4).
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2.1 Programs

De�nition. A program is a set of variables and a �nite set of actions. Each

variable has a prede�ned nonempty domain. Each action has a unique name, and is

of the form:

hnamei :: hguardi �! hstatementi

The guard of each action is a boolean expression over the program variables. The

statement of each action is such that its execution atomically updates zero or more

program variables.

Notation. To conveniently write an action as a restriction of another action, we use

the notation

hname0i :: hguard0i ^ hnamei k hstatement0i

to de�ne an action hname0i whose guard is obtained by restricting the guard of action

hnamei with hguard0i, and whose statement is obtained by superposing the statement

of action hnamei with hstatement0i. Operationally speaking, hname0i is executed only

if the guard of hnamei and the guard hguard0i are both true. And, to execute hname0i,

both the statement of hnamei and hstatement0i are executed atomically. Likewise, to

conveniently write a program as a restriction of another program, we use the notation

hguardi ^ hprogrami k hstatement0i

to de�ne a program consisting of the set of actions hguardi ^ ac k hstatement0i for

each action ac of hprogrami. (End of Notation.)
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Let p, q and p0 be programs.

De�nition (State). A state of p is de�ned by a value for each variable of p, chosen

from the prede�ned domain of the variable.

De�nition (State Predicate). A state predicate of p is a boolean expression

over the variables of p .

Note that a state predicate may be characterized by the set of all states in which

its boolean expression is true. We therefore use sets of states and state predicates

interchangeably. Thus, conjunction, disjunction and negation of sets is the same as

the conjunction, disjunction and negation of the respective state predicates.

De�nition (Enabled). An action of p is enabled in a state i� its guard is true in

that state.

2.1.1 Program Compositions

De�nition (Parallel ( [] ) Composition). The parallel composition of p and q,

denoted as p [] q, is a program whose actions are the union of the actions of p and

that of q .

De�nition (Restriction ( ^ ) Composition). Let Z be a state predicate of p.

The restriction of p by Z, denoted as Z ^ p, is a program whose actions are of the

form Z ^ g �! st, for each action g �! st of p .

De�nition (Sequential ( ; ) Composition). Let Z be a state predicate of

p [] q. The sequential composition of p and q with respect to Z, denoted as p ;Z q, is

p [] (Z ^ q) .

Notation. In a `; composition' when the predicate Z is clear from the context, we

write p; q to mean p ;Z q .
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Remark. Note that in a sequential composition p ;Z q, p may continue to execute

after Z becomes true. However, q may execute only in states where Z is true. If Z is

true then p and q may execute concurrently.

De�nition (Computation). A computation of p is a fair, maximal sequences of

states s0; s1; ::: such that for each j, j > 0, sj is obtained from state sj�1 by executing

an action of p that is enabled in the state sj�1. Fairness of the sequence means

that each action in p that is continuously enabled along the states in the sequence

is eventually chosen for execution. Maximality of the sequence means that if the

sequence is �nite then the guard of each action in p is false in the �nal state.

Let S be a state predicate.

De�nition (S-computations). The S-computations of p, denoted as p j S, is the

set of computations of p that start in a state where S is true.

De�nition (Encapsulates). p0 encapsulates p i� each action in p0 that updates

variables of p is of the form g0 ^ ac k st0, where ac is an action of p and st0 does not

update variables of p .

Notation. When variables of a program are clear from the context, we omit them

and simply present the actions of the program.

2.2 Problem Speci�cation

De�nition. A problem speci�cation is a set of sequences of states that is suÆx

closed and fusion closed. SuÆx closure of the set means that if a state sequence � is

in that set then so are all the suÆxes of �. Fusion closure of the set means that if

state sequences h�; x; 
i and h�; x; Æi are in that set then so are the state sequences
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h�; x; Æi and h�; x; 
i, where � and � are �nite pre�xes of state sequences, 
 and Æ

are suÆxes of state sequences, and x is a program state.

Note that the state sequences in a problem speci�cation may be �nite or in�nite.

Following Alpern and Schneider [3], it can be shown that any problem speci�cation is

the intersection of some \safety" speci�cation that is suÆx closed and fusion closed

and some \liveness" speci�cation, where safety and liveness speci�cation are de�ned

as follows:

De�nition (Safety). A safety speci�cation is a set of state sequences that meets

the following condition: for each state sequence � not in that set, there exists a pre�x

� of �, such that for all state sequences �, �� is not in that set (where �� denotes

the concatenation of � and �).

De�nition (Liveness). A liveness speci�cation is a set of state sequences that

meets the following condition: for each �nite state sequence � there exists a state

sequence � such that �� is in that set.

De�ned below are some examples of problem speci�cations, namely, generalized

pairs, closures, and converges to. For these examples, let S and R be state predicates.

De�nition (Generalized Pairs). The generalized pair (fSg; fRg) is a set of

state sequences, s0; s1; ::: such that for each j; j � 0, if S is true at sj then R is true

at sj+1.

De�nition (Closure). The closure of S, cl(S), is the set of all state sequences

s0; s1; ::: where for each j; j � 0, if S is true at sj then S is true at each k; k � j.

De�nition (Converges to). S converges to R is the set of all state sequences

s0; s1; ::: in the intersection of cl(S) and cl(R) such that if there exists i; i � 0, for

which S is true at si then there exists k, k� i, for which R is true at sk.
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Note that (fSg; fSg) = cl(S) = S converges to S.

2.2.1 Program Correctness with respect to a Problem

Speci�cation

Let SPEC be a problem speci�cation.

De�nition (State Projection). The projection of a state of p0 on p (respectively

SPEC) is the state obtained by considering only the variables of p (respectively

SPEC).

De�nition (Computation Projection). The projection of a computation of p0

on p (respectively SPEC) is the sequence of states obtained by projecting each state

in that computation on p (respectively SPEC) .

De�nition (Re�nes). p0 re�nes p (respectively SPEC) from S i� the following

two conditions hold:

� S is closed in p0, and

� For every computation of p0 that starts in a state where S is true, the pro-

jection of that computation on p (respectively SPEC) is a computation of p

(respectively SPEC).

Notation. We use `a computation of p is in SPEC' to mean the projection of that

computation on SPEC is in SPEC. Also, if c is a computation of p, we use the term

`c 2 SPEC' to mean that the projection of c on SPEC is in SPEC.

De�nition (Violates). p violates SPEC from S i� it is not the case that p

re�nes SPEC from S .

De�nition (Maintains). Let � be a pre�x of a computation of p. The pre�x �

maintains SPEC i� there exists a sequence of states � such that �� 2 SPEC.
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For convenience in reasoning about programs that re�ne special cases of problem

speci�cations, we introduce the following notational abbreviations.

De�nition (Generalized Hoare-triples). fSg p fRg i� p re�nes the generalized

pair (fSg; fRg) from true.

De�nition (Closed in p). S is closed in p i� p re�nes cl(S) from true.

Note that it is trivially true that the state predicates true and false are closed in

p.

De�nition (Converges to in p). S converges to R in p i� p re�nes S converges to

R from true.

Informally speaking, proving the correctness of p with respect to SPEC involves

showing that p re�nes SPEC from some state predicate S. (Of course, to be useful,

the predicate S should not be false.) We call such a state predicate S an invariant of

p. Invariants enable proofs of program correctness that eschew operational arguments

about long (sub)sequences of states, and are thus methodologically advantageous.

De�nition (Invariant). S is an invariant of p for SPEC i� p re�nes SPEC from

S.

One way to calculate an invariant of p is to characterize the set of states that

are reachable under execution of p starting from some designated \initial" states.

Experience shows, however, that for ease of proofs of program correctness one may

prefer to use invariants of p that properly include such a reachable set of states. This

is a key reason why we have not included initial states in the de�nition of programs.

Notation. Henceforth, whenever the problem speci�cation is clear from the context,

we will omit it; thus, \S is an invariant of p" abbreviates \S is an invariant of p for

SPEC ".
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2.3 Faults

The faults that a program is subject to are systematically represented by actions

whose execution perturbs the program state. We emphasize that such representation

is possible notwithstanding the type of the faults (be they stuck-at, crash, fail-stop,

omission, timing, performance, or Byzantine), the nature of the faults (be they per-

manent, transient, or intermittent), or the ability of the program to observe the e�ects

of the faults (be they detectable or undetectable).

De�nition (Fault-class). A fault-class for p is a set of actions over the variables

of p.

Let SPEC be a problem speci�cation, T be a state predicate, S an invariant of

p, and F a fault-class for p.

De�nition. (Computation in the presence of faults). A computation of p

in the presence of F is a sequence of states s0; s1; ::: that is p-fair and p-maximal such

that for each j; j > 0, sj is obtained from sj�1 by executing an action of p or an action

of F that is enabled in sj�1, and jfj : sj is obtained from sj�1 by executing an action

of Fgj is �nite. By p-fairness, we mean that for each action of p that is continuously

enabled along the states in the sequence is eventually chosen for execution. And, by

p-maximality, we mean that if the sequence is �nite then the guard of each action in

p is false in the �nal state.

Notation. We overload [] for combining programs and faults. More speci�cally,

we use the notation p [] F to mean the union of actions of p and F . However, a

computation of p [] F is only p-fair and p-maximal.

De�nition (Preserves). An action ac preserves a state predicate T i� execution

of ac in any state where T is true results in a state where T is true.

14



De�nition (Fault-span). T is an F -span of p from S i� S ) T , T is closed in p,

and each action of F preserves T .

Thus, at each state where an invariant S of p is true, an F -span T of p from S is

also true. Also, like S, T is also closed in p. Moreover, if any action in F is executed

in a state where T is true, the resulting state is also one where T is true. It follows

that for all computations of p that start at states where S is true, T is a boundary

in the state space of p up to which (but not beyond which) the state of p may be

perturbed by the occurrence of the actions in F .

Notation. Henceforth, we will ambiguously abbreviate the phrase \each action in

F preserves T" by \T is closed in F". And, whenever the program p and SPEC is

clear from the context, we will omit it; thus, \S is an invariant" abbreviates \S is an

invariant of p for SPEC", \T is a fault-span" abbreviates \T is a F -span of p", and

\F is a fault-class" abbreviates \F is a fault-class for p".

2.4 Fault-Tolerance Speci�cations

In the absence of faults, a program should re�ne its problem speci�cation. In

the presence of faults, however, it may not re�ne its speci�cation, it may re�ne

some (possibly) weaker `tolerance speci�cation'. Below, we de�ne some tolerance

speci�cations that occur often in practice. Towards de�ning the nonmasking tolerance

speci�cation of SPEC, we use the following notation.

Notation. We use S� to denote a �nite sequence of states where S is true in each

state. Thus, (true)� denotes an arbitrary �nite sequence of states. Also, if � is a

�nite sequence of states and � is a sequence of states, then �� is concatenation of

� and � . And, if � is a set of �nite sequence of states and � is a set of sequence of
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states, then �� = f �� : � 2 � and � 2 � g. Thus, (true)�SPEC denotes the set

of sequences which have a suÆx in SPEC.

De�nition (Masking tolerance speci�cation of SPEC). The masking toler-

ance speci�cation of SPEC is SPEC.

De�nition (Fail-safe tolerance speci�cation of SPEC). The fail-safe tol-

erance speci�cation of SPEC is the smallest safety speci�cation containing SPEC.

De�nition (Nonmasking tolerance speci�cation of SPEC). The nonmask-

ing tolerance speci�cation of SPEC is (true)�SPEC, i.e., the nonmasking tolerance

speci�cation of SPEC is the set of sequence which have a suÆx in SPEC.

Using these de�nitions, we are now ready to de�ne what it means for a program

to tolerate a fault-class F . With the intuition that a program is F -tolerant for SPEC

if it re�nes SPEC in the absence of faults and it re�nes a tolerance speci�cation of

SPEC in the presence of F , we de�ne `F -tolerant for SPEC from S' as follows:

De�nition (F -tolerant for SPEC from S). p is masking F -tolerant for SPEC

from S (respectively nonmasking F -tolerant for SPEC from S or fail-safe F -tolerant

for SPEC from S) i� the following two conditions hold:

� p re�nes SPEC from S, and

� there exists T such that T ( S and p [] F re�nes the masking tolerance speci-

�cation of SPEC from T (respectively the nonmasking tolerance speci�cation

of SPEC from T or the fail-safe tolerance speci�cation of SPEC from T ) .

We de�ne stabilizing tolerance as a special case of nonmasking tolerance where

the program recovers from an arbitrary state.
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De�nition (Stabilizing F -tolerant for SPEC from S). p is stabilizing F -

tolerant for SPEC from S i� the following two conditions hold:

� p re�nes SPEC from S, and

� p [] F re�nes the nonmasking tolerance speci�cation of SPEC from true

The type of tolerance characterizes the extent to which the program re�nes SPEC

in the presence of faults. Of the three, masking is the strictest type of tolerance:

computations of the program in the presence of faults are always in SPEC. Fail-safe

is less strict than masking: computations of the program in the presence of faults

are in the minimal safety speci�cation that contains SPEC. Nonmasking is also less

strict than masking: computations of the program in the presence of faults have a

suÆx in SPEC. Stabilizing tolerance is a special case of nonmasking tolerance, where

the F -span is true.

Notation. In the sequel, whenever the speci�cation SPEC and the invariant S

are clear from the context, we omit them; thus, \masking F -tolerant" abbreviates

\masking F -tolerant for SPEC from S", and so on. Also, we use the term \masking

tolerant to F" to mean \masking F -tolerant".

2.5 A Note on Assumptions

For the reader's convenience, we reiterate and justify the assumptions made in

this dissertation and provide an argument for their non-restrictiveness.

Assumption 1 : Problem speci�cations are suÆx closed and fusion closed.

SuÆx closure allows nonmasking tolerance to capture the intuition that the ex-

ecution of a nonmasking tolerant program has a suÆx in the problem speci�cation.
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Without this assumption, to achieve nonmasking tolerance, the program would have

to be restored to initial states in the problem speci�cation, and restoring the program

to an initial state may not always be desirable. SuÆx closure and fusion closure also

simplify the presentation of detectors and correctors. More speci�cally, they are used

to show the existence of detection predicates used in detectors.

This assumption is justi�ed by the observation that conventional speci�cation

languages typically yield speci�cations that are both suÆx closed and fusion closed.

Moreover, even if a given speci�cation is not suÆx closed and/or fusion closed, based

on the following observation, the results in this dissertation can still be applied:

Given a set of sequences L that is not suÆx closed and/or fusion closed, it is possible

(by adding a \history" variable) to construct a set L0 such that for a program p, all

computations of p that start at some \initial states" are in L i� p0 re�nes L0 from some

state predicate, where p0 is a program obtained by modifying p such that the history

variable is updated appropriately. Thus, if the given speci�cation is not suÆx closed

or fusion closed it is still possible to determine the detection predicates, although

they may depend on the added history variable.

Assumption 2 : The number of fault occurrences in a computation is �nite.

This assumption shows up in the de�nition of `a computation in the presence of

faults'. The motivation behind this assumption is that it is in general impossible to

guarantee liveness if faults occur forever. The results from our theory are applicable

if eventually faults stop for a long enough time for the program to make progress.

This assumption is not restrictive in the following sense: If a fault happens in-

�nitely often and the liveness condition at hand can still be satis�ed then we can get

around this assumption by treating the fault actions as program actions.
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CHAPTER 3

DETECTORS : A BASIS OF FAIL-SAFE

FAULT-TOLERANCE

In Chapter 2, we considered three types fault-tolerant programs: fail-safe, non-

masking and masking. In this chapter, we identify the �rst of the two fault-tolerance

components, detector, that forms a basis of fail-safe fault-tolerance. Towards showing

that detectors form a basis of fail-safe fault-tolerance, we show that (1) detectors

are suÆcient to design fail-safe fault-tolerant programs, i.e., a rich class of fail-safe

fault-tolerant programs can be designed using detectors, and (2) detectors are nec-

essary to design fail-safe fault-tolerance, i.e., a rich class of fail-safe fault-tolerant

programs contain detectors. We also note that the commonly used techniques in de-

signing fail-safe fault-tolerant programs such as comparators, error detection codes,

consistency checkers, watchdog programs, snoopers, alarms, snapshot procedures, ac-

ceptance tests, and exception conditions are instances of detectors.

We proceed as follows: First, we give a formal de�nition of a detector (cf. Section

3.1). Then, we show how detectors can be constructed in an hierarchical and eÆcient

manner (cf. Section 3.2). Subsequently, we show that detectors are suÆcient and

necessary in the design of fail-safe fault-tolerance (cf. Sections 3.3 and 3.4). Finally,
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we present suÆciency conditions that ensure that when a detector is added to a

program, the detector and the program do not interfere with each other.

3.1 De�nition

De�nition (detects). Let X and Z be state predicates. Let `Z detects X' be

the problem speci�cation that is the set of all sequences, s0; s1; ::: that satisfy the

following three conditions:

� (Safeness) For each i; i � 0, if Z is true at si then X is also true at si. (In other

words, Z ) X at si.)

� (Progress) For each i; i � 0, if X is true at si then there exists k; k � i, such

that Z is true at sk or X is false at sk.

� (Stability) For each i; i � 0, if Z is true at si then Z is true at si+1 or X is false

at si+1. (In other words, (fZg; fZ _ :Xg). )

De�nition (detector). Let d be a program. Z detects X in d from U i� d

re�nes `Z detects X' from U .

A detector d is used to check whether its \detection predicate", X, is true. Since

d re�nes Safeness from U , it follows that d never lets Z witness X incorrectly. Since

d re�nes Progress from U , it follows that if U ^X is true continuously, d eventually

detects this fact and truthi�es Z. Moreover, since d re�nes Stability from U , it

follows that once Z is truthi�ed, it continues to be true unless X is falsi�ed, i.e.,

fU ^ ZgdfZ _ :Xg.

20



De�nition (tolerant detector). d is a fail-safe (respectively nonmasking or mask-

ing) tolerant detector for `Z detects X' from U i� d re�nes the fail-safe (respectively

nonmasking or masking) tolerance speci�cation of Z detects X from U .

Remark. If the detection predicate X is closed in d, our de�nition of the detects

relation reduces to one given by Chandy and Misra [22]. We have considered this more

general de�nition to accommodate the case |which occurs for instance in nonmasking

tolerance| where X denotes that \something bad has happened"; in this case, X is

not supposed to be closed since it has to be subsequently corrected.

(End of Remark.)

3.1.1 Properties of the detects relation

The detects relation is re
exive, antisymmetric, and transitive in its �rst two

arguments:

Lemma 3.1 Let X, Y and Z be state predicates of d and U be a state predicate

that is closed in d. The following statements hold.

� X detects X in d from U .

� If Z detects X in d from U , and X detects Z in d from U

then U ) (Z � X) .

� If Z detects Y in d from U , and Y detects X in d from U

then Z detects X in d from U .
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Lemma 3.2 Let V be a state predicate such that U ^V is closed in d. The following

statements hold.

� If Z detects X in d from U

then Z detects X in d from U^V .

� If Z detects X in d from U , and V ) X

then Z_V detects X in d from U .

� If Z detects X in d from U , and Z ) V

then Z detects X^V in d from U .

3.2 Hierarchical and Distributed Design of Detectors

As discussed later in this chapter, to design a fail-safe detector we need to design a

detector with a given detection predicate. It would be ideal if we could check whether

this detection predicate holds atomically, i.e., by executing at most one action of the

detector. In certain cases, evaluating the detection predicate may require access to a

large portion of a shared state or access to a state that is distributed across di�erent

processes. Therefore, it is sometimes diÆcult or impossible to check the detection

predicate atomically. In these cases, we may wish to compose \small" detectors to

obtain \large" detectors in an hierarchical and distributed manner. More speci�cally,

if we need to design a detector whose detection predicate is X1^X2 then we may

choose to design a detector with detection predicate X1 and another with detection

predicate X2. Then, we can compose these detectors in two ways: (i) in parallel and

(ii) in sequence.

In the rest of the chapter, we will implicitly assume that the problem speci�cation

of a detector d (dn) is `Z detects X in d from U ' (respectively, `Zn detects Xn in dn
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from Un'). Also, we will implicitly assume that U (Un) is closed in d (respectively,

dn).

Parallel composition of detectors. In the parallel composition of d1 and

d2, denoted by d1[]d2, both d1 and d2 execute concurrently. Formally, the parallel

composition of d1 and d2 is the union of the (variables and actions of) programs d1

and d2.

Observe that `[]' is commutative (d1[]d2 = d2[]d1), associative ((d1[]d2)[]d3 =

d1[](d2[]d3)), and that `^' distributes over `[]' (g ^ (d1[]d2) = (g ^ d1)[](g ^ d2)).

Theorem 3.3 Given Z1 detects X1 in d1 from U and Z2 detects X2 in d2

from U .

If the variables of d1 and d2 are mutually exclusive

then Z1^Z2 detects X1^X2 in d1[]d2 from U .

Proof. Safeness of d1[]d2 follows from Safeness of d1 and that of d2. Also, Stability

of d1[]d2 follows from Stability of d1 and that of d2. To prove Progress of d1[]d2, we

partition its computations into two classes: (1) where X1 ^ X2 is falsi�ed in some

state, and (2) where X1^X2 is never falsi�ed. In the �rst class, Progress is satis�ed

trivially. In the second class, from Progress of d1, Z1 is eventually truthi�ed and,

from Stability of d1, Z1 continues to be true in the computation of d1. Moreover, since

the variables of d1 and d2 are disjoint, Z1 continues to be true in the computation of

d2. Finally, from Progress of d2, Z2 is eventually truthi�ed. Thus, Progress of d1[]d2

is satis�ed.

Sequential composition of detectors. In the sequential composition of d1 and

d2, denoted by d1; d2, d2 executes only after d1 has completed its detection, i.e., after
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the witness predicate Z1 is true. Formally, the sequential composition of d1 and d2

is the program whose set of variables is the union of the variables of d1 and of d2 and

whose set of actions is the union of the actions of d1 and of Z1 ^ d2. We postulate

the axiom that `;' is left-associative (d1; d2; d3 = (d1; d2); d3).

Observe that `;' is not commutative, that `;' distributes over `[]' (d1; (d2[]d3) =

(d1; d2)[](d1; d3)), and that `^' distributes over `;' (g ^ (d1; d2) = (g ^ d1); (g ^ d2)).

Theorem 3.4 Given Z1 detects X1 in d1 from U and Z2 detects X2 in d2

from U^X1.

If the variables of d1 and d2 are mutually exclusive, and U ) (Z2 ) X1)

then Z2 detects X1^X2 in d1; d2 from U .

Proof. Safeness of d1; d2 follows from Safeness of d2 and from U ) (Z2 ) X1).

The proof of Progress of d1; d2 is identical to that of d1[]d2. Since the variables of d1

and d2 are disjoint, execution of d1 does not falsify Z2. And, from Stability of d2,

execution of d2 falsi�es Z2 only if it falsi�es X2. Thus, Stability of d1; d2 is satis�ed.

Large detectors can be designed by repetitive application of parallel and/or se-

quential composition. Conceptually speaking, in parallel composition, the composed

detectors execute concurrently, whereas in sequential composition, the composed de-

tectors e�ectively execute one after another. Therefore, the time required to complete

the detection is expected to be higher in the sequential composition. This extra time

may be warranted when the witness predicate of d1; d2, viz Z2, can be witnessed

atomically although the witness predicate of d1[]d2, viz Z1^Z2, cannot. Also, in se-

quential composition, the detector d2 can assume that d1 has completed its detection,

i.e., Z1 and X1 are true. Hence, the design of d2 itself may be simpli�ed.
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3.3 SuÆciency of Detectors for Fail-Safe Fault-Tolerance

In this section, �rst, we show (1) detectors are suÆcient for satisfying safety

speci�cations, and (2) fail-safe tolerant detectors are suÆcient for designing fail-safe

tolerant programs. Towards proving (1) and (2), �rst, we show in Lemma 3.5 that

if two pre�xes of a computation maintain a safety speci�cation then so does their

concatenation. Then, we show in Lemma 3.6 that the violation of a safety speci�cation

can be detected from the current state, independent of how that state is reached.

Subsequently, we show in Theorem 3.7 that for each action of the program, there

exists a set of states from where execution of that action maintains the given safety

speci�cation. Finally, using Theorem 3.7, we show (1) and (2) in Theorems 3.8 and

3.9, respectively.

Throughout this section, let p be a program, SPEC be a problem speci�cation,

SSPEC be the minimal safety speci�cation that contains SPEC, � be a pre�x of a

computation, � be a �nite suÆx of a computation, s and s0 be states, and X be a

state predicate.

Lemma 3.5

If �s maintains SPEC and s� maintains SPEC

then �s� maintains SPEC .

Proof.

�s maintains SPEC ^ s� maintains SPEC

= f by de�nition of maintains g

(9Æ : �sÆ 2 SPEC) ^ (9Æ0 : s�Æ0 2 SPEC)

)f by fusion closure of SPEC g
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(9Æ0 : �s�Æ0 2 SPEC)

= f by de�nition of maintains g

�s� maintains SPEC

Lemma 3.6

If �s maintains SPEC

then �ss0 maintains SPEC i� ss0 maintains SPEC .

Proof. If part:

�ss0 maintains SPEC

= f by de�nition of maintains g

(9� : �ss0� 2 SPEC)

) f by suÆx closure of SPEC g

(9� : ss0� 2 SPEC)

= f by de�nition of maintains g

ss0 maintains SPEC

Only if part:

ss0 maintains SPEC ^ �s maintains SPEC

) f by Lemma 3.5 g

�ss0 maintains SPEC

Theorem 3.7 For each action ac of p there exists a predicate such that execution

of ac maintains SPEC i� it executes in a state where that state predicate is true.

Proof. Consider a pre�x of a computation, say �s, that maintains SPEC. Ex-

ecution of ac maintains SPEC i� the extended pre�x �ss0, after execution of ac
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maintains SPEC. In other words, there exists a set of pre�xes of computation, say

PREF , from which execution of ac maintains SPEC.

From Lemma 3.6, it follows that the extended pre�x �ss0 maintains SPEC i� ss0

maintains SPEC. Thus, the execution of ac maintains SPEC i� it executes in a

state that is in the set fs : 9� : �s 2 PREF g. The predicate characterized by this

set of states suÆces to be a witness for the theorem.

De�nition (detection predicate). We say thatX is a detection predicate of action

ac for SPEC i� execution of ac in any state where X is true maintains SPEC.

Note that the existence of detection predicates follows from Theorem 3.7, and that

an action may have multiple detection predicates. Also, if sf is a detection predicate

of ac for SPEC and X ) sf , then X is also a detection predicate of ac for SPEC.

And, if sf1 and sf2 are detection predicates of ac for SPEC then so is sf1 _ sf2.

Thus, there exists a weakest detection predicate for each action.

Let q be a program. To ensure that q re�nes SSPEC, for each action ac of q,

we need to add a detector whose detection predicate is a detection predicate of ac.

Moreover, we must ensure that the added detectors and q do not interfere with each

other. If the added detectors and q do not interfere with each other then the resulting

program, say p, must itself re�ne the detector speci�cation. We state this in Theorem

3.8: if p re�nes the detector speci�cation for each action of p then it re�nes SSPEC.
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Theorem 3.8 (Detectors are suÆcient for satisfying safety speci�cations.)

If

� (8 actions g �! st of p :

(9Z;X : g ) Z,

Z detects X in p from S, and

X is a detection predicate of g �! st for SPEC))

then

� p re�nes SSPEC from S

Proof. From the de�nition of detection predicates, it follows that whenever g �! st

is executed, the extended pre�x maintains SPEC. Therefore, p re�nes SSPEC from

S.

Once again, if we add detectors to a fault-intolerant program in order to achieve

fail-safe F -tolerance, these detectors and the fault-intolerant program should not

interfere with each other. In other words, the resulting program must itself re�ne

the speci�cation in the absence of faults and also re�ne the fail-safe F -tolerance

speci�cation. With this intuition, we write Theorem 3.9 as follows:
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Theorem 3.9 (Fail-safe tolerant detectors are suÆcient for fail-safe tolerant

programs.)

If

� p re�nes SPEC from S, and

� (9 T : T is an F -span of p from S, and

(8 actions g �! st of p :

(9Z;X : g ) Z,

X is a detection predicate of g �! st for SPEC, and

p is fail-safe F -tolerant for `Z detects X' from T )))

then

� p is fail-safe F -tolerant for SPEC from S

Proof. Once again, from the de�nition of detection predicates, it follows that

whenever g �! st is executed in states where T is true, the extended pre�x maintains

SSPEC. Therefore p re�nes SSPEC from T . Also, p re�nes SPEC from S. It

follows that p is fail-safe F -tolerant for SPEC from S.

In closing, we note that detectors are also used in nonmasking tolerant programs

to detect whether the program has been perturbed to an unintended state. They are

also used in masking tolerant programs for ensuring the safety speci�cation. These

applications will be discussed in Chapters 4 and 5.

3.3.1 Example : Memory Access

Let us consider a simple memory access program that obtains the value stored

at a given address in the memory. For ease of exposition, we will allow access to

only one memory location, addr. Thus, an intolerant program for memory access,

p, is as follows (where, for any addr, at most one object of the form haddr; valuei
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is in MEM , and if MEM does not contain an object of the form haddr;�i then

(valjhaddr; vali2MEM) returns an arbitrary value):

p :: true �! data := (valjhaddr; vali2MEM)

Let SPECmem be the speci�cation of the memory transfer program; intuitively,

SPECmem requires that the data is eventually set to the correct value and it is never

set to an incorrect value.

Now, consider two fault-classes: The �rst is a protection fault whereby addr is

(initially) corrupted so that it falls outside the valid address space, and the second is

a page fault whereby addr and its value are (initially) removed from the memory.

We use two detectors d1 and d2: d1 detects whether addr is valid, and d2 detects

whether addr is in the memory. The detection predicates of these detectors is X1 and

X2 respectively, and their witness predicates are Z1 and Z2 respectively (cf. Figure

3.1). Formally, the actions of d1 and d2 are as follows (where TBL is the set of valid

addresses):

d1 :: addr2TBL ^ :Z1 �! Z1 := true

d2 :: (9 val :: haddr; vali2MEM) ^ :Z2 �! Z2 := true

d2 MEM

Z2

TBLd1
addr

Z1

Figure 3.1: Memory access

X1 � addr2TBL

X2 � (9val :: haddr; vali2MEM)

U1 � (Z2) X1) ^ (Z1) X1) ^ (Z2) X2)
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To add fail-safe tolerance to the protection fault (the page fault), it suÆces to

restrict p so that it executes only after Z1 (respectively Z2) is truthi�ed. After such

a restriction, program d1; p is fail-safe `protection fault'-tolerant in that in the absence

of faults, p re�nes SPECmem and in the presence of the protection fault, p re�nes

the fail-safe tolerance speci�cation of SPECmem. More speci�cally, if no fault occurs,

i.e., an object haddr; vali exists in the memory, d1; p eventually sets data to be equal

to val , and it never sets data to any other value. In the presence of a protection

fault, it never sets the value of data incorrectly, although, it may not assign a value

to data .

We can also compose d1 and d2 in parallel or in sequence. If d1 and d2 are

composed in parallel (respectively in sequence), then to add fail-safe tolerance to

both the protection fault and the page fault, it suÆces to restrict p so that p executes

only after Z1 ^ Z2 (respectively Z2) is truthi�ed.

In other words, we have

d1; p is fail-safe `protection fault'-tolerant from U1 ^X1 ^X2.

d2; p is fail-safe `page fault'-tolerant from U1 ^X1 ^X2.

d1; d2; p is fail-safe `page fault'-tolerant and fail-safe `protection fault' tolerant

from U1 ^X1 ^X2.

(d1[]d2); p is fail-safe `page fault'-tolerant and fail-safe `protection fault' tolerant

from U1 ^X1 ^X2.

Remark. Observe that in sequential composition of d1 and d2, d2 can be imple-

mented assuming that the given address is valid, although such an assumption cannot

be made in the parallel composition. Also, in sequential composition, it is suÆcient
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to restrict p with Z2 whereas, in parallel composition, it is necessary to restrict p

with Z1 ^ Z2.

3.4 Necessity of Detectors for Fail-Safe Fault-Tolerance

In order to show that detectors are necessary in the design of fail-safe tolerance, we

show that every fault-tolerant program designed using encapsulation and re�nement

from a fault-intolerant program contains detectors. More speci�cally, we show that

(1) if a program re�nes a safety speci�cation then it contains detectors, and (2) if a

program is fail-safe F -tolerant then it contains fail-safe tolerant detectors.

Our proof uses Lemmas 3.5, 3.6 and Theorem 3.7. Recall that Theorem 3.7 shows

that for each action of the program there exists a set of states from where its execution

maintains the safety speci�cation. Using the de�nition of detection predicates from

Theorem 3.7, we show (1) and (2) in Theorems 3.10 and 3.12. The intuition is

that if program p0 is designed by transforming p so as to satisfy SSPEC, then the

transformation must have added a detector for each action of p, i.e., p0 must contain

a detector for each action of p . We formulate this, in Theorem 3.10, for the case

where the transformation uses encapsulation and re�nement.

Typically, the detector components used in p0 will be smaller (in terms of ac-

tions/state transitions, etc.) than p0. However, for p0 to re�ne SSPEC the compo-

nents used in p0 must not interfere with each other. If a component of p0 re�nes the

detector speci�cation and the other components in p0 do not interfere with it then p0

will also re�ne the detector speci�cation. Therefore, in Theorem 3.10 we show that

p0 itself re�nes the speci�cation of a detector.
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Theorem 3.10 (Programs that re�ne a safety speci�cation contain detectors).

If

� p0 re�nes p from S,

� p0 encapsulates p, and

� p0 re�nes SSPEC from S

then

� (8ac : ac is an action of p :

p0 is a detector of a detection predicate of ac) .

Proof. Let sf be the weakest detection predicate for ac . Since p0 encapsulates p, if

ac is of the form g �! st, p0contains an action, say ac0, of the form g ^ g0 �! stjjst0 .

Let Z = g ^ g0, and let

X = g ^ sf^

(:fs : s is a state of p0 : Z is false in state s, g ^ sf is true in state s, and

there exists a transition (s0; s) of p0 such that

Z is true in state s0 g) ^

(:fs : s is a state of p0 : Z is false in state s, g is true in state s,

there exists another action,

say ac1, of p and states, say s0; s1 of p0 such that

(s; s0) is a transition of ac, (s; s1) is a transition of ac1,

and the projection of s0 and s1 on p is same. g).

Since X ) sf , whenever X is true, execution of ac maintains SSPEC. It follows

that X is a detection predicate of ac .

We now show that p0 re�nes Z detects X from S .

By de�nition of Z, Z ) g . Since p0 re�nes SSPEC from S, whenever ac is

executed in a state where S is true, its execution is safe. Since sf is the weakest
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detection predicate of ac, S ^Z ) sf . Also, Z implies the remaining two predicates

in X . Thus, Safeness is satis�ed.

Consider any computation, say c0, of p0 which starts in a state where S is true and

X is true in each state in c0 : By de�nition of X, g is true in each state in c0 . Now,

consider the computation, say c, obtained by projecting c0 on p : Since p0 re�nes p

from S, c is a computation of p . In c, g is continuously true. Therefore, by fairness,

action ac must eventually execute. Let s denote the state where action ac executes

in c, and let s0 denote the corresponding state in c0 . Consider the action executed by

p0 in state s0: it is either ac0 or an action ac10 which is based on action ac1 of p such

that executing ac and ac1 have the same e�ect on variables of p from state s . In the

former case, Z is true in state s0 . And, in the latter case, either Z is true in the state

s0 or the fourth conjunct in X is false in the state s0 . Thus, Progress is satis�ed.

Starting from a state where Z is true, if p0 has a transition to a state where Z is

false, then in that state the third conjunct in X is false. It follows that Stability is

satis�ed.

Remark. Henceforth, to show that p0 contains detectors (respectively correctors),

we will show that p0 itself re�nes the corresponding detector (respectively corrector)

speci�cations.

Observe that in Theorem 3.10 `p0 re�nes p from S' is used only to show the Progress

of the detector. It follows that if only encapsulation is used then p0 satis�es Safeness

and Stability. Thus, we have
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Lemma 3.11

If p0 encapsulates p, and p0 re�nes SSPEC from S

then (8 ac : ac is an action of p :

p0 is a fail-safe tolerant detector of a detection predicate of ac) .

Proof. We use the same de�nition of Z and X as in the proof of Theorem 3.10,

and show that p0 re�nes the fail-safe tolerance speci�cation of `Z detects X' from S .

We leave it to the reader to verify that the proof of Safeness and Stability in Theorem

3.10 can be used, verbatim, to prove that p0 satis�es Safeness and Stability.

We now use Theorem 3.10 and Lemma 3.11 to show that if a fail-safe F -tolerant

program p0 is designed by using encapsulation and re�nement from program p then

p0 contains a fail-safe tolerant detector for each action of p .

Theorem 3.12 (Fail-safe F -tolerant programs contain fail-safe tolerant detec-

tors).

If

� p re�nes SPEC from S,

� p0 re�nes p from R, where R) S

� p0 encapsulates p, and

� p0[]F re�nes SSPEC from T , where T ( R

then

� p0 is fail-safe F -tolerant for SPEC from R, and

� (8 ac : ac is an action of p :

p0 is a fail-safe F -tolerant detector of

a detection predicate of ac) .

Proof. Part 1: fail-safe F -tolerance to SPEC . Since p0 re�nes p from R, R is

closed in p0 and for every computation of p0 that starts in a state where R is true,
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the projection of that computation on p is a computation of p. Also, since p re�nes

SPEC from S and R) S, for every computation of p that starts in a state where

R is true, the projection of that computation on SPEC is in SPEC. It follows that

for every computation of p0 that starts in a state where R is true, the projection of

that computation on SPEC is in SPEC. Thus, p0 re�nes SPEC from R .

Since R) T and T is closed in p0[]F , in the presence of F , p0 is perturbed only to

states where T is true. From these states, p0 re�nes the safety speci�cation of SPEC,

namely SSPEC. It follows that p0 is fail-safe F -tolerant for SPEC from R .

Part 2: detector. Let sf be the weakest detection predicate for ac . Since p0

encapsulates p, if ac is of the form g �! st, p0contains an action, say ac0, of the form

g ^ g0 �! stjjst0 .

Let Z = g ^ g0, and let

X = g ^ sf^

(:fs : s is a state of p0 : Z is false in state s, g ^ sf is true in state s, and

there exists a transition (s0; s) of p0 or F

such that Z is true in state s0 g) ^

(:fs : s is a state of p0 : Z is false in state s, g is true in state s,

there exists another action,

say ac1, of p and states, say s0; s1 of p0 such that

(s; s0) is a transition of ac, (s; s1) is a transition of ac1,

and the projection of s0 and s1 on p is same. g).

Since X ) sf , whenever X is true, execution of ac maintains SSPEC. It follows

that X is a detection predicate of ac .
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We now show that p0 is fail-safe F -tolerant for Z detects X from R and the F -span

of p0 is T . To this end, we �rst show that p0 re�nes Z detects X from R . Then, we

show that p0[]F re�nes the fail-safe tolerance speci�cation of Z detects X from T .

For the �rst part, since R ) T , we observe that p0 re�nes SSPEC from R .

Therefore, by Theorem 3.10, it follows that p0 re�nes Z detects X from R .

For the second part, we need to show that a computation of p0[]F satis�es Safeness

and Stability. This proof is identical to the proof of Safeness and Stability in Theorem

3.10 .

3.4.1 Example : Memory Access (continued)

Returning to the memory access example in Section 3.3.1, observe that program

d1; p is fail-safe `protection-fault'-tolerant in the sense that it re�nes the speci�cation

of the memory transfer program, SPECmem in the absence of faults, and it re�nes

the fail-safe tolerance speci�cation of SPECmem in the presence of a protection fault.

We use the theory of detectors developed in the previous subsection to show that

d1; p is fail-safe `protection-fault'-tolerant.

Let S := U1 ^ X1 ^X2, T := U1 ^ X2, and F := `protection fault' (cf. Figure

3.1). Now, observe that p re�nes SPECmem from S, d1; p re�nes p from S, d1; p

encapsulates p, and (d1; p)[]F re�nes the safety speci�cation of SPECmem from T .

Therefore, by Theorem 3.12, we have

d1; p is fail-safe `protection fault'-tolerant for SPECmem from S, and

d1; p is a fail-safe `protection fault'-tolerant detector of a detection predicate

of p .
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Likewise, we have

d2; p is fail-safe `page fault'-tolerant for SPECmem from S, and

d2; p is a fail-safe `page fault'-tolerant detector of a detection predicate of p .

Note that the detection predicate of d1; p is X1 and the witness predicate of d1; p

is Z1 . Also, this detector is implemented by action d1 in program d1; p . Likewise,

the detection predicate of d2; p is X2 and the witness predicate of d2; p is Z2, and

the detector is implemented by action d2.

3.5 Composition of Detectors and Programs

In this section, we discuss how a detector component is correctly added to a

program so that the resulting program satis�es the speci�cation of the component.

As far as possible, the proof of preservation should be simpler than explicitly proving

all over again that the speci�cation is satis�ed in the resulting program. This is

achieved by a compositional proof that shows that the program does not \interfere"

with the component, i.e., the program and the component when executed concurrently

do not violate the speci�cation of the component.

Compositional proofs of interference-freedom have received substantial attention

in the formal methods community [1, 18, 48, 52, 53] in the last two decades. Draw-

ing from these e�orts, we identify several simple suÆcient conditions to ensure that

when a program p is composed with a detector q, the safety speci�cation of q, viz

Safeness and Stability, and liveness speci�cation, viz Progress and Convergence, are

not violated.

SuÆcient conditions for satisfying the safety speci�cation of a detector. To demon-

strate that p does not interfere with Safeness and Stability, a straightforward suÆcient
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condition is that the actions of p be a subset of the actions of q; this occurs, for in-

stance, when program itself acts as a detector. Another straightforward condition is

that the variables of p and q be disjoint. A more general condition is that p only

reads (but not writes) the variables of q; in this case, p is said to be \superposed" on

q.

SuÆcient conditions for satisfying the liveness speci�cation of a detector. The

three conditions given above also suÆce to demonstrate that p does not interfere

with Progress of q, provided that the actions of p and q are executed fairly. Yet

another condition for satisfying Progress of q is to require that q be \atomic", i.e.,

that q achieves its Progress in at most one step. It follows that even if p and q execute

concurrently, Progress of q is satis�ed.

Alternatively, require that p executes only after Progress of q is achieved. It

follows that p cannot interfere with Progress of q. Likewise, require that p terminates

eventually. It follows that after p has terminated, execution of q in isolation satis�es

its Progress.

More generally, require that there exists a variant function f (whose range is over

a well-founded set) such that execution of any action in p or q reduces the value of f

until Progress of q is achieved. It follows that even if q is executed concurrently with

p, Progress of q is satis�ed.

The suÆcient conditions outlined above are formally stated in Table 3.1.

The discussion above has addressed how to prove that a program does not interfere

with a component, but not how a component does not interfere with a program.

Standard compositional techniques suÆce for this purpose. In practice, detectors

such as snapshot procedures, watchdog programs, and snooper programs typically
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read but not write the state of the program to which they are added. Thus, these

detectors do not interfere with the program.

3.6 Chapter Summary

In this chapter, we identi�ed a fault-tolerance component that is necessary and

suÆcient for the design of fail-safe fault-tolerance. Using our assumption that spec-

i�cations are fusion-closed and suÆx-closed, we showed that for each action ac in

the fault-intolerant program, there exists a detection predicate of ac such that the

execution of ac satis�es the safety speci�cation only if it executes in a state where its

detection predicate is true. Subsequently, we showed that if a fail-safe fault-tolerant

program is designed by encapsulation and re�nement from a fault-intolerant program

then it contains fail-safe F -tolerant detectors. Moreover, such fail-safe fault-tolerant

programs can be designed by adding detectors to a fault-intolerant program.

Intuitively, encapsulation and re�nement restrict the program transformation in

such a way that a fault-tolerant program is not designed from scratch, i.e., by ignoring

the fault-intolerant program. In this sense, it is a very non-restrictive condition,

and program transformations by existing methods satisfy this condition. Therefore,

programs designed using these methods implicitly contain detectors.

Finally, given a fault-intolerant program p and a fault-class F , detectors are used to

design a fail-safe F -tolerant program as follows: For each action, ac, of p, we identify a

detection predicate, sf , for that action. Then, we design a detector whose detection

predicate is detection predicate of sf . Depending upon the structure of sf , this

detector is designed in an hierarchical manner using smaller detectors. Subsequently,

action ac is restricted to execute only in states where the witness predicate is true.
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In the following theorems, it is given that Z detects X in q from U and U is

closed in p.

Theorem 3.13 (Superposition)

If q does not read or write any variable written by p, and

p only reads the variables written by q

then Z detects X in q[]p from U .

Theorem 3.14 (Containment)

If actions of p are a subset of q

then Z detects X in q[]p from U .

Theorem 3.15 (Atomicity)

If fU ^ Zg p fZ _ :Xg, and q is atomic

then Z detects X in q[]p from U .

Theorem 3.16 (Order of execution)

If fU ^ Zg p fZ _ :Xg
then Z detects X in q; p from U .

Theorem 3.17 (Termination)

If fU ^ Zg p fZ _ :Xg, and U converges to V in p[]q

then Z detects X in (:V ^ p)[]q from U .

Theorem 3.18 (Variant function)

If fU ^ (0<f=K)g q f(0<f <=K�1) _ Z _ :Xg
fU ^ (0<f=K)g p f(0<f <=K�1) _ Z _ :Xg, and

fU ^ Zg p fZ _ :Xg

then Z detects X in q[]p from U .

Table 3.1: SuÆcient conditions for interference-freedom of a detector and a program
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CHAPTER 4

CORRECTORS : A BASIS OF NONMASKING

FAULT-TOLERANCE

In this chapter, we identify the second of the two fault-tolerance components,

corrector, that forms a basis of nonmasking fault-tolerance. Towards showing that

correctors form a basis of nonmasking fault-tolerance, we show that (1) correctors

are suÆcient to design nonmasking fault-tolerant programs, i.e., a rich class of non-

masking fault-tolerant programs can be designed using correctors, and (2) correctors

are necessary to design nonmasking fault-tolerance, i.e., a rich class of nonmasking

fault-tolerant programs contain correctors. We also note that the commonly used

techniques in designing nonmasking fault-tolerant programs such as voters, error cor-

rection codes, reset procedures, rollback recovery, rollforward recovery, constraint

(re)satisfaction, exception handlers, and alternate procedures in recovery blocks are

instances of correctors.

We proceed as follows: First, we give a formal de�nition of a corrector (cf. Section

4.1). Then, we show how correctors can be constructed in an hierarchical and eÆcient

manner (cf. Section 4.2). Subsequently, we show that correctors are suÆcient and

necessary in the design of nonmasking fault-tolerance (cf. Sections 4.3 and 4.4).

Finally, we discuss the suÆciency conditions that ensure that when a corrector is
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added to a program the corrector and the program do not interfere with each other

(cf. Section 4.5).

4.1 De�nition

De�nition (corrects). Let X and Z be state predicates. Let `Z corrects X' be

the problem speci�cation that is the set of all state sequences, s0; s1; ::: that satisfy

the following four conditions:

� (Convergence) There exists i; i � 0, such that for each j; j� i, X is true at sj,

and for each k; k � 0, if X is true at sk then X is also true at sk+1.

� (Safeness) For each i; i � 0, if Z is true at si then X is also true at si. (In other

words, Z ) X at si.)

� (Progress) For each i; i � 0, if X is true at si then there exists k; k � i, such

that Z is true at sk or X is false at sk.

� (Stability) For each i; i � 0, if Z is true at si then Z is true at si+1 or X is false

at si+1. (In other words, (fZg; fZ _ :Xg). )

De�nition (corrector). Let c be a program. Z corrects X in c from U i� c

re�nes `Z corrects X' from U .

Since c re�nes Convergence from U , it follows that eventually c reaches a state

where X is truthi�ed and X continues to be true thereafter. Moreover, c re�nes

Safeness from U , it follows that a corrector never lets the predicate Z witness the

correction predicate X incorrectly. Since c re�nes Progress from U , it follows that Z

is eventually truthi�ed. And, �nally, since c re�nes Stability from U , it follows that

Z is never falsi�ed.
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De�nition (tolerant corrector). c is a nonmasking (respectively fail-safe or

masking) tolerant corrector for `Z corrects X' from U i� c re�nes the nonmasking

(respectively fail-safe or masking) tolerance speci�cation of Z corrects X from U .

Remark. If the witness predicate Z is identical to the correction predicate X,

our de�nition of the corrects relation reduces to one given by Arora and Gouda [8].

We have considered this more general de�nition to accommodate the case |which

occurs for instance in masking tolerance| where the witness predicate Z can be

checked atomically but the correction predicate X cannot. (End of Remark.)

4.1.1 Properties of the corrects relation.

If Z corrects X in c from U , then Z detects X in c from U . Also, the corrects

relation is antisymmetric and transitive in its �rst two arguments:

Lemma 4.1 Let X, Y , and Z be state predicates of c and U be a state predicate

that is closed in c. The following statements hold.

� If Z corrects X in c from U , and X corrects Z in c from U

then U ) (Z � X) .

� If Z corrects Y in c from U , and Y corrects X in c from U

then Z corrects X in c from U .
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Lemma 4.2 Let V be a state predicate such that U ^V is closed in c. The following

statements hold.

� If Z corrects X in c from U

then Z corrects X in c from U ^ V .

� If Z corrects X in c from U and V ) X

then Z_V corrects X in c from U .

4.2 Hierarchical and Distributed Design of Correctors

Just as in case of detectors, it is possible to design correctors in an hierarchical

and distributed manner. In this section, we discuss how a corrector with correction

predicate X1^X2 can be designed by �rst designing a corrector with correction pred-

icate X1, a corrector with correction predicate X2, and composing them in parallel

or in sequence.

In the rest of the chapter, we will implicitly assume that the problem speci�cation

of a corrector c (cn) is `Z corrects X in c from U ' (respectively, `Zn corrects Xn in

cn from Un'). Also, we will implicitly assume that U (Un) is closed in c (respectively,

cn).

Parallel composition of correctors. In the parallel composition of c1 and

c2, denoted by c1[]c2, both c1 and c2 execute concurrently. Formally, the parallel

composition of c1 and c2 is the union of the (variables and actions of) programs c1

and c2.

Observe that, just as in case of detectors, `[]' is commutative (c1[]c2 = c2[]c1),

associative ((c1[]c2)[]c3 = c1[](c2[]c3)), and that `^' distributes over `[]' (g ^ (c1[]c2) =

(g ^ c1)[](g ^ c2)).
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Theorem 4.3 Given Z1 corrects X1 in c1 from U and Z2 corrects X2 in c2

from U .

If the variables of c1 and c2 are mutually exclusive

then Z1^Z2 corrects X1^X2 in c1[]c2 from U .

Sequential composition of correctors. In the sequential composition of c1 and

c2, denoted by c1; c2, c2 executes only after c1 has completed its correction, i.e., after

the witness predicate Z1 is truthi�ed. Formally, the sequential composition of c1 and

c2 is the program whose set of variables is the union of the variables of c1 and c2 and

whose set of actions is the union of the actions of c1 and of Z1 ^ c2. We postulate

the axiom that `;' is left-associative (c1; c2; c3 = (c1; c2); c3)).

Observe that `;' is not commutative, that `;' distributes over `[]', and that `^'

distributes over `;'.

Theorem 4.4 Given Z1 corrects X1 in c1 from U and Z2 corrects X2 in c2

from U^X1.

If the variables of c1 and c2 are mutually exclusive, and U ) (Z2 ) X1)

then Z2 corrects X1^X2 in c1; c2 from U .

Correctors are also designed by composing correctors with detectors. For example,

one way to design a corrector with correction predicateX is by sequentially composing

a detector and a corrector; �rst the detector detects that X is false and, then the

corrector then truthi�es X. Another way is by sequentially composing of a corrector

and a detector: �rst the corrector truthi�es X and, then the detector truthi�es the

desired witness predicate Z.
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Theorem 4.5 Given Z detects :X in d from U , Z ) Z
0

, and X corrects X

in c from U ^ Z
0

.

If X is closed in d, and fU ^ Zg c fZ _ Xg

then X corrects X in (:Z ^ d); c from U .

Theorem 4.6 Given X corrects X in c from U and Z detects X in d from U .

If X is closed in d

then Z corrects X in (:X ^ c); d from U .

4.3 SuÆciency of Correctors for Nonmasking Fault-Tolerance

In this section, we use the de�nition of nonmasking fault-tolerance to show in

Theorem 4.7 that nonmasking correctors are suÆcient for the design of nonmasking

tolerant programs.

Theorem 4.7 (Nonmasking tolerant correctors are suÆcient for nonmasking tol-

erance.)

If

� p re�nes SPEC from S, and

� (9 T : T is an F -span of p for SPEC from S, and

p is nonmasking F -tolerant for `S corrects S' from T )

then

� p is nonmasking tolerant for SPEC from S.

Proof. Follows from the de�nition of nonmasking tolerance.

4.3.1 Example : Memory Access (continued)

Continuing with the example in Section 3.3.1, consider the case where the given

address is valid but is not in the memory. In this case, an object of the form haddr;�i
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has to be added to the memory (cf. Figure 4.1). To this end, we use a corrector c. (The

corrector may, for instance, obtain the object from a disk, from a remote memory, or

from a network; but we ignore these details.) Formally, the corrector c is speci�ed as

follows:

c :: :(9 val :: haddr; vali2MEM) �! MEM := MEM [ fhaddr;�ig

Thus, we may observe:

c[]p is nonmasking `page fault'-tolerant from U1 ^X1 ^X2.

MEM

p

addr

data

c

Figure 4.1: Memory access (continued)

X1 � addr2TBL
X2 � (9val :: haddr; vali2MEM)

U1 � (Z2) X1) ^ (Z1) X1) ^ (Z2) X2)

4.4 Necessity of Correctors for Nonmasking Fault-Tolerance

We show (1) if a program eventually re�nes a speci�cation then it contains cor-

rectors, and (2) if a program is nonmasking F -tolerant then it contains nonmasking

tolerant correctors.

Throughout this section, let p be a program, � be a pre�x of a computation, � be

a suÆx of a computation, SPEC be a problem speci�cation, and s be a state.
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Let p be a program that re�nes SPEC from S. In Theorem 4.8, we show that if

p0 is designed such that it eventually behaves like p and, thus, has a suÆx in SPEC,

then p0 contains a corrector of an invariant of p . As discussed in Section 3.4, we prove

Theorem 4.8 by showing that p0 itself re�nes the required corrector speci�cation.

Theorem 4.8 (Programs that eventually re�ne a speci�cation contain correc-

tors).

If

� p re�nes SPEC from S,

� p0 re�nes p from S, and

� p0 re�nes (true)�(p0 j S) from T

then

� p0 is a corrector of an invariant of p .

Proof.

Let X = S, and

Z = S ^ fs : s is a state of p0 :

s is reached in some computation of p0 starting from T g .

Since p re�nes SPEC from S, it follows that X is an invariant of p for SPEC.

Now, we show that p0 re�nes `Z corrects X' from T .

By de�nition of Z, in any state where Z is true, S is true. In other words, in any

state where Z is true, X is also true. Thus, Safeness is satis�ed.

Since p0 re�nes (true)�(p0 j S) from T , every computation of p0 starting from T

will reach a state where S is true. By de�nition of Z, Z is true in this state. Thus,

Progress is satis�ed.

Since p0 re�nes p from S, it follows that S is closed in p0 . Also, the second conjunct

in Z is closed in p0 . Thus, Z is closed in p0 . Thus, Stability is satis�ed.
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Since p0 re�nes (true)�(p0 j S) from T , every computation of p0 starting from T

will reach a state where S is true. And, S is closed in p0 . Thus, Convergence is

satis�ed.

The next lemma generalizes Theorem 4.8 . In general, given a program p that

re�nes SPEC from S, p0 may not re�ne p from S but only from a subset of S, say

R. This may happen, for example, if p0 contains additional variables and p0 behaves

like p only after the values of these additional variables are restored. Lemma 4.9

shows that in such a case, p0 contains a nonmasking corrector of an invariant of p .

(The corrector is nonmasking in that the correction predicate is preserved only after

p0 reaches a state where R is true.)

Lemma 4.9

If p re�nes SPEC from S,

p0 re�nes p from R, where R) S, and

p0 re�nes (true)�(p0 j R) from T

then p0 is a nonmasking corrector of an invariant of p .

Proof. Let X = S and Z = R .

We show that p0 re�nes the nonmasking tolerance speci�cation of Z corrects X

from T . In particular, we �rst show that a computation of p0 starting from a state

where T is true eventually reaches a state where R is true. Then, we show that

starting from this state p0 re�nes the speci�cation Z corrects X .

For the �rst part, since p0 re�nes (true)�(p0 j R), it follows that p0 eventually

reaches a state where R is true.
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For the second part, we show that starting from this state, p0 satis�es Safeness,

Progress, Stability and Convergence. R ) S is trivially true, thus, Safeness is sat-

is�ed. In a state where R is true, Progress is satis�ed. Since p0 re�nes p from R, R

is closed in p0, Stability is satis�ed. Finally, in a computation starting from a state

where R is true, S is true at all states and, thus, Convergence is satis�ed.

We now use Lemma 4.9 to show that if a nonmasking F -tolerant program p0 is

designed from p using re�nement then p0 contains a nonmasking corrector for an

invariant of p .

Theorem 4.10 (Nonmasking F -tolerant programs contain nonmasking tolerant

correctors).

If

� p re�nes SPEC from S,

� p0 re�nes p from R, where R) S and

� p0[]F re�nes (true)�(p0 j R) from T , where T ( R

then

� p0 is nonmasking F -tolerant for SPEC from R, and

� p0 is a nonmasking F -tolerant corrector of an invariant of p .

Proof. Part 1: nonmasking F -tolerance to SPEC. Since p0 re�nes p from R, R

is closed in p0 and for every computation of p0 that starts in a state where R is true,

the projection of that computation on p is a computation of p. Also, since p re�nes

SPEC from S and R) S, for every computation of p that starts in a state where

R is true, the projection of that computation on SPEC is in SPEC. It follows that

for every computation of p0 that starts in a state where R is true, the projection of

that computation on SPEC is in SPEC. Thus, R is an invariant of p0.
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Since R ) T and T is closed in p0[]F , in the presence of F , p0 is perturbed only

to states where T is true. From these states p0 eventually reaches a state where R

is true, and from that state a computation of p0 is in SPEC. It follows that in the

presence of F , p0 re�nes nonmasking tolerance speci�cation of SPEC. Thus, p0 is

nonmasking F -tolerant for SPEC from R .

Part 2: corrector. We use the de�nition of Z and X given in the proof of Lemma 4.9

and show that p0 is nonmasking F -tolerant for Z corrects X from R and the F -span

of p0 is T . To this end, we �rst show that p0 re�nes Z corrects X from R, and then

show that p0[]F re�nes the nonmasking tolerance speci�cation of Z detects X from

T .

In Lemma 4.9, we have shown that starting from any state inR, every computation

of p0 satis�es Safeness, Progress, Stability, and Convergence. It follows that p0 re�nes

Z corrects X from R .

In Lemma 4.9, we have also shown that p0 re�nes the nonmasking tolerance spec-

i�cation of Z corrects X from T . In the presence of F , this speci�cation may be

violated. However, after faults stop occurring (by Assumption 2, eventually faults

stop (at least for long enough time for the system to recover)), p0 eventually reaches

a state where R is true. And, from this state, p0 re�nes Z corrects X . Thus, p0 is

nonmasking F -tolerant for Z detects X from R.

4.4.1 Example : Memory Access (continued)

Continuing with the memory access example in Section 4.3.1, observe that pro-

gram c[]p is nonmasking `page fault'-tolerant in the sense that in the absence of faults,

it re�nes SPECmem, and in the presence of a page fault, it re�nes the nonmasking
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tolerance speci�cation of SPECmem . More speci�cally, if no fault occurs, i.e., a tuple

haddr; vali exists in the memory, it eventually sets data to be equal to val , and it

never sets data to any other value. In the presence of a page fault, it may set the

data to an incorrect value, but eventually it will set data to the correct value. We

use the theory of correctors developed in the previous subsection to show that c[]p is

nonmasking `page fault'-tolerant.

Let S := U1 ^ X1 ^ X2, T := U1 ^ X1 , and F := page fault (cf. Figure 4.1).

Now, observe that p re�nes SPECmem from S, c[]p re�nes p from S, and c[]p[]F re�nes

(true)�((c[]p) j S) from T . Therefore, by Theorem 4.10, we have

c[]p is nonmasking `page fault'-tolerant for SPECmem from S, and

c[]p is a nonmasking `page fault'-tolerant corrector of an invariant of p .

The reader will notice this time that the correction and witness predicate of c[]p

is X2 and the corrector is implemented by action c .

4.5 Composing Correctors with Programs

When a fault-intolerant program and a corrector are composed together, they may

access a shared memory or execute concurrently. Therefore, we need to ensure that

they do not interfere with each other.

For instance, when a corrector c is added to program p, we need to ensure that

they do not interfere with each other. The suÆcient conditions to ensure that c is not

interfered by p are similar to those in Table 3.1. To show that p is not interfered by

c, standard compositional techniques suÆce. An alternative technique to show that

p is not interfered by c is to show that c executes only after occurrence of faults. For

example, correctors such as reset, rollback recovery, and forward recovery procedures
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are typically restricted to execute only in states where the program is perturbed by

faults. Thus, these correctors do not interfere with the program.

4.6 Chapter Summary

In this chapter, we identi�ed a fault-tolerance component that is necessary and

suÆcient for the design of nonmasking fault-tolerance. We showed that if a non-

masking fault-tolerant program is designed using re�nement from a fault-intolerant

program then it contains correctors. Moreover, such nonmasking fault-tolerant pro-

grams can be designed by adding correctors to a fault-intolerant program. Once

again, as discussed in Chapter 3, the re�nement condition is non-restrictive.

Finally, given a fault-intolerant program p and a fault-class F , correctors are used

to design a nonmasking F -tolerant program as follows: For program p, we identify an

invariant of p, say S. Since S is an invariant of p, every computation of p that starts

in a state where S is true satis�es the speci�cation at hand. It follows that to add

nonmasking fault-tolerance, we need to add a corrector whose correction predicate is

S.
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CHAPTER 5

DETECTORS AND CORRECTORS : A BASIS OF

MASKING FAULT-TOLERANCE

In this chapter, we consider a basis set of components for designing masking

fault-tolerance. It turns out that to design masking fault-tolerance, we do not need

additional types of components; detectors and correctors discussed in last two chap-

ters form a basis of designing masking fault-tolerance. This relation between masking

fault-tolerance, fail-safe fault-tolerance and nonmasking fault-tolerance raises an in-

teresting question: is it possible to design masking fault-tolerance via nonmasking

(or fail-safe) fault-tolerance? In this chapter, we address this question as well.

This chapter is organized as follows: First, we show that detectors and correctors

together are suÆcient for designing masking fault-tolerance (cf. Section 5.1). Then,

we show that these components are also necessary in the design of masking fault-

tolerance (cf. Section 5.2). Finally, we present method for designing masking fault-

tolerance via nonmasking fault-tolerance and illustrate this method with a simple

data-transfer program (cf. Section 5.3).
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5.1 SuÆciency of Detectors and Correctors for Masking Fault-

Tolerance

In order to prove that masking tolerant detectors and correctors are suÆcient for

the design of masking tolerant programs, we show, in Lemma 5.1, that if a program

computation has a pre�x that maintains SPEC and whose corresponding suÆx is

in SPEC, then that program computation is also in SPEC. Using this lemma, we

show the suÆciency of detectors and correctors in Theorem 5.2.

Lemma 5.1

If �s maintains SPEC and s� 2 SPEC

then �s� 2 SPEC .

Proof.

�s maintains SPEC ^ s� 2 SPEC

= f by de�nition of maintains g

(9
 : �s
 2 SPEC) ^ s� 2 SPEC

)f by fusion closure of SPEC g

�s� 2 SPEC
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Theorem 5.2 (Masking tolerant detectors and correctors are suÆcient for mask-

ing tolerant programs.)

If

� p re�nes SPEC from S, and

� (9 S; T :

T is an F -span of p for SPEC from S,

p is masking F -tolerant for `S corrects S' from T , and

(8 actions g �! st of p :

(9Z;X :

g ) Z,

X is a detection predicate of g �! st for SPEC, and

p is masking F -tolerant for `Z detects X' from T )))

then

� (9S : p is masking F -tolerant for SPEC from S) .

Proof. Let S2 and T2 be the state predicates that satisfy the antecedent. We show

that S := T2 satis�es the consequent. Observe, from the de�nition of F -span, that

T2 is closed in p and in F . Now, consider a computation of p, �, that starts in a state

where T2 is true: � is of the form �s�, where s is a state where S1 is true. It follows

that s� is in SPEC. Also, in any state where T is true, an action is executed only

when its detection predicate holds. Therefore, �s maintains SPEC. Therefore, from

Lemma 5.1, � is in SPEC. In other words, T2 is closed in p and in F , and every

computation of p that starts from a state where T2 is true is in SPEC, i.e., S := T2

satis�es the consequent.

5.1.1 Example : Memory Access (continued)

Continuing with the memory access example in Section 4.3.1, masking tolerance

to page fault can be designed by adding the detector d2, corrector c and restricting

program p so that it executes only after Z2 is truthi�ed.
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MEM

addr

Z1

c

p

data

d2

Figure 5.1: Memory access (continued)

X1 � addr2TBL

X2 � (9val :: haddr; vali2MEM)

U1 � (Z2) X1) ^ (Z1) X1) ^ (Z2) X2)

Thus, we may observe:

c[](d2; p) is masking `page fault'-tolerant from U1 ^X1 ^X2.

5.2 Necessity of Detectors and Correctors for Masking Fault-

Tolerance

We show the necessity of detectors and correctors in the design of masking fault-

tolerance in Theorem 5.5 by proving that both detectors and correctors exist in mask-

ing F -tolerant programs. As a �rst step towards proving 5.5, in Theorem 5.3, we com-

bine Theorem 3.10 and Theorem 4.8 to show that if p0 is designed by transforming p

to satisfy a speci�cation, say SPEC, then it contains detectors and correctors.
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Theorem 5.3

If

� p re�nes SPEC from S,

� p0 re�nes p from S

� p0 encapsulates p,

� p0 re�nes (true)�(p0 j S) from T , where T ( S, and

� p0 re�nes SSPEC from T

then

� (8 ac : ac is an action of p :

p0 is detector of a detection predicate of ac), and

� p0 is a corrector of an invariant of p .

Proof. The proof follows from Theorem 3.10 and Theorem 4.8.

We generalize Theorem 5.3, as we did Theorem 4.8, to get Lemma 5.4 .

Lemma 5.4

If p re�nes SPEC from S,

p0 re�nes p from R, where R) S,

p0 encapsulates p,

p0 re�nes (true)�(p0 j R) from T , where T ( R, and

p0 re�nes SSPEC from T

then (8 ac : ac is an action of p :

p0 is a masking tolerant detector of a detection predicate of ac), and

p0 is a masking tolerant corrector of an invariant of p .

Proof Part 1: detector. We use the de�nition of Z and X as in Theorem

3.10. From Theorem 3.11, we observe that p0 re�nes the safety speci�cation, namely
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Safeness and Stability, of Z detects X from T . We now show that p0 also re�nes the

liveness speci�cation, namely Progress, of Z detects X from T .

Consider any computation, say c0, of p0 which starts in a state where T is true and

X is true in each state in c0 : Since p0 re�nes (true)�(p0 j R) from T , it follows that c0

contains a state where R is true. Let c10 be the suÆx of c0 starting from such a state.

Since X is true at each state in c0, it follows that X is true at each state in c10 and,

hence, g is true in each state in c10 . We leave it to the reader to verify that, similar

to the proof of Progress in Theorem 3.10, there exists a state in c10 where either Z is

true or X is false. Thus, Progress is satis�ed.

Part 2: corrector. In general, the predicate S in this theorem may depend on

variables of p0 that do not occur in p . Since p does not access these additional

variables, we can strengthen `p re�nes SPEC from S' to `p re�nes SPEC from Sp',

such that S ) Sp and Sp only depends on the variables of p . Speci�cally, we let

Let Sp = fs : s is a state of p0 :

(9s0 : s0 is a state of p0 :

S is true in state s0, and

projection of s on p is the same as the projection of s0 on p) g

We now show that p re�nes SPEC from Sp . For this, we �rst show that Sp is

closed in p. Then, we show that every computation of p that starts in a state where

Sp is true is in SPEC .

To show that Sp is closed in p, we consider states s0 and s1 such that Sp is true in

state s0, and (s0; s1) is a transition of p . By de�nition of Sp, there exists a state s0
0

such that S is true in s00 and the projection of s00 on p is the same as the projection
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of s0 on p . Therefore, there exists a transition s10 such that (s00; s10) is a transition

of p and the projection of s10 on p is the same as the projection of s1 on p . Since S

is closed in p, S is true in s10 and, hence, Sp is true in state s1 . It follows that Sp is

closed in p .

By de�nition of Sp, it follows that S ) Sp. Thus, every computation of p that

starts in a state where Sp is true is in SPEC . It follows that p re�nes SPEC from

T .

Now, we use the predicate Sp to de�ne the corrector as follows:

Let X = Sp, and Z = R .

We show that p0 re�nes the masking tolerance speci�cation of `Z corrects X ' from

T .

R) Sp follows from R) S and S ) Sp . Thus, Safeness is satis�ed.

Since p0 re�nes (true)�(p0 j R) from T , it follows that a computation of p0 that

starts in a state where T is true eventually reaches a state where R is true. Thus,

Progress is satis�ed.

Since p0 re�nes p from R, R is closed in p0 . Thus, Stability is satis�ed.

Since Sp is closed in p, p0 encapsulates p and Sp only depends on variables of p,

Sp is closed in p0 . Moreover, a computation of p0 starting in a state where T is true

eventually reaches a state where R is true and, hence, it reaches a state where Sp is

true. It follows that T converges to Sp in p
0 . Thus, Convergence is satis�ed.

Finally, we use Theorem 5.3 and Lemma 5.4 to show that masking F -tolerant

programs contain masking tolerant detectors and correctors. We emphasize, how-

ever, that the masking tolerant correctors need not be masking F -tolerant; they may

be merely nonmasking F -tolerant. More speci�cally, the Stability and Convergence
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property of the corrector may be violated by execution of a fault action in F but

these properties are never violated by the execution of a program action.

Theorem 5.5 (Masking F -tolerant programs contain masking tolerant detectors

and correctors.)

If

� p re�nes SPEC from S,

� p0 re�nes p from R, where R) S

� p0[]F re�nes (true)�(p0 j R) from T , where T ( R,

� p0 encapsulates p, and

� p0[]F re�nes SSPEC from T

then

� p0 is masking F -tolerant for SPEC from T ,

� (8 ac : ac is an action of p :

p0 is a masking F -tolerant detector of

a detection predicate of ac),

� p0 is a masking tolerant corrector of an invariant of p , and

� p0 is a nonmasking F -tolerant corrector of an invariant of p .

Proof. Part 1: masking F -tolerance to SPEC. Since p0[]F re�nes (true)�(p0 j R)

from T , a computation of p0[]F , say c0 that starts in a state in T , eventually reaches

a state, say s, where R is true. Since p0[]F re�nes SSPEC from T , the computation

pre�x upto s maintains SPEC. Also, since p re�nes SPEC from S and R ) S,

the suÆx of c starting from state s is in SPEC . Therefore, by Lemma 5.1, it follows

that c0 is in SPEC. Thus, a computation of p0[]F that starts in a state in T is in

SPEC, i.e., p is masking F -tolerant for SPEC from T .

Part 2: detector. We use the de�nition of Z and X in Theorem 3.12 . Theorem

3.12 shows that p0 is fail-safe F -tolerant for Z detects X from R and the fault-span

of p0 is T . To show that p0 is masking F -tolerant we need to show that starting from

any state in T , p0 satis�es the liveness speci�cation of Z detects X, namely Progress.
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Thus, we need to show that if X is continuously true then in a given computation

of p0[]F eventually Z is set to true. Since the number of faults is �nite, there exists

a suÆx of the given computation where X is continuously true and only p executes

in that computation. By the proof of Lemma 5.4 (Part 1), it follows that Progress is

satis�ed. Thus, p0 is masking F -tolerant for Z detects X from R .

Part 3: masking tolerant corrector. This proof is identical to the proof of Lemma

5.4 (Part 2).

Part 4: nonmasking F -tolerant corrector. We use the same de�nitions of Z and X

as in Lemma 5.4 (Part 2), and show that p0 is nonmasking F -tolerant for Z corrects X

from T and the F -span of p0 is T . To this end, we �rst show that p0 re�nes Z corrects

X from T . Then, we show that p0[]F re�nes the nonmasking tolerance speci�cation

of Z corrects X from T .

For the �rst part, from Lemma 5.4, we observe that p0 re�nes Z corrects X from

T .

For the second part, we observe that in the presence of F , stability of the corrector

may be violated. However, since faults are �nite, after the faults stop, the computa-

tion of p0 alone is in Z corrects X . Thus, each computation of p0[]F has a suÆx that

is in the speci�cation Z corrects X . In other words, p0[]F re�nes the nonmasking

tolerance speci�cation of Z corrects X from T .

5.2.1 Example : Memory Access (continued)

Continuing with the example in Section 4.4.1, we use Theorem 5.5 to show that

program c[](d2; p) is masking `page fault'-tolerant.
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Program c[](d2; p) consists of three actions: one action adds a tuple haddr;�i if

such a tuple does not exist in the memory. Another action detects if a tuple of the

form haddr;�i exists in the memory. If this detection succeeds, it sets Z2 to true.

Finally, the data is set after Z2 is set to true.

Let S := U1 ^ X1 ^ X2, T := U1 ^ X1 , and F := page fault (cf. Figure 5.1).

Observe that c[]p re�nes SPECmem from S, c[](d2; p) re�nes p from S, (c[](d2; p)[]F

re�nes (true)�((c[]p)jS) from T , c[](d2; p) encapsulates c[]p, and c[](d2; p)[]F re�nes the

safety speci�cation of SPECmem from T . Therefore, by Theorem 5.5, we have:

c[](d2; p) is masking `page fault'-tolerant for SPECmem from S,

c[](d2; p) is a masking `page fault'-tolerant detector of a detection predicate of

p (respectively c),

c[](d2; p) is a masking `page fault'-tolerant corrector of an invariant of c[]p .

5.3 Designing Masking Fault-Tolerance via Nonmasking

Fault-Tolerance

Figure 5.2 summarizes the necessity and suÆciency of detectors and correctors in

fault-tolerant programs. Note that in the design of masking fault-tolerance, we need

to add both detectors and correctors. These detectors and correctors themselves can

be added in a stepwise fashion. Speci�cally, it is possible to �rst add correctors

to obtain nonmasking tolerance and then add detectors to obtain masking fault-

tolerance. Likewise, it is possible to design masking fault-tolerance via fail-safe fault-

tolerance where we �rst add detectors and then correctors. In this section, we explore

how masking fault-tolerance can be designed via nonmasking fault-tolerance. Similar

design is also possible via fail-safe fault-tolerance. An example of such a design is

discussed in Section 7.1.
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Intolerant program

Masking tolerant program

Nonmasking
tolerant
program

Fail-safe
tolerant
program

detectors and correctors

+ nonmasking
   correctors

+ fail-safe
  detectors

+ masking

Figure 5.2: Necessity and SuÆciency of Detectors and Correctors

The design of masking fault-tolerance via nonmasking fault-tolerance is based on

the following Theorem:

Theorem 5.6

If p re�nes SPEC from S,

p re�nes SSPEC from T , where T ( S, and

p re�nes (true)�(p j S) from T

then p re�nes the masking tolerance speci�cation of SPEC from T .

Proof. Consider a computation of p, say c, that starts in a state where T is true.

Since p re�nes (true)�(p j S) from T , c contains a state, say s, where S is true. Let

�s be the computation pre�x of c upto s, and let s� be the suÆx of c starting from

s.
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Since p re�nes SSPEC from T , the projection of �s on SPEC maintains SPEC.

And, since p re�nes SPEC from S, the projection of s� on SPEC is in SPEC.

Therefore, by Lemma 5.1, it follows that the projection of c on SPEC is in SPEC.

Thus, for every computation of p that starts in a state where T is true, the projection

of that computation on SPEC is in SPEC, i.e., p re�nes the masking tolerance

speci�cation of SPEC from T .

Theorem 5.6 suggests that an intolerant program can be made masking fault-

tolerant in two stages: In the �rst stage, the intolerant program is transformed into

one that is nonmasking fault-tolerant for, say, the invariant Snp and the fault-span Tnp.

In the second stage, the tolerance of resulting program is enhanced from nonmasking

to masking by transforming the nonmasking fault-tolerant program so that every

computation upon starting from a state where Tnp holds, in addition to eventually

reaching a state where Snp holds, also satis�es the safety speci�cation of the problem

at hand. We address the details of both stages, next.

Stage 1. For a fault-intolerant program, say p, the problem speci�cation is satis�ed

by computations of p that start at a state where the invariant of p, say Sp, is true but

not necessarily by those that start at states where Sp is false. As discussed in Chapter

4, to add nonmasking tolerance to p, we need to add a corrector whose correction

predicate is Sp.

Note that when a corrector is added to p, the resulting nonmasking fault-tolerant

program, np, may have new variables and actions. Therefore, the invariant, Snp,

and the fault-span, Tnp, of the resulting nonmasking fault-tolerant program may be

di�erent.
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Stage 2. For a nonmasking program, say np, the problem speci�cation is satis�ed

after computations of np converge to states where Snp is true. However, the safety

speci�cation may not be satis�ed in all computations of np that start at states where

Tnp is true. From Theorem 5.6, it follows that to obtain a masking fault-tolerant

program, we need to transform np so that in addition to maintaining convergence to

Snp, it also guarantees that its safety speci�cation is satis�ed.

As discussed in Chapter 3, to transform np into a masking fault-tolerant program,

for each action ac of np, we need to add a detector whose detection predicate is a

detection predicate ac. In our experience, we have observed that it is often necessary

to add a detector for some limited set of actions as the detection predicate of other

program actions is trivially true. This observation follows from the fact that the

actions of masking tolerant programs can be conceptually characterized as either

\critical" or \noncritical", with respect to the safety speci�cation. Critical actions

are those actions whose execution in the presence of faults can violate the safety

speci�cation; hence, only they require non-trivial detection predicates. In other words,

the detection predicate of all non-critical actions is merely true.

For example, in terminating programs, e.g. feed-forward circuits or database trans-

actions, only the actions that produce an output or commit a result are critical. In

reactive programs, e.g. operating systems or plant controllers, only the actions that

control progress while maintaining safety are critical. In the rich class of \total"

programs [63] for distributed systems, e.g. distributed consensus [17,64], garbage col-

lection [49], global function computation, distributed reset [9, 38], snapshot [21, 61],

and termination detection [28,44], only the \decider" actions that declare the outcome

of the computation are critical.
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Veri�cation obligations. The addition of corrector and detector components as

described above may add variables and actions to an intolerant program and, hence,

the invariant and the fault-span of the resulting program may be di�erent from those

of the original program. The addition of corrector and detector components thus

creates some veri�cation obligations for the designer.

Speci�cally, when a corrector is added to an intolerant program, the designer

has to ensure that the corrector actions and the intolerant program actions do not

interfere with each other. That is, even if the corrector and the fault-intolerant

program execute concurrently, both accomplish their tasks: The corrector restores the

intolerant program to a state from where the problem speci�cation of the intolerant

program is (re)satis�ed. And starting from such a state, the intolerant program

satis�es its problem speci�cation.

Similar obligations are created when detectors are added to a nonmasking pro-

gram. Even if the detectors and the nonmasking program are executed concurrently,

the designer has to ensure that the detector components and the components of the

nonmasking program all accomplish their respective tasks.

Another set of veri�cation obligations is due to the fact that the corrector and

detector components are themselves subject to the faults that the intolerant pro-

gram is subject to. Hence, the designer is obliged to show that these components

accomplish their task in spite of faults. More precisely, as discussed in Chapter 4,

the corrector tolerates the faults by ensuring that when fault actions stop executing

it eventually restores the program state as desired. In other words, the corrector is

itself nonmasking tolerant to the faults. And, each detector tolerates the faults by

never falsely witnessing its detection predicate, even in the presence of the faults. In
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other words, each detector is itself masking tolerant to the faults. As can be expected,

our two-stage design method can itself be used to design masking tolerance in the

detectors, if their original design did not yield masking tolerant detectors.

Adding detector components by superposition. One way of simplifying the

veri�cation obligations is to add components to a program by superposing them on

the program: if a program p is designed by a superposition on the program q, then it

is trivially true that p does not interfere with q (although the converse need not be

true, i.e., q may interfere with p).

In particular, superposition is well-suited for the addition of detector components

to a nonmasking tolerant program, np, in Stage 2, since detectors need only to read

(but not update) the state of np. Thus, the detectors do not interfere with the tasks

of the corrector components in np.

When superposition is used, the veri�cation of the converse obligation, i.e. that

np does not interfere with the detectors, may be handled as follows. Ensure that

the corrector in np terminates after it restores np to an invariant state and that as

long as it has not terminated it prevents the detectors from witnessing their detection

predicate. Aborting the detectors during the execution of the corrector guarantees

that the detectors never witness their detection predicate incorrectly, and the eventual

termination of the corrector guarantees that eventually detectors are not prevented

from witnessing their detection predicate.

More speci�cally, the simpli�ed veri�cation obligations resulting from superpo-

sition are explained from Theorems 5.7 and 5.8. Let program p be designed by

superposition on q such that Tp ) Tq , Sp ) Sq, and Tq converges to Sq in q.
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Theorem 5.7.

If Tq converges to Sq in q

then Tp converges to Sq in p.

Theorem 5.8.

If Tq converges to Sq in q, and

Tp ^ Sq converges to Sp in p

then Tp converges to Sp in p

Proof: Since q is nonmasking fault-tolerant, Tq converges to Sq in q. Since p is

designed by a superposition on q, it follows that (Tp ^Tq converges to Tp ^Sq). Since

the converges-to relation is transitive and (Tp ^ Sq converges to Sp ^ Sq), it follows

that (Tp ^ Tq converges to Sp ^ Sq), i.e., Tp converges to Sp in p.

Theorems 5.7 and 5.8 imply that if p is designed by superposition on a nonmask-

ing tolerant program q, then to reason about p, it suÆces to assume that q always

satis�es its invariant Sq, even in the presence of faults. Of course, other interference

strategies discussed in Chapter 3 can be used to achieve interference-freedom between

components.

5.3.1 Data transfer : An Example of Stepwise Design

In this subsection, we illustrate how a masking fault-tolerant solution to the data

transfer problem can be designed by �rst designing a nonmasking fault-tolerant solu-

tion and then enhancing its tolerance to masking. Recall the data transfer problem:

An in�nite input array at a sender process is to be copied, one array item at a time,
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into an in�nite output array at a receiver process. The sender and receiver communi-

cate via a bidirectional channel that can hold at most one message in each direction

at a time. It is required that each input array item be copied into the output array

exactly once and in the same order as sent. Moreover, eventually the number of items

copied by the receiver should grow unboundedly.

Data transfer is subject to the faults that lose channel messages.

We will design the masking fault-tolerance to data transfer in two stages. The

resulting program is the well known alternating-bit protocol.

Intolerant program. Iteratively, a simple loop is followed: sender s sends a copy

of one array item to receiver r. Upon receiving this item, r sends an acknowledgment

to s, which enables the next array item to be sent by s and so on. To this end, the

program maintains binary variables rs in s and rr in r; rs is 1 if s has received an

acknowledgment for the last item it sent, and rr is 1 if the r has received an item but

has not yet sent an acknowledgment.

The 0 or 1 items in transit from s to r are denoted by the sequence cs, and the 0 or

1 acknowledgments in transit from r to s are denoted by the sequence cr. Finally, the

index in the input array corresponding to the item that s will send next is denoted by

ns, and the index in the output array corresponding to the item that r last received

is denoted by nr.

The intolerant program contains four actions, the �rst two in s and the last two

in r. By ID1, s sends an item to r, and by ID2, s receives an acknowledgment from

r. By ID3, r receives an item from s, and by ID4, r sends an acknowledgment to

s. Formally, the actions of the intolerant program, ID, are as follows (where c1 Æ c2

denotes concatenation of sequences c1 and c2):
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ID1 :: rs=1 �! rs; cs := 0; cs Æ hnsi

ID2 :: cr 6=hi �! rs; cr; ns := 1; tail(cr); ns+ 1

ID3 :: cs 6=hi �! cs; rr; nr := tail(cs); 1; head(cs)

ID4 :: rr=1 �! rr; cs := 0; cr Æ hnri

Remark. For brevity, we have ignored the actual data transfered between the sender

and the receiver: we only use the array index of that data.

Invariant. When r receives an item, nr=ns holds, and this equation continues to

hold until s receives an acknowledgment. When s receives an acknowledgment, ns is

exactly one larger than nr and this equation continues to hold until r receives the

next item. Also, if cs is nonempty, cs contains only one item, hnsi. Finally, in any

state, exactly one of the four actions is enabled. Hence, the invariant of program ID

is, SID, where

SID = ((rr=1 _ cr 6=hi) ) nr=ns) ^

((rs=1 _ cs 6=hi) ) nr=ns�1) ^

(cs=hi _ cs=hnsi) ^ (jcsj+ jcrj+ rs+ rr = 1)

Fault Actions. The faults in this example lose either an item sent from s to r or an

acknowledgment sent from r to s. The corresponding fault actions are as follows:

cs 6=hi �! cs := tail(cs)

cr 6=hi �! cr := tail(cr)
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Nonmasking tolerant program. Program ID is intolerant as it deadlocks when

a fault loses an item or an acknowledgment. Hence, we add nonmasking tolerance

to this fault by adding a corrector whose correction predicate is SID. In order to

perform this correction, whenever an item or an acknowledgment is lost, the corrector

retransmits the last item.

Thus, the nonmasking program consists of �ve actions; four actions are identical

to the actions of program ID, and the �fth action is the action of the corrector that

retransmits the last item that was sent. This action is executed when both channels,

cs and cr, are empty, and rs and rr are both zero. In practice, this action can be

implemented by waiting for a some predetermined timeout so that the sender can

be sure that either the item or the acknowledgment is lost, but we present only the

abstract version of the action. Formally, the actions of the nonmasking program,

ND, are as follows:

ND1 :: ID1

ND2 :: ID2

ND5 :: cs=hi ^ cr=hi ^ rs=0 ^ rr=0 �! cs := cs Æ hnsi

ND3 :: ID3

ND4 :: ID4

Fault-span and invariant. If an item or an acknowledgment is lost, the program

reaches a state where cs and cr are empty and rs and rr are both equal to zero. Also,
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even in the presence of faults, if cs is nonempty, it contains exactly the item whose

index in the input array is hnsi. Thus, the fault-span of the nonmasking program is

TND = (cs=hi _ cs=hnsi) ^ (jcsj+ jcrj+ rs+ rr � 1)

and the invariant is the same as the invariant of ID, i.e.,

SND = SID

Enhancing the tolerance to masking. ProgramND is not yet masking tolerant,

since r may receive duplicate items if an acknowledgment from r to s is lost. Hence,

to enhance the tolerance to masking, we need to restrict the action ID3 so that r

copies an item into the output array i� it is not a duplicate.

Upon receiving an item, if r checks that nr is exactly one less than the index

number received with the item, r will receive every item exactly once. Thus, we

can enhance its tolerance to masking by adding a detector that checks whether the

counter value in the message is correct. However, this check forces the size of the

message sent from the s to r to grow unboundedly. However, we can exploit the fact

that in ND, ns and nr di�er by at most 1, in order to simulate this check by sending

only a single bit with the item as follows.

Process s adds one bit, bs, to every item it sends such that the bit values added

to two consecutive items are di�erent and the bit values added to an item and its

duplicates are the same. Thus, to detect that a message is duplicate, r maintains a

bit, br, that denotes the sequence number of the last message it received. It follows

that an item received by r is a duplicate i� br is the same as the sequence number in

that message.

The masking program consists of �ve actions. These actions are as follows:
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MD1 :: rs=1 �! rs; cs := 0; cs Æ hns; bsi

MD2 :: cr 6=hi �! rs; cr; ns; bs := 1; tail(cr); ns+ 1; bs� 1

MD5 :: cs=hi ^ cr=hi ^

rs=0 ^ rr=0 �! cs := cs Æ hns; bsi

MD3 :: cs 6=hi �! if ((head(cs))2 6=br) then

nr; br := (head(cs))1; (head(cs))2;

cs; rr := tail(cs); 1

MD4 :: rr=1 �! rr; cs := 0; cr Æ hnr; bri

Remark. Observe that in the masking program, the array index ns and nr need not

be sent on the channel as it suÆces to send the bits bs and br. With this modi�cation,

the resulting program is the alternating bit protocol.

Invariant. In any state reached in the presence of program and fault actions,

if cs is nonempty, cs has exactly one item, hns; bsi. Also, when r receives an item,

nr=ns holds, and this equation continues to hold until s receives an acknowledgment.

Moreover, bs is the same as ns mod 2, br is the same as nr mod 2, and exactly

one of the �ve actions is enabled. Finally, nr is the same as ns or nr is one less than

ns. Thus, the invariant of the masking program is SMD, where

SMD = (cs=hi _ cs=hns; bsi) ^

((rr=1 _ cr 6=hi)) nr=ns) ^ (jcsj+ jcrj+ rs+ rr � 1) ^

bs=(ns mod 2) ^ br=(nr mod 2) ^ (nr=ns _ nr = ns�1)

75



Theorem 5.9. The alternating-bit program, MD, is masking tolerant from SMD.

5.4 Chapter Summary

In this chapter, we showed how masking fault-tolerance is related to fail-safe

fault-tolerance and nonmasking fault-tolerance. Using this relation, we showed that

detectors and correctors together form a basis of masking fault-tolerance. We also

used this relation to provide a stepwise method for designing masking fault-tolerance.
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CHAPTER 6

MULTITOLERANCE AND ITS DESIGN

In the last three chapters, we identi�ed the two fault-tolerance components that

form a basis of fault-tolerance design. As mentioned in the introduction, one purpose

of identifying these components is to develop a systematic method to design fault-

tolerant programs, including multitolerant programs. In this chapter, we present this

method.

We proceed as follows: First, we de�ne what it means for a program to be multitol-

erant (cf. Section 6.1). Then, we present our method to transform a fault-intolerant

program into a multitolerant program (cf. Section 6.2). Subsequently, we illustrate

our method by designing a multitolerant token ring program (cf. Section 6.3). This

example demonstrates the use of detectors and correctors in the design of a program

which provides continuous tolerance in the sense that the time required to correct the

program state is proportional to the severity of the faults.
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6.1 De�nition

Let p be a program with invariant S, F1::Fn be n fault-classes, SPEC be a

speci�cation, and l1; l2; ::; ln be types of tolerance (i.e., masking, nonmasking or fail-

safe). We say that p is multitolerant to F1::Fn for SPEC from S i� for each fault-

class Fj; 1�j� n, p is lj F j-tolerant for SPEC from S .

The de�nition may be understood as follows: In the absence of faults, p re�nes

SPEC from S. In the presence of faults in class Fj, p is perturbed only to states

where some Fj-span predicate for S, Tj, is true. (Note that there exists a potentially

di�erent fault-span for each fault-class.) And, in states where Tj is true, p re�nes an

appropriate tolerance speci�cation of SPEC. For example, if lj=fail�safe, then p

re�nes the fail-safe tolerance speci�cation of SPEC, namely SSPEC, from Tj.

Example: Memory access (continued). Observe that the memory access

program, d1; (c; d2); p, discussed in Section 3.3.1, is multitolerant to the classes of

protection faults and page faults: it is fail-safe tolerant to the former and masking

tolerant to latter. In particular, in the presence of a page fault, it always obtains the

correct data from the memory. And in the presence of a protection fault, it obtains

no data value.

6.2 Compositional and Stepwise Design Method

In this section, we describe our compositional method to design multitolerant

system that adds tolerance to di�erent classes of faults in a stepwise fashion. More

speci�cally, our method starts with a fault-intolerant program and, in a stepwise

manner, considers the fault-classes in some �xed total order, say F1::Fn. In the �rst

step, the intolerant program is augmented with detector and/or corrector components
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so as to add suitable tolerance to the fault-class F1. The resulting program is then

augmented with other detector/corrector components, in the second step, so as to

add suitable tolerance the fault-class F2 while ensuring that the tolerance to F1 is

preserved. And so on until, in the n-th step, the tolerance to Fn is added while

preserving the tolerances to F1::Fn�1. The multitolerant program designed thus has

the structure shown in Figure 6.1.

detectors and/or correctors for Fn

Fault-intolerant program

detectors and/or correctors for F1

detectors and/or correctors for F2

Figure 6.1: Structure of a multitolerant program designed using our method

First step. Let p be the intolerant program with invariant S. To add fault-

tolerance to F1, we need to add suitable detector and corrector components to p.

For example, if we need to add fail-safe tolerance to F1 then we compute a detection

predicate, sfac for each action ac of p and add a detector whose detection predicate

is sfac. As shown in Chapter 3, if each action in p is restricted to execute only in

states where a detection predicate of that action is true then the resulting program

is fail-safe tolerant. Likewise, if we need to design nonmasking tolerance to F1 then
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we need to add a corrector whose correction predicate is S. And, if we need to design

masking fault-tolerance then we need to add both detectors and correctors.

As discussed in Chapter 5, the addition of the detectors and correctors in the

design of masking tolerance may itself be simpli�ed by using a stepwise approach:

For instance, to design masking tolerance, we may �rst augment the program with

detectors, and then augment the resulting fail-safe tolerant program with correctors.

Alternatively, we may �rst augment the program with correctors, and then augment

the resulting nonmasking tolerant program with detectors (cf. Figure 6.2).
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tolerant

Masking tolerant program

Intolerant program

+ correctors + detectors

program

+ correctors

program

+ detectors

Failsafe Nonmasking
tolerant

Figure 6.2: Two approaches for stepwise design of masking tolerance

Also, as discussed in Chapters 3 and 4, the added components themselves must

be fault-tolerant. More speci�cally, the detectors added in the design of fail-safe

tolerance must themselves be fail-safe tolerant, the correctors added in the design

of nonmasking tolerance must themselves be nonmasking tolerant, and the detectors

and correctors added in the design of masking tolerance must themselves be masking

tolerant.

With the addition of detector and/or corrector components to p, it remains to

show that, in the resulting program p1, the components do not interfere with p and
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that p does not interfere with the components. Note that p1 may contain variables

and actions that were not in p and, hence, invariants and fault-spans of p1 may di�er

from those of p. Therefore, letting S1 be an invariant of p1 and T1 be an F1-span of

p1 for S1, we show the following.

1. In the absence of F1, i.e., in states where S1 is true, the components do not

interfere with p, i.e., each computation of p is in the problem speci�cation even

if it executes concurrently with the new components.

2. In the presence of F1, i.e., in states where T1 is true, p does not interfere

with the components, i.e., each computation of the components is in the com-

ponents' speci�cation (in the sense prescribed by its type of tolerance) even if

they execute concurrently with p.

Second step. This step adds l2-tolerance to F2 and preserves the l1-tolerance to

F1. To add l2-tolerance to F2, just as in the �rst step, we add new detector and

corrector components to p1. Then, we account for the possible interference between

the executions of these added components and of p1. More speci�cally, letting S2 be

an invariant of the resulting program p2, T21 be an F1-span of p2 for S2, and T22

denote an F2-span of p2 for S2, we show the following.

1. In the absence of F1 and F2, i.e., in states where S2 is true, the newly added

components do not interfere with p1, i.e., each computation of p1 is in the

problem speci�cation even if it executes concurrently with the new components.

2. In the presence of F2, i.e., in states where T22 is true, p1 does not interfere with

the new components, i.e., each computation of the new components is in the
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new components' speci�cation (in the sense prescribed by its type of tolerance)

even if they execute concurrently with p1.

3. In the presence of F1, i.e., in states where T21 is true, the newly added compo-

nents do not interfere with the l1-tolerance of p1 for F1, i.e., each computation

of p1 is in the speci�cation, l1-tolerant to F1, even if p1 executes concurrently

with the new components.

Remaining steps. For the remaining steps of the design, where we add tolerance

to F3::Fn, the procedure of the second step is generalized accordingly.

6.3 Case Study in Multitolerance Design : Token Ring

Recall the mutual exclusion problem: Multiple processes may each access their

critical section provided that at any time at most one process is accessing its crit-

ical section. Moreover, no process should wait forever to access its critical section,

assuming that each process leaves its critical section in �nite time.

Mutual exclusion is readily achieved by circulating a token among processes and

letting each process enter its critical section only if it has the token. In a token

ring program, in particular, the processes are organized in a ring and the token is

circulated along the ring in a �xed direction.

In this case study, we design a multitolerant token ring program. The program

is masking tolerant to any number, K, of faults that each corrupt the state of some

process detectably. Its tolerance is continuous in the sense that if K state corruptions

occur, it corrects its state within �(K) time. Thus, a quantitatively unique measure

of tolerance is provided to each FK, where FK is the fault-class that causes at most

K state corruptions of processes.
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By detectable corruption of the state of a process, we mean that the corrupted

state is detected by that process before any action inadvertently accesses that state.

The state immediately before the corruption may, however, be lost. (For our purposes,

it is irrelevant as to what caused the corruption; i.e., whether it was due to the loss

of a message, the duplication of a message, timing faults, the crash and subsequent

restart of a process, etc.)

We proceed as follows: First, we describe a simple token ring program that is

intolerant to detectable state corruptions. Then, we add detectors and correctors so

as to achieve masking tolerance to the fault that corrupts the state of one process.

Progressively, we add more detectors and correctors so as to achieve masking tolerance

to the fault-class that corrupts process states at most K, K > 1, times.

6.3.1 Fault-Intolerant Binary Token Ring

Processes 0::N are organized in a ring. The token is circulated along the ring such

that process j, 0� j �N , passes the token to its successor j+1. (In this section, +

and � are in modulo N+1 arithmetic.) Each process j maintains a binary variable

x:j. Process j; j 6= N , has the token i� x:j di�ers from its successor x:(j+1) and

process N has the token i� x:N is the same as its successor x:0.

The program, TR, consists of two actions for each process j. Formally, these

actions are as follows (where +2 denotes modulo 2 addition):

TR1 :: j 6=0 ^ x:j 6=x:(j�1) �! x:j := x:(j�1)

TR2 :: j=0 ^ x:j 6=(x:N +2 1) �! x:j := x:N +2 1
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Invariant. Consider a state where process j has the token. In this state, since no

other process has a token, the x value of all processes 0::j is identical and the x value

of all processes (j+1)::N is identical. Letting X denote the string of binary values

x:0; x:1; :::; x:N , we have thatX satis�es the regular expression (0l 1(N+1�l) [ 1l 0(N+1�l)),

which denotes a sequence of length N+1 consisting of zeros followed by ones or ones

followed by zeros. Thus, an invariant of TR is

STR = X 2 (
S
l : 0 � l � N+1 : (0l 1(N+1�l) [ 1l 0(N+1�l)))

6.3.2 Adding Tolerance to 1 State Corruption

Based on our assumption that state corruption is detectable, we introduce a special

value ?, such that when any process j detects that its state (i.e., the value of x:j) is

corrupted, it resets x:j to ?.

We can now readily design masking tolerance to a single corruption of state at

any process j by ensuring that (i) the value of x:j is eventually corrected so that it

is no longer ? and (ii) in the interim, no process (in particular, j+1) inadvertently

gets the token as a result of the corruption of x:j.

For (i), we add a corrector at each process j: it corrects x:j from ? to a value

that is either 0 or 1. The corrector at j, j 6= 0, copies x:(j�1); the corrector at j,

j=0, copies x:N +2 1. Thus, the corrector action at j has the same statement as the

action of TR at j, and we can merge the corrector and TR actions.

For (ii), we add a detector at each process j : Its detection predicate is x:(j�1) 6=?

and it has no actions. The witness predicate of this detector (which, in this case, is

the detection predicate itself) is used to restrict the actions of program TR at j.

Hence, the actions of TR at j execute only when x:(j�1) 6=? is true. As a result,

84



the execution of actions of TR is always safe (i.e., these actions cannot inadvertently

generate a token).

The augmented program, PTR, is

PTR1 :: x:(j�1) 6=? ^ TR1

PTR2 :: x:N 6=? ^ TR2

Fault Actions. When the state of x:j is corrupted, x:j is set to ?. Hence, the fault

action is

x�corr :: true �! x:j := ?

Proof of interference-freedom. Starting from a state where STR is true, in the

presence of faults that set the x value of a process to ?, string X always satis�es the

regular expression (0[?)l (1[?)(N+1�l)or (1[?)l (0[?)(N+1�l). Thus, an invariant

of PTR is SPTR, where

SPTR = X 2 (
S
l : 0� l�N+1 :

((0 [ ?)l (1 [ ?)(N+1�l) [ (1 [ ?)l (0 [ ?)(N+1�l))) ^

jfj : x:j=?gj�1

Consider the detector at j: Both its detection and witness predicates are x:(j�1) 6=

?. Since the detects relation is trivially re
exive in its �rst two arguments, it follows

that x:(j�1) 6= ? detects x:(j�1) 6= ? in PTR. In other words, the detector is not

interfered by any other actions.
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Consider the corrector at j: Both its correction and witness predicates are x:j 6= ?.

Since the program actions are identical to the corrector actions, by Theorem 3.14, the

corrector actions are not interfered by the actions of TR. Also, since the detectors

have no actions, the detectors at processes other than j do not interfere with the

corrector at j; moreover, since at most one x value is set to ?, when x:j =? and

thus the corrector at j is enabled, the witness predicate of the detector at j is true

and hence the corrector at j is not interfered by the detector at j.

Consider the program actions of TR: Their safety follows from the safety of the

detectors, described above. And, their progress follows from the progress of the

correctors, which ensure that starting from a state where SPTR is true and a process

state is corrupted every computation of PTR reaches a state where STR is true,

and the progress of the detectors, which ensures that no action of TR is inde�nitely

blocked from executing.

Observe that our proof of mutual interference-freedom illustrates that we do not

have to re-prove the correctness of TR for the new invariant. Observe, also, that if

the state of process j is corrupted then within �(1) time the corrector at j corrects

the state of j.

6.3.3 Adding Tolerance to 2::N State Corruptions

The proof of non-interference of program PTR can be generalized to show that

PTR is also masking tolerant to the fault-class that twice corrupts process state.

The generalization is self-evident for the case where the state corruptions are

separated in time so that the �rst one is corrected before the second one occurs. For

the case where both state corruptions occur concurrently, say at processes j and k,
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we need to show that the correctors at j and k truthify x:j 6=? and x:k 6=?, without

interference by each other and the other actions of the program. Let us consider two

subcases: (i) j and k are non-neighboring, and (ii) j and k are neighboring.

For the �rst subcase, j and k correct x:j and x:k from their predecessors j�1

and k�1, respectively. This execution is equivalent to the parallel composition of the

correctors at j and k. By Theorem 4.4, PTR reaches a state where x:j and x:k are

not ?.

For the second subcase (letting j be the predecessor of k), j corrects x:j from its

predecessor j�1, truthi�es x:j 6= ? and then terminates. Since the corrector at j

does not read any variables written by the corrector at k. Thus, from the analogue

of Theorem 3.13 for the case of correctors, the corrector at j is not interfered by the

corrector at k. After x:j 6= ? is truthi�ed, the corrector at k corrects x:k from its

predecessor j. By Theorem 4.5, the corrector at k is not interfered by the corrector

at j. Since the correctors at j and k do not interfere with each other, it follows that

the program reaches a state where x:j and x:k are not ?.

In fact, as long as the number of faults is at most N , there exists at least one

process j with x:j 6=?. PTR ensures that the state of such a j eventually causes j+1

to correct its state to x:(j + 1) 6=?. Such corrections will continue until no process

has its x value set to ?. Hence, PTR tolerates up to N faults and the time required

to converge to STR is �(K), where K is the number of faults.
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6.3.4 Adding Tolerance to More Than N State Corruptions

Unfortunately, if more than N faults occur, program PTR deadlocks i� it reaches

a state where the x value of all processes is ?. To be masking tolerant to the fault-

classes that corrupt the state of processes more than N times, a corrector is needed

that detects whether the state of all processes is ? and, if so, corrects the program

to a state where the x value of some process (say 0) to be equal to 0 or 1.

Since the x values of all processes cannot be accessed simultaneously, the corrector

detects in a sequential manner whether the x values of all processes are ?. Let the

detector added for this purpose at process j be denoted as dj and the (sequentially

composed) detector that detects whether the x values of all processes is corrupted be

dN ; d(N�1); :::; d0.

To design dj, we add a value > to the domain of x:j. When dN detects that x:N

is equal to ?, it sets x:N to >. Likewise, when dj, j < N , detects that x:j is equal

to ?, it sets x:j to >. Note that since dj is part of the sequential composition, it is

restricted to execute only after j+1 has completed its detection, i.e., when x:(j+1) is

equal to >. It follows that when j completes its detection, the x values of processes

j::N are corrupted. In particular, when d0 completes its detection, the x values of all

processes are corrupted. Hence, when x:0 is set to >, it suÆces for the corrector to

reset x:0 to 0.

To ensure that while the corrector is executing, no process inadvertently gets the

token as a result of the corruption of x:j, we add detectors that restrict the actions

of PTR at j+1 to execute only in states where x:j 6=> is true.

Actions. Program FTR consists of �ve actions at each process j. Like PTR, the

�rst two actions, FTR1 and FTR2, pass the token from j to j+1 and are restricted
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by the trivial detectors to execute only when x:(j�1) is neither ? nor >. Action

FTR3 is dN ; it lets process N change x:N from ? to >. Action FTR4 is dj for

j < N . Action FTR5 is the corrector action at process 0: it lets process 0 correct

x:0 from > to 0. Formally, these actions are as follows:

FTR1 :: x:(j�1) 6=> ^ PTR1

FTR2 :: x:N 6=> ^ PTR2

FTR3 :: x:N=? �! x:N := >

FTR4 :: j 6= N ^ x:j=? ^ x:(j+1)=> �! x:j := >

FTR5 :: x:0=> �! x:0 := 0

Invariant. Starting from a state where SPTR is true, the detector can change the

trailing ? values in X to >. Thus, FTR may reach a state where X satis�es the

regular expression (1 [ ?)l (0 [ ?)m>(N+1�l�m) [ (0 [ ?)l (1 [ ?)m>(N+1�l�m).

Subsequent state corruptions may perturb X to the form (1 [ ?)l (0 [ ?)m(? [

>)(N+1�l�m) [ (0 [ ?)l (1 [?)m (?[>)(N+1�l�m). Since all actions preserve this last

predicate, an invariant of FTR is

SFTR = X 2 (
S
l; m; : 0� l; m; l+m�N+1 :

( (1 [ ?)l (0 [ ?)m(? [>)(N+1�l�m) [

(0 [ ?)l (1 [ ?)m (? [ >)(N+1�l�m)))

Proof of interference-freedom. To design FTR, we have added a corrector

(actions FTR3�5) to program PTR to ensure that for some j, x:j is not corrupted,

i.e., the correction predicate of this corrector is V , where V = (9j :: x:j=0 _ x:j=1).
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This corrector is of the form dN ; d(N�1); :::; d0; c0, where each dj is an atomic detector

at process j and c0 is an atomic corrector at process 0.

The detection predicate of dN ; d(N�1); :::; d0 is :V and its witness predicate is

x:0=>. To show that this detector in isolation satis�es its speci�cation, observe that

1. x:N=> detects (8j : N � j � N : x:j 6= 0 ^ x:j 6= 1) in dN for SFTR.

2. x:(N�1)=> detects (8j : N � j � N�1 : x:j 6= 0 ^ x:j 6= 1) in d(N�1)

for (SFTR ^ (8j : N � j � N : x:j 6= 0 ^ x:j 6= 1)).

From (1) and (2), by Theorem 3.4, x:(N�1)=> detects (8j : N � j � (N�1) :

x:j 6= 0^x:j 6= 1) in dN ; d(N�1) for SFTR. Using the same argument, x:0=> detects

(8j : N � j � 0 : x:j 6= 0 ^ x:j 6= 1) in dN ; d(N�1); :::; d0 for SFTR, i.e., x:0 =>

detects (:V ) in dN ; d(N�1); :::; d0 for SFTR.

Now, observe that SFTR converges to V in dN ; d(N�1); :::; d0; c0: if V is violated

execution of dN ; d(N�1); :::; d0 will eventually truthify x:0=>, and execution of c0

will truthify V . Thus, V corrects V in dN ; d(N�1); :::; d0; c0 for SFTR.

The corrector is not interfered by the actions FTR1 and FTR2. This follows

from the fact that FTR1 and FTR2 do not interfere with each dj and c0 (by using

Theorem 3.15).

In program FTR, we have also added a detector at process j that detects x:(j�1) 6=

>. As described above (for the 1 fault case), this detector does not interfere with

other actions, and it is not interfered by other actions.

Finally, consider actions of program PTR: their safety follows from the safety of

the detector described above. Also, starting from any state in SFTR, the program

reaches a state where x value of some process is not corrupted. Starting from such
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a state, as in program PTR, eventually the program reaches a state where STR is

truthi�ed, i.e., no action of PTR is permanently blocked. Thus, the progress of these

actions follows.

Theorem 6.1 Program FTR is masking tolerant for invariant SFTR to the fault-

classes FK, K � 1, where FK detectably corrupts process states at most K times.

Moreover, SFTR converges to STR in FTR within �(K) time.

6.4 Chapter Summary

In this chapter, we presented a method that uses detectors and correctors to

add fault-tolerance to multiple classes of faults in a stepwise fashion. To add fault-

tolerance to each fault, we �rst designed appropriate detectors and correctors. Then,

we ensured that these detectors and correctors do not a�ect the fault-tolerance to

faults considered in previous steps.

Our method satis�es the goals discussed in the introduction. More speci�cally,

1. it can deal with a rich class of faults, including process faults, communica-

tion faults, hardware faults, software faults, network failure, security intrusions,

safety hazards, con�guration changes and load variations.

2. by designing eÆcient detectors and correctors, it provides the potential to design

eÆcient fault-tolerant programs (examples of such programs are demonstrated

in Chapter 8 as well as in [10{13,38{42].),

3. can be used to make a rich class of systems fault-tolerant,
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4. being stepwise in nature, it can be used to transform fault-tolerant programs

to add tolerance to a new fault-class, and

5. it is not application-dependent.
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CHAPTER 7

RELATION OF DETECTORS AND CORRECTORS TO

EXISTING FAULT-TOLERANCE METHODS

In this chapter, we illustrate that programs designed using existing methods can

be alternatively designed in terms of detectors and correctors. More speci�cally, we

show that canonical fault-tolerant programs designed using two existing methods,

namely replication and Schneider's state machine approach can be designed using

detectors and correctors.

Regarding replication, we focus our attention on the central problem of triple

modular redundant system design. Regarding, Schneider's state machine approach,

recall that [59] this approach consists of two requirements, Agreement and Order.

We, therefore, consider the problem of repetitive Byzantine agreement that focuses

on these two requirements.

This chapter is organized as follows: In Section 7.1, we show how triple modular

redundancy program can be designed in terms of detectors and correctors. In Sec-

tion 7.2, we show how detectors and correctors are used in the design of repetitive

Byzantine agreement. Since Schneider's state machine approach is intended towards

designing masking fault-tolerance alone, a solution designed using this approach pro-

vides only masking Byzantine-tolerance. We show how such a masking fault-tolerant
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solution can be designed in Section 7.2.2. To further illustrate the use of detectors

and correctors in the design of multitolerance, in Section 7.2.3, we add stabilizing tol-

erance to transient and Byzantine faults while preserving the masking fault-tolerance

to Byzantine faults. Finally, in Section 7.3, we show how the program developed in

Section 7.2 can be used to design a program that provides only nonmasking fault-

tolerance to Byzantine faults.

7.1 Triple Modular Redundancy (Replication)

Consider a triple modular redundant system with three inputs, say x, y and z,

and one output, say out. In the absence of faults, all inputs are identical. Faults may

corrupt any one of the three inputs. It is required that the output be assigned the

value of an uncorrupted input.

Below, we show that the triple modular redundant system can be designed by

�rst designing a fault-intolerant system, IR, and then adding to it a detector, DR,

followed by a corrector, CR.

Fault-intolerant program IR. Program IR consists of a single action that copies the

value of x into out. The value ? of out denotes that out has not been assigned. Thus,

the action of IR is as follows:

IR :: out=? �! out := x

Detector DR. Observe that IR violates its safety speci�cation from states where the

value of x is corrupted. To preserve the safety speci�cation, we will use a detector

DR. Letting uncor be the value of an uncorrupted input, the detection predicate of
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DR is (x= uncor), and the witness predicate of DR is (x= y _ x= z) . Observe

that (x=y _ x=z) detects (x=uncor) in the program that merely evaluates the

state predicate (x= y _ x= z) upon starting from the states S where all inputs

are identical. To add fail-safe tolerance, IR is restricted to execute only when the

witness predicate of DR is satis�ed. Thus, we have

DR; IR is fail-safe `one input corruption'-tolerant from S.

Corrector CR. Program DR; IR deadlocks when the value of x gets corrupted.

To achieve masking tolerance, we add corrector CR whose correction predicate and

witness predicate are both out=uncor. CR consists of two actions: if the value of y

is uncorrupted, y is copied into the output, and if the value of z is uncorrupted, z is

copied into the output. These actions are as follows:

CR1 :: out=? ^ (y=z _ y=x) �! out := y

CR2 :: out=? ^ (z=x _ z=y) �! out := z

Thus, we have

DR; IR [] CR is masking `one input corruption'-tolerant from S.

Note that the programDR; IR [] CR is the triple modular redundancy program.

7.2 Repetitive Agreement (State Machine Approach)

In the repetitive agreement problem, the system consists of a set of processes,

including a \general" process, g. Each computation of the system consists of an

in�nite sequence of rounds; in each round, the general chooses a binary decision value
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d:g and, depending upon this value, all other processes output a binary decision value

of their own.

The system is subject to two fault-classes: The �rst one permanently and un-

detectably corrupts some processes to be Byzantine, in the following sense: each

Byzantine process follows the program skeleton of its non-Byzantine version, i.e., it

sends messages and performs output of the appropriate type whenever required by

its non-Byzantine version, but the data sent in the messages and the output may be

arbitrary. The second one transiently and undetectably corrupts the state of the pro-

cesses in an arbitrary manner and possibly also permanently corrupts some processes

to be Byzantine.

(Note that, if need be, the model of a Byzantine process can be readily weakened

to handle the case when the Byzantine process does not send its messages or perform

its output, by detecting their absence and generating arbitrary messages or output in

response.)

Repetitive agreement speci�cation. Repetitive agreement speci�cation is a set

of computations such that each round in those computations satis�es Validity and

Agreement, de�ned below.

� Validity: If g is non-Byzantine, the decision value output by every non-

Byzantine process is identical to d:g.

� Agreement: Even if g is Byzantine, the decision values output by all non-

Byzantine processes are identical.

The problem Design a program that provides the following fault-tolerance prop-

erties for repetitive agreement speci�cation.

96



1. Masking tolerance. In the presence of the faults in the �rst fault-class, i.e.,

Byzantine faults, masking tolerance speci�cation of repetitive agreement is sat-

is�ed, i.e., each round in the program computation satis�es Validity and Agree-

ment.

2. Stabilizing tolerance. In the presence of the faults in the second fault-class, i.e.,

transient and Byzantine faults, stabilizing tolerance speci�cation of repetitive

agreement is satis�ed, i.e., upon starting from an arbitrary state (which may

be reached if transient and Byzantine failures occur), eventually a state must

be reached in the program computation from where every future round satis�es

Validity and Agreement.

Before proceeding to compositionally design a masking as well as stabilizing toler-

ant repetitive agreement program, let us recall the wellknown fact that for repetitive

agreement to be masking tolerant it is both necessary and suÆcient for the system to

have at least 3t+1 processes, where t is the total number of Byzantine processes [47].

Therefore, for ease of exposition, we will initially restrict our attention, in Sections

7.2.1-7.2.3, to the special case where the total number of processes in the system

(including g) is 4 and, hence, t is 1. In other words, the Byzantine failure fault-class

may corrupt at most one of the four processes. Later, in Section 7.2.4, we will extend

our multitolerant program for the case where t may exceed 1.

7.2.1 Designing a Fault-Intolerant Program

The following simple program suÆces in the absence of faults: In each round, the

general sends its new d:g value to all non-general processes. When a process receives

this d:g value, it outputs that value and sends an acknowledgment to the general.
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After the general receives acknowledgments from all the non-general processes, it

starts the next round which repeats the same procedure.

We let each process j maintain a variable d:j, denoting the decision of j, that is

set to ? when j has not yet copied the decision of the general. Also, we let j maintain

a sequence number sn:j, sn:j 2 f0::1g, to distinguish between successive rounds.

The general process. The general executes only one action, RG1: when the

sequence numbers of all processes become identical, the general starts a new round

by choosing a new value for d:g and incrementing its sequence number, sn:g. Thus,

letting � denote addition modulo 2, the action of the general is:

RG1 :: (8k :: sn:k=sn:g) �! d:g; sn:g := new decision(); sn:g � 1

The non-general processes. Each non-general process j executes two actions:

The �rst action, RO1, is executed after the general has started a new round, in which

case j copies the decision of the general. It then executes its second action, RO2,

which outputs its decision, increments its sequence number to denote that it is ready

to participate in the next round, and resets its decision to ? to denote that it has not

yet copied the decision of the general in that round. Thus, the two actions of j are:

RO1 :: d:j=? ^ (sn:j � 1 = sn:g) �! d:j := d:g

RO2 :: d:j 6=? �! f output d:j g; d:j; sn:j := ?; sn:j � 1
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Lemma 7.1. Starting from states where the sequence numbers of all processes are

identical and the decisions of all non-general processes are equal to ?, each compu-

tation of R satis�es the repetitive agreement speci�cation.

Proof. In any start state, only the general can execute, thus starting a new round

by executing RG1. In the resulting state, each non-general process can only copy the

decision of the general by executing RO1 and then output this decision by executing

action RO2. Thus, Validity and Agreement are satis�ed. Also, after each processes

executes action RO2, the resulting state is again a starting state. Therefore, Validity

and Agreement are satis�ed in each successive round.

7.2.2 Adding Masking Fault-Tolerance to Byzantine Faults

ProgramR is neither masking tolerant nor stabilizing tolerant to Byzantine failure.

In particular, R may violate Agreement if the general becomes Byzantine and sends

di�erent values to the non-general processes. Note, however, that since these values

are binary, at least two of them are identical. Therefore, for R to mask the Byzantine

failure of any one process, it suÆces to add (1) a detector that restricts RO2 in such a

way that each non-general process only outputs a decision that is the majority of the

values received by the non-general processes, and (2) a corrector that guarantees that

eventually the decision of a process would be equal to the majority of the non-general

processes. More speci�cally, for each round, let v:j denote the value obtained by j in

that round when it executes RO1, and let cordec be de�ned as follows:

cordec = d:g if :b:g

= (majority j :: v:j) otherwise
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In order to ensure safety in the presence of Byzantine faults, we need to add a

detector whose detection predicate is d:j= cordec and restrict action RO2 so that it

executes only after the detection is complete. Also, we need to add a corrector whose

correction predicate is d:j=cordec so that action RO2 can be eventually executed. To

implement these detectors and correctors, for each process k (including j itself), we

let j maintain a local copy of d:k in D:j:k. Hence, the decision value of the majority

can be computed over the set of D:j:k values for all k. To determine whether a value

D:j:k is from the current round or from the previous round, j also maintains a local

copy of the sequence number of k in SN:j:k, which is updated whenever D:j:k is.

Also, we associate with each process j an auxiliary variable b:j that is true i� j is

Byzantine.

The general process. To capture the e�ect of Byzantine failure, one action,

MRG2, is added to the original action RG1 (which we rename as MRG1): MRG2

lets g change its decision value arbitrarily and is executed only if g is Byzantine.

Thus, the actions for g are:

MRG1 :: RG1

MRG2 :: b:g �! d:g := 0j1

The non-general processes. The masking Byzantine-tolerant program consists

of �ve actions: MRO1�5. ActionMRO1 is the same as action R1. ActionsMRO2�3

are the detector actions and actions MRO2�4 are the corrector actions. (Note that

the actions of the detector and the corrector overlap.) MRO2 is executed after j

receives a decision value from g, to set D:j:j to d:j, provided that all non-general
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processes had obtained a copy of D:j:j in the previous round. MRO3 is executed

after another process k has obtained a decision value for the new round, to set D:j:k

to d:k. MRO4 is executed if j needs to correct its decision value to the majority

of the decision values of its neighbors in the current round. Action MRO5 is the

restricted version of action RO2 where process j outputs its decision only after the

detection is complete.

Finally, to model Byzantine execution of j, we introduce action MRO6 that is

executed only if b:j is true: MRO6 lets j change D:j:j and, thereby, a�ect the value

read by process k when k executes MRO3. MRO6 also lets j obtain arbitrary values

for D:j:k and, thereby, a�ect the value of d:j when j executes MRO4. Thus, the six

actions of MRO are as follows:

MRO1 :: RO1

MRO2 ::  d.j ≠ ⊥  ∧ SN.j.j = sn.j ∧  compl.j  → D.j.j, SN.j.j := d.j, SN.j.j ⊕ 1

MRO3 ::  SN.j.k ⊕ 1 =   SN.k.k →  D.j.k, SN.j.k := D.k.k, SN.k.k

MRO4 ::  d.j ≠ ⊥  ∧ majdefined.j ∧ d.j ≠ maj.j → d.j := maj.j

MRO5 :: d.j ≠ ⊥  ∧ majdefined.j ∧ d.j = maj.j →  output_decision(d.j) ; d.j, sn.j := ⊥, sn.j ⊕ 1

MRO6 ::   b.j → D.j.j := 0 | 1;
                                                                                        (|| k : SN.j.k ⊕ 1 = SN.k.k : D.j.k, SN.j.k := 0 | 1, SN.k.k)

where, compl:j � (8k :: SN:j:j=SN:k:j)

majdefined:j � compl:j ^ (8k :: SN:j:j=SN:j:k) ^ (sn:j 6= SN:j:j)

maj:j = (majority k :: D:j:k)
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Fault Actions. If the number of Byzantine processes is less than 1, the fault

actions make some process Byzantine. Thus, letting l and m range over all processes,

the fault actions are:

jfl : b:lgj < 1 �! b:m := true

Theorem 7.2. Program MR is masking fault-tolerant to Byzantine faults.

Proof. In accordance with the design issues discussed in Chapter 6, this proof

consists of two parts: (1) In the presence of Byzantine faults, the detectors and

correctors ensure that the masking tolerance speci�cation of repetitive agreement is

satis�ed, and (2) the detectors and correctors do not interfere with R in the absence

of faults.

(1) Observe that in the start state of the round |where the sequence numbers of

all processes are identical, i.e. (8j; k :: sn:j = SN:j:k= sn:g), and no non-Byzantine

process has read the decision of g, i.e. (8j : :b:j : d:j =?)| only action RG1 in g

can be executed. Thereafter, the only action enabled at each non-Byzantine process

j is RO1.

After j executes RO1, j can only execute the actions of the detector and correc-

tor. Moreover, j cannot execute RO2 until the detector and corrector actions at j

terminate in that round.

The detector action MRO2 executes �rst and increments SN:j:j. By the same

token, actionMRO2 in process k increments SN:k:k. Subsequently, actionMRO3 at

process j can execute to update SN:k:j and D:k:j. Note that if k is non-Byzantine,

D:j:k is the same as v:k, which in turn is equal to d:g if g is also non-Byzantine. It

follows that eventually majdefined:j ^maj:j = cordec holds, and the action MRO4

at j can subsequently ensure that d:j = maj:j before it terminates in that round.
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After the detector and corrector actions are disabled in that round, j can only

execute action RO2. It follows that, in the presence of a Byzantine fault, each round

of the system computation satis�es Validity and Agreement.

(2) Observe that, in the absence of a Byzantine fault, the detector and corrector

actions eventually satisfy majdefined:j ^ d:j=maj:j in each round and then termi-

nate. Therefore, the detectors and correctors do not interfere with R in the absence

of a Byzantine fault.

7.2.3 Adding Stabilizing Fault-Tolerance to Transient and

Byzantine Faults

Despite the addition of the masking component to the program R, the resulting

program MR is not yet stabilizing tolerant to transient and Byzantine failures. For

example, MR deadlocks if its state is transiently corrupted into one where some

non-general process j incorrectly believes that it has completed its last round, i.e.,

d:j=? ^ SN:j:j 6=sn:j. It therefore suÆces to add a corrector to MR that ensures

stabilizing tolerance to transient and Byzantine failures while preserving the masking

tolerance to Byzantine failure.

Towards designing the corrector, we observe that in the absence of transient faults

the following state predicates are invariantly true of MR: (i) whenever d:j is set to

?, by executing action MRO5, j increments sn:j, thus satisfying SN:j:j = sn:j; and

(ii) whenever j sets sn:j to be equal to sn:g, by executing action MRO5, d:j is the

same as ?. In the presence of transient faults, however, these two state predicates

may be violated. Therefore, to add stabilizing tolerance, we need to guarantee that

these two state predicates are corrected.
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To this end, we add two corresponding correction actions, namely MRO7 and

MRO8, to the non-general processes. Action MRO7 is executed when d:j is ? and

SN:j:j is di�erent from sn:j, and it sets SN:j:j to be equal to sn:j. Action MRO8

is executed when sn:j is the same as sn:g but d:j is di�erent from ?, and it sets d:j

to be equal to ?. With the addition of this corrector to MR, we get a multitolerant

program SMR.

MRO7 :: d:j=? ^ SN:j:j 6= sn:j �! SN:j:j := sn:j

MRO8 :: d:j 6=? ^ sn:j=sn:g �! d:j := ?

Fault Actions. In addition to the Byzantine fault actions, we now consider the

transient state corruption fault actions (let j and k range over non-general processes):

true �! d:g; sn:g := 0j1; 0j1

true �! d:j; sn:j := 0j1; 0j1

true �! SN:j:k;D:j:k := 0j1; 0j1

Theorem 7.3. Program SMR is masking tolerant to Byzantine faults and stabi-

lizing tolerant to transient and Byzantine faults.

Proof. This proof consists of three parts: (1) The added corrector o�ers stabilizing

tolerance to MR in the presence of transient and Byzantine faults, (2) it does not

interfere with the execution of MR in the absence of faults, and (3) it does not

interfere with the masking tolerance of MR in the presence of Byzantine faults only.

(1) Observe that execution of the added corrector in isolation ensures that even-

tually the program reaches a state where the state predicate S holds, where
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S = (d:j=? ) SN:j:j=sn:j) ^ (sn:j=sn:g ) d:j=?) .

Since both disjuncts in S are preserved by the execution of all actions in MR,

program MR does not interfere with the correction of S by corrector. We now show

that after SMR reaches a state from where S holds at most one round is executed

incorrectly.

I) Starting from any state where S ^ sn:j 6= sn:g ^ d:j 6= ? holds, eventually

SN:j:j 6= sn:j holds. Consider two cases on the starting state: (a) it has a process

k such that SN:k:j 6= SN:j:j holds or (b) it has no such k. In case (a), MRO3

is continuously enabled at k and its execution satis�es SN:k:j = SN:j:j. After all

such k execute MRO3, the resulting state satis�es case (b). In case (b), MRO2

continuously enabled at j and its execution satis�es SN:j:j 6= sn:j. Moreover, if

SN:j:j 6=sn:j holds, it continues to hold until j executes MRO5.

II) Starting from a state where SN:j:j 6=sn:j holds, if SN:j:k 6=SN:j:j also holds

then eventually SN:j:k=SN:j:j is satis�ed. Again, consider two cases: (a) sn:j 6=sn:k

and (b) sn:j = sn:k. In case (a), sn:k = sn:g. Therefore, from S, SN:k:k = sn:k

holds. If SN:j:k 6= SN:j:j, SN:j:j 6= sn:j, sn:j 6= sn:k, and sn:k = SN:k:k all hold,

it follows that SN:j:k 6= SN:k:k holds. Therefore, j can execute MRO3 to satisfy

SN:j:k=SN:j:j. In case (b), sn:k 6= sn:g and, hence, either d:k 6=? holds or k can

execute MRO1 to satisfy it. From the previous paragraph, eventually SN:k:k 6=sn:k

is satis�ed. Again, in this state, SN:j:k 6= SN:k:k holds. Therefore, k can execute

MRO3 to satisfy SN:j:k=SN:j:j.

III) Finally, starting from a state where SN:j:j 6=sn:j holds, k can execute MRO3

to satisfy SN:k:j = SN:j:j. And, if SN:j:j 6= sn:j, SN:j:k = SN:j:j, and SN:k:j =
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SN:j:j are satis�ed, majdefined:j is also satis�ed. Thus, j will eventually execute

MRO5.

Now, observe that between any two executions ofMRG1, each non-general process

j executes MRO5, after which SN:j:k is the same as SN:j:j which in turn is equal

to sn:g. Thus, all sequence numbers are equal and the decisions of all non-general

processes are ? before the second execution of MRG1. As shown in the proof of

masking tolerance, starting from such a state, Validity and Agreement are satis�ed.

(2) Observe that, in the absence of faults, S continues to be preserved, and hence

the added corrector is never executed. Therefore, the added corrector does not inter-

fere with MR in the absence of faults.

(3) As in part (2), observe that, in the presence of Byzantine faults only, S contin-

ues to be preserved and, hence, the stabilizing component is never executed. There-

fore, the added corrector does not interfere with MR in the presence of Byzantine

faults.

7.2.4 Extension to Tolerate Multiple Byzantine Faults

To motivate the generalization of SMR to handle t Byzantine failures given n

non-general processes, where n� 3t, let us take a closer look at how program SMR

is derived from R. To design SMR, we added to each process j a set of components

C(j), which consists of a detector and a corrector (see Figure 7.1).

gg

C(n)

1 n

(a) : Program R (b) : Program SMR

1 n

C(1)

Figure 7.1: Structure of R and SMR

g : Actions MRG1�2
j : Actions RO1�2 and MRO6

C(j) : Actions MRO2�4, MRO7�8, and the

restriction of MRO5

106



Note that action MRO2 is of the form of RG1 and that action MRO3 is of the

form RO1 followed by RO2. (D:j:j and SN:j:j play the role of d:g and sn:g and

D:j:k and SN:j:k play the role of the d values at the non-general processes.) In other

words, C(j) itself contains a repetitive agreement program !

With this insight, we are now ready to generalize program SMR to handle the

multiple Byzantine faults, based on an idea that is essentially due to Lamport,

Shostak, and Pease [47]. (Our generalization, of course, is distinguished by be-

ing multitolerant.) Let g denote the general process, X denote the set of non-

general processes, t denote the maximum number of Byzantine processes. We de�ne

SMR(g;X; t) = BY Z(g;X; t; hi), where

BY Z(g;X; t; s) = inp(g;X; t; s) ^MRG1(g;X; t; s) [] MRG2(g;X; t; s)
[]
( [] j : j2X : RO1(j;X; t; s) [] w(j;X; t; s) ^ RO2(j;X; t; s) []

MRO6(j;X; t; s) )
[]
( [] j : j2X : C(j;X; t; s Æ g) )

and

inp(g;X; t; s) = d:(last(s); X [ fgg; t+1; trlast(s)) 6= ? ^

sn:(g;X; t; s) = sn:(last(s); X [ fgg; t+1; trlast(s)) if s 6= hi

= new decision() otherwise

w(j;X; t; s) = majdefined:(j;X; t; s) ^ d:(j;X; t; s)=maj:(j;X; t; s) if t > 0
= true otherwise

C(j;X; t; s) = MRO4(j;X; t; trlast(s)) [] MRO7(j;X; t; trlast(s)) []
MRO8(j;X; t; trlast(s)) [] BY Z(j;X � fjg; t�1; s) if t > 0

= the empty program otherwise

Here s is a sequence ; last(s) denotes the last element of s ; trlast(s) denotes the

sequence obtained by omitting the last element of s ; s Æ j denotes the sequence

obtained by appending j to s ; and action ac in program j is modi�ed as follows:
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� j is replaced with the quadruple (j;X; t; s)

� The quanti�cation over k in compl is over the set

f (k;X � fjg; t�1; s Æ j) : k2 (X � fjg) g [ f (j;X; t; s) g

� The quanti�cation over k in majdefined and maj is over the set

f (j;X�fkg; t�1; s Æ k) : k2(X � fjg) g [ f (j;X; t; s) g

� If s is nonempty, the output decision is assigned to the variable

D:(j;X; t; s):(j;X [ last(s); t+1; trlast(s))

Observe that if the de�nition of SMR(g;X; t) is instantiated with t = 0, the

resulting program is R. And, if the de�nition is instantiated with t=1, the resulting

program is SMR (with the previously noted exception that action MRO3 in j of

SMR is implemented by RO1 and RO2 in the bottommost instantiation of BY Z,

namely BY Z(j;X � fjg; 0; hgi)).

Program SMR(g;X; t) is multitolerant, i.e., it is masking tolerant to Byzantine

faults and stabilizing tolerant to transient and Byzantine faults. We note that the

structure of the proof of stabilization is the same as the proof for SMR: upon starting

from any state, the program reaches a state where S holds; subsequently, g is guar-

anteed to start a new round in�nitely often; and when g starts the (t+1)� th round,

the resulting computation satis�es Validity and Agreement. The proof of masking

tolerance is similar to the one in [47].
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7.3 Alternative Tolerances to Byzantine Failures

In the presence of Byzantine failures alone, SMR satis�es the speci�cation of

repetitive agreement in each round.

The goal of this section is to point out that every repetitive agreement program

may not satisfy such a strong property. Zhao and Bastani [66] have presented a

program that is nonmasking tolerant to Byzantine failures, i.e., that could violate the

speci�cation in some �nite number of rounds only. In this section, we further show

that even if a program is stabilizing tolerant to transient and Byzantine faults, it may

be merely nonmasking tolerant to Byzantine faults. Our program is composed from

SMR and a nonmasking tolerant program outlined below. Again, for simplicity, we

consider the special case where there are four processes and at most one is Byzantine.

In our nonmasking tolerant program, each non-general process j chooses a \par-

ent" of j that is initially g. In each round, j receives the decision value of its parent

and outputs that value as the decision of j. In parallel, j obtains the decision value

of g and forwards it to other non-general processes. If the values that j receives from

g and the other two processes are not all identical, j is allowed to change its parent,

so that it will output a correct decision in the following rounds, as follows.

Let j, k, and l be the three non-general processes. We consider two cases: (1) g

is Byzantine and (2) g is non-Byzantine. Case (1): If g sends the value B to l and

B� 1 to j and the remaining process k, j and k will suspect that l or g is Byzantine,

and l will know that g is Byzantine and that j and k are non-Byzantine. Without

loss of generality, let the id of j be greater than that of k. We let both j and l change

their parent to k (to avoid forming a cycle in the parent relation, k retains g as its

parent). In all future rounds, j and l output the value received from k and, hence,
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the decision output by j; k; and l is identical. Case (2): Since the values sent by both

j and k are the same, both j and k are non-Byzantine. Again, assuming the id of k is

greater than that of j, it is safe to let j change its parent to k. In all future rounds,

the decision output by j and k is the same as that output by g.

It follows that the nonmasking tolerant program executes only a �nite number of

rounds incorrectly in the presence of at most one Byzantine failure. This program

is made stabilizing by adding SMR to it, as follows: Each process j is in one of

two modes: nonmasking or stabilizing. It executes the nonmasking tolerant program

when it is in the nonmasking mode, and it executes SMR when it is in the stabilizing

mode. Further, it is allowed to change from the nonmasking mode to the stabilizing

mode, but not vice versa. Observe that the nonmasking tolerant program satis�es

the state predicate \if the parent of j is k for some k 6= g, then k is non-Byzantine,

the parent of k is g, and the parent of l is k provided l is non-Byzantine". Hence, if j

suspects that this predicate is violated, i.e., in some round j detects that either g or

k is Byzantine, or the parent of k is not g, or the parent of l is not k, then j changes

to the stabilizing mode and starts executing SMR. Moreover, whenever j detects

that some other process is in the stabilizing mode, it changes its mode to stabilizing.

Thus, if the composite program is perturbed to a state that is not reached by the

nonmasking tolerant program, eventually all processes execute actions of SMR. It

follows that the composite program is stabilizing tolerant but not masking tolerant

to Byzantine failures.
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7.4 Chapter Summary

In this chapter, we showed that the canonical fault-tolerant programs designed us-

ing replication and Schneider's state machine approach can be alternatively designed

in terms of detectors and correctors. This result can be extended to other programs

designed using these methods. The results in this chapter show that by designing

a program in terms of detectors and correctors is at least as general as designing a

fault-tolerant program using these methods.

Designing a program in terms of detectors and correctors also provides an insight

that can be used to design alternative fault-tolerance properties. In case of repetitive

Byzantine agreement, we used this insight to show how to design a program that is

merely nonmasking fault-tolerant to Byzantine faults.
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CHAPTER 8

DISTRIBUTED RESET : AN APPLICATION OF

DETECTORS AND CORRECTORS

In this chapter, we show how detectors and correctors are used in the design of

the �rst multitolerant distributed reset solution that uses bounded memory at each

process. Intuitively, the problem of distributed reset [9] requires that a distributed

system be reset to some given global state. We focus our attention on this as it is

widely applible in the designing fault-tolerance in distributed programs.

Bounding the sequence numbers in the presence of fail-stop, repair, and transient

faults is well-known to be diÆcult, even if we consider distributed resets that are

only stabilizing fault-tolerant. For the case of stabilizing fault-tolerance, we recall a

1990 comment by Lamport and Lynch [46] that a solution for the distributed reset

problem \using a �nite number of identi�ers would be quite useful, but we know of

no such algorithm". A few bounded-space stabilizing solutions have been discovered

since then [5, 9, 14{16, 29, 65]. However, these solutions are only stabilizing tolerant

and allow distributed reset operations to complete incorrectly if faults occur during a

reset operation. As discussed later this chapter, stabilizing tolerance is not ideal for

fail-stop and repair of processes; the ideal fault-tolerance for these faults is masking.
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Our solution provides masking fault-tolerance to fail-stop and repair of processes while

preserving the stabilizing tolerance to transient faults.

This chapter is organized as follows: In Section 8.1, we de�ne the problem of

distributed reset and describe the challenges in the design of multitolerant distributed

reset. In Section 8.2, we describe previous solutions to the distributed reset problem.

In Section 8.3, we give an outline of our solution. In Section 8.4, we develop the

fault-intolerant program for distributed reset. In Section 8.5, we transform the fault-

intolerant program to add masking tolerance to fail-stops and repairs. In Section

8.6, we transform the masking reset program to add stabilizing tolerance to transient

faults. In Section 8.7, we describe how this reset program can be used to design

multitolerant application programs.

8.1 Problem Statement

Distributed reset. A distributed reset program consists of two modules at each

process: an application module and a reset module. The application module can ini-

tiate a reset operation to reset the program to any given global state. Upon initiation

of the reset operation, the reset module resets the state of the application to a state

that is reachable from the given global state, and then informs the application module

that the reset operation is complete. In other words, each reset operation satis�es

the following two properties.

� Every reset operation is non-premature, i.e., if the reset operation completes,

the program state is reachable from the given global state.
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� Every reset operation completes eventually, i.e., if an application module at a

process initiates a reset operation, eventually the reset module at that process

informs the application module that the reset operation is complete.

The de�nition captures the intuition that resetting the distributed program to

exactly the given global state is not necessarily practical nor desirable, since that

would require freezing the distributed program while the processes are individually

reset. The de�nition therefore allows the program computation to proceed concur-

rently with the reset, to any extent that does not interfere with the correctness of the

reset.

Observe that to reset the program state to the given global state, the application

module at every process needs to be reset. Furthermore, if two application modules

communicate only if both have been reset in the same reset operation and all processes

have been reset in that reset operation, the current program state is reachable from

the corresponding global state.

Note that we have intentionally omitted how the application module chooses the

global reset state parameter for each reset operation, but it is worthwhile to point

out that these global states may be determined dynamically, say by a checkpointing

program.

Masking tolerance. The ideal fault-tolerance for distributed reset is masking

tolerance. A reset program is masking tolerant to a fault-class if every reset operation

is correct in the presence of the faults in that class. In other words, the safety of

distributed reset (i.e., that every reset operation is non-premature) is satis�ed before,

during, and after the occurrences of faults. And, the liveness of distributed reset (i.e.,

that every reset operation completes) is satis�ed after fault occurrences stop.
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Consider a fault that fail-stops a process and repairs it instantaneously. It is

possible to design masking tolerance to this fault. In fact, even if the fault only fail-

stops processes or only repairs processes, it is still possible to design masking tolerance

to the fault, with respect to the processes that are up throughout the reset operation.

We therefore rede�ne a premature reset operation as follows: a reset operation is

premature if its initiator completes it without resetting the state of all processes that

are up throughout the reset operation. In the rest of the chapter, we use this re�ned

de�nition of premature reset.

Stabilizing tolerance. An alternative fault-tolerance for distributed reset is

stabilizing tolerance. A reset program is stabilizing tolerant to a fault-class if starting

from any arbitrary state, eventually the program reaches a state from where every

reset operation is correct, i.e., the safety and liveness of distributed reset are satis�ed.

Stabilizing tolerance is ideal when an arbitrary state may be reached in the pres-

ence of faults. Arbitrary states may be reached, for example, in the presence of

fail-stops, repairs, message loss, as demonstrated by Jayaram and Varghese [35]. In

such cases, masking tolerance cannot be designed as the fault itself may perturb the

program to a state where the reset operation has completed prematurely.

Since arbitrary states can be reached in the presence of arbitrary transient faults,

the ideal tolerance to transient faults is stabilizing tolerance. From the de�nition of

stabilizing tolerance, if the program is stabilizing tolerant to transient faults, it is also

stabilizing tolerant to fail-stops and repairs. However, this is not the ideal tolerance

to fail-stops and repairs.

Multitolerant Reset. As motivated above, the best suited tolerance to fail-

stop and repair faults is masking and the best suited tolerance to transient faults
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is stabilizing. We therefore design a multitolerant program that o�ers for each of

these two classes their best suited tolerance. (Note that by being stabilizing tolerant

to transient faults, our program is also stabilizing tolerant to fail-stops and repairs.

Therefore, it is both masking and stabilizing tolerant to fail-stops and repairs.)

It is important to emphasize that our reset program is not just a stabilizing pro-

gram. A reset program that is only stabilizing tolerant to fail-stops and repairs

permits a reset operation to complete incorrectly in the presence of fail-stops and

repairs. (All existing stabilizing reset programs in fact do so.) By way of contrast,

our program ensures that in the presence of fail-stops and repairs, every reset oper-

ation is correct. In fact, as discussed below, designing a multitolerant reset program

is signi�cantly more complex compared to designing just a stabilizing reset program.

In principle, to design a multitolerant reset program, the initiator of the reset

operation needs to \detect" whether all processes have been reset in the current

operation. For the program to be masking tolerant to fail-stops and repairs, this

\detection" must itself be masking tolerant to fail-stops and repairs. Also, for the

program to be stabilizing, this detection must itself stabilize if perturbed to an arbi-

trary state. Thus, the design of the multitolerant reset program involves the design

of a multitolerant detector. (Note that in the design of masking fault-tolerance, we

also need to design a multitolerant corrector. It turns out, however, that the design

of this corrector is easier than that of the detector.)

Also, adding such a multitolerant detector to a stabilizing reset program is not

suÆcient for the design of a multitolerant reset program. Since the detector and the

actions of the stabilizing program execute concurrently, the detector may interfere

with the stabilizing program, making it non-stabilizing, and the stabilizing actions
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may interfere with the detector, causing incorrect detection. Thus, to design a mul-

titolerant program, we also need to ensure interference-freedom between the detector

and the actions of the stabilizing program.

Both these problems are further complicated if the program uses bounded memory.

In the masking reset program, the added detector needs to check that all processes

are reset in the current reset operation. To implement this detector, each process

detects whether all its neighbors have reset their states in the current reset operation.

Using bounded sequence numbers to distinguish between di�erent reset operations is

tricky since it is still possible that multiple processes have the same sequence number

even if they were last reset in di�erent reset operations.

(Notice that sequence numbers for old reset operations may exist in the system,

since some communication channels may be slower than others; communication chan-

nels may allow messages to be reordered; processes may repair with incorrect sequence

numbers; or transient faults may arbitrarily corrupt the sequence numbers. In Section

8.5.2, we illustrate this with an example where multiple processes end up with the

same sequence number even though they have been reset in di�erent reset operations.)

System assumptions. A distributed system consists of processes, each with a

unique integer identi�er, and bidirectional channels, each connecting a unique pair of

processes. At any time, a process is either up or down. Only up processes execute

their actions.

Remark. Henceforth, we use the term \process" and \up process" interchangibly.

Also, when the context is clear, we use \process" to mean the \reset module of the

process".
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8.2 Related Work

To our knowledge, this is the �rst bounded-memory multitolerant distributed reset

program. In fact, we are not aware of bounded-memory distributed reset program

that is masking tolerant to fail-stops and repairs. We note that Afek and Gafni [2]

have shown a masking tolerant solution under the severe assumption that processes

do not lose their memory if they fail. They do, however, allow channels to fail and the

messages sent on those channels to be lost. Their program is not stabilizing tolerant.

While little work has been done on bounded-memory masking tolerant resets,

bounded-memory stabilizing tolerant resets have received more attention [5,9,14{16,

29, 65]. All of these programs are stabilizing tolerant to fail-stops and repairs, but

they are not masking tolerant to them. Speci�cally, in the presence of fail-stops and

repairs, they allow premature completion of distributed resets.

Masuzawa has presented a reset program [50] that tolerates two fault-classes:

transient faults and undetectable crash faults. His solution assumes that at most M

processes fail undetectably for some �xed M such that the process graph is (M+1)-

connected. While his solution ensures that in a reset operation eventually all processes

are reset, it permits premature completion of a reset operation. Also, his solution

uses unbounded memory.

8.3 Outline of the Solution

Recall that in accordance with our approach to designing multitolerance in Chap-

ter 6, we �rst design a fault-intolerant reset program; then transform this program to

add masking tolerance to fail-stops and repairs; and �nally add stabilizing tolerance

to this program, while ensuring that the masking tolerance to fail-stops and repairs
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is preserved. In this section, we outline the structure of each of these three programs

and their proofs of correctness.

Fault-intolerant program. We use a variation of the di�using computation program.

In particular, we use a tree that spans all up processes in the system, and perform the

reset di�using computation over the tree edges only. The root of the tree initiates the

di�using computation of each reset. When a process receives a di�using computation

from its parent in the tree, it resets its local state, and propagates the di�using

computation to its children in the tree. When all descendents of process j have

reset their local states, j completes its di�using computation. Thus, when the root

completes the di�using computation, all processes have reset their local states.

Adding masking tolerance. In the presence of fail-stops and repairs, the tree may

become partitioned. Hence, the di�using computation initiated by a root process may

not reach all processes in the system.

To add masking tolerance, it suÆces that we ensure the following two conditions

for every distributed reset: (1) eventually, the local states of all processes are reset

and (2) in the interim, no di�using computation completes incorrectly.

To achieve (1), we add a corrector that ensures that eventually the tree spanning

all up processes is restored, so that a di�using computation can reach all up processes.

To this end, we reuse a nonmasking tolerant tree program due to Arora [7] that, in

the presence of fail-stops and repairs, maintains the graph of the parent relation of

all up processes to always be a forest and, when faults stop occurring, restores the

graph to be a spanning tree. The details of this program are given in Section 8.5.1.

To achieve (2), we add a detector which restricts the completion of the reset

computation to occur only when the root can detect that all processes participated in
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the current di�using computation. Suppose that some processes have not participated

when the root completes: since the up processes remain connected in the presence

of fail-stops and repairs, it follows that there exists at least one pair of neighboring

processes j and k such that j participated in the di�using computation but k did not.

To detect such pairs, a \result" is associated with each di�using computation: process

j completes a di�using computation with the result true only if all its neighbors have

propagated the di�using computation and, hence, reset their local states. Otherwise, j

completes the di�using computation with the result false. The result is propagated in

the completion wave of the di�using computation. In particular, if j has completed

a di�using computation with the result false, then the parent of j completes that

di�using computation with the result false, and so on. Also, if j fails or moves to

a di�erent tree, then the (old) parent of j cannot always determine the result of j.

Hence, when j fails or moves to a di�erent tree, the parent of j completes with the

result false. It follows that when the root completes the di�using computation with

the result true, all processes have participated in the di�using computation.

Finally, if a root completes a di�using computation with the result false, it starts

a new di�using computation. Since the nonmasking tolerant tree program eventually

spans a tree over the up processes, in any di�using computation initiated after the

tree is constructed and during which no failures occur, the distributed reset completes

correctly.

Adding stabilizing tolerance. To design stabilizing tolerance to the program, we

add a corrector that ensures that eventually the program reaches a state from where

subsequent resets will complete correctly. In particular, in the presence of transient

faults, the graph of parent relation may form cycles and, so, we add actions to detect
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and eliminate cycles in the graph of the parent relation. While adding stabilizing

tolerance to transient faults, we preserve the masking tolerance to fail-stops and

repairs, by ensuring that the newly added corrector and the actions of the masking

program do not interfere. The details of this program are given in Section 8.6.

Fault-intolerant Program R

MRMasking tolerant to fail-stop and repair (Fault-Span = S     )

Masking Program MR

Stabilizing and Masking Program MSR
Stabilizing tolerant to transient faults (Fault-Span = True)

MR

Masking tolerant to fail-stops and repairs (Fault-Span = S        )

Invariant = S        MSR

Invariant = S

Invariant = SR

MSR

Figure 8.1: Structure of Our Multitolerant Distributed Reset Program

8.4 Fault-Intolerant Distributed Reset

In this section, we describe a straightforward distributed reset program in terms

of a di�using computation over a rooted spanning tree. For simplicity, we assume

that only the root process of the tree initiates distributed resets.

When the root process initiates a distributed reset, it marks its state as reset,

resets its local state, and propagates a reset wave to its children in the tree. Likewise,

when a process j receives a reset wave from its parent, j marks its state as reset,
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resets its local state, and propagates the reset wave to its children. We refer to these

propagations as the propagation of the reset wave.

When a leaf process j propagates a reset wave, j completes the reset wave, marks

its state as normal, and responds to its parent. When all children of process j have

responded, j completes the reset wave, and responds to its parent. We denote these

completions as the completion of the reset wave.

It follows that when a process completes a reset wave, all its descendents have

completed that reset wave. In particular, when the root process completes the reset

wave, all processes have completed the reset wave, and the root process can declare

that the distributed reset has been successfully completed.

Variables. As described above, every process j maintains the following variables:

� st:j : state of j; the state is reset if j is propagating a reset wave, otherwise, it

is normal

� sn:j : sequence number of j; the sequence number of j is either 0 or 1

� par:j : parent of j; the parent of the root process is set to itself

Actions. As described above, program R consists of three actions at each process

j. Action R1 lets j initiate a new reset wave, if j is a root process. Action R2 lets j

propagate a reset wave, if par:j is propagating a reset wave and the sequence number

of j and par:j are di�erent. Action R3 lets j complete a reset wave, if j is in the reset

state and all children of j have completed in that reset wave; if j is a root process, j

also declares that the distributed reset is complete.

Formally, the actions of the program at process j are as follows: (Let ch:j denote

the set of children of j).
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R1 :: par:j=j ^ st:j=normal ^ fj needs to initiate a new reset waveg

�! st:j; sn:j := reset; sn:j�1; f reset local state of j g

R2 :: st(par:j)=reset ^ sn:j 6=sn:(par:j)

�! st:j; sn:j := reset; sn:(par:j); f reset local state of j g

R3 :: st:j=reset ^ (8k : k2ch:j : sn:j=sn:k ^ st:k 6=reset)

�! st:j := normal; f if par:j=j then declare reset complete g

Invariant. Observe that if both j and par:j are propagating a reset wave then they

have the same sequence number. Also, if par:j is in the normal state then j is also

in normal state and has the same sequence number as par:j. Hence, the predicate

GD = (8j :: Gd:j) is in the invariant of the program, where

Gd:j = ((st:(par:j)=reset ^ st:j=reset) ) sn:j=sn:(par:j)) ^

((st:(par:j) 6=reset) ) (st:j 6=reset ^ sn:j=sn:(par:j)))

Moreover, the invariant of the program is

SR = GD ^ graph of the parent relation forms a tree

Remark. Although, for simplicity, we assumed that the reset request initiated by

the root process, our program can be generalized to let any process initiate a reset

wave. Towards this end, any request made by a process is propagated towards the
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root, which then performs the reset. This extension is identical to the one given in [9]

and, hence, is omitted.

8.5 Masking Fault-Tolerant Distributed Reset

In this section, we transform the fault-intolerant program of Section 8.4 to add

masking tolerance to fail-stop and repair faults. As described in Section 8.3, to add

masking tolerance to fail-stop and repair faults, it suÆces that

� After faults stop occurring, the program eventually reaches a state from where

no distributed reset ever completes incorrectly.

� When a root process declares that a distributed reset has completed, all up

processes have participated in that reset wave.

As discussed in Chapter 5, we design the masking fault-tolerant program in two

stages, via nonmasking fault-tolerance. More speci�cally, in the �rst stage, we add

correctors to obtain a nonmasking fault-tolerant program. The nonmasking fault-

tolerant program ensures that in the presence of fail-stop and repair of processes,

the program eventually reaches a state from where no distributed reset will complete

incorrectly. In the second stage, we transform the nonmasking fault-tolerant program

into one that is masking fault-tolerant, by adding detectors for the actions of the non-

masking fault-tolerant program so that a process declares completion of a distributed

reset only if all up processes have participated in the last reset wave.

Below, in Section 8.5.1, we design the nonmasking program to tolerate fail-stop

and repair faults. Then, in Section 8.5.2, we restrict the actions of the nonmasking

program, so that the resulting program is masking fault-tolerant.
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8.5.1 Nonmasking Fault-tolerant Distributed Reset

Observe that if the program reaches a state where the invariant SR holds, then

starting from such a state no distributed reset will complete incorrectly. To design

a nonmasking reset program for fail-stop and repair faults, we add a corrector that

restores the program to a state where SR holds. This corrector consists of actions

that (re)construct the rooted spanning tree and restore Gd:j for every process.

To construct a spanning tree, we use Arora's program for tree maintenance [7],

which allows fail-stops and repairs to yield states where there are multiple, possibly

unrooted, trees. We brie
y describe, next, how the program deals with multiple

trees and unrooted trees, and thereby eventually converges to a state where there is

exactly one tree spanning all processes. We refer the reader to [7] for the proof of the

nonmasking program.

The program merges multiple trees such that no cycles are formed: Each process

maintains a variable root:j to denote the process that j believes to be the root. When

process j observes a neighbor k such that root:k is greater than root:j, j merges in

the tree of k, by setting root:j to root:k and par:j to k. By merging thus, cycles are

not formed and the root value of each process remains at most the root value of its

parent. This process continues until no merge action is enabled, at which point, all

processes have the same root value.

The program has actions to let each process detect if it is in an unrooted tree. To

detect whether a process is in an unrooted tree, each process j maintains a variable

col:j to denote the color of process j (which is either red or green). Whenever j detects

that parent of j has failed, j sets col:j to red, denoting that j is in an unrooted tree.

This color is propagated from the tree root to the leaves so that all descendents of j
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detect that they are in an unrooted tree, i.e., when a process l observes that parent

of l has set its color to red, denoting that parent of l is in an unrooted tree, l sets

col:l to red. Finally, when a leaf process sets its color to red, it separates from the

tree, forms a tree consisting only of itself, and sets its color to green denoting that

it is no longer in an unrooted tree. Thus, Arora's tree maintenance program ensures

that after faults stop occurring, the parent tree is (re)constructed.

To restore Gd:j at every process, we proceed as follows: We ensure that if j and

par:j are in the same tree (i.e., if root:j is the same as root:(par:j) and their color is

green), then Gd:j is satis�ed. Also, when j merges into the tree of k, j satis�es Gd:j

by copying the state and sequence number from k. It follows that in all stable states

where the root values of all processes are equal, Gd:j holds for all processes.

Variables. Every process j maintains the following variables:

� col:j : color of the process j ; the color of j is either green or red

� root:j : root of the process j ; the identi�er of the process that j believes to be

the root.

Actions. The nonmasking fault-tolerant program NR consists of six actions.

The �rst three actions the actions of the fault-intolerant program. These actions

are restricted to execute only in states where the tree being formed is consistent.

This restriction ensures that the fault-intolerant program does not interfere with the

corrector. The last three actions are the actions of the corrector.

The actions of the fault-intolerant program are as follows: Action NR1 is the

initiation action; it is the same as action R1. Action NR2 is the propagation action;

it is a restricted version of action R2, where j executes the action R2 only if the tree
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being formed is consistent with respect to j and par:j, i.e., if col:(par:j) is green and

their root value is the same. Action NR3 is the completion action; it is a restricted

version of R3, where j executes action R3 only if the tree being formed is consistent

with respect to j and ch:j is consistent, i.e., if col:j is green and the root value of the

children of j is the same as root:j.

The actions of the corrector are as follows: Action NR4 deals with unrooted trees:

If j detects that par:j has failed or col:(par:j) is red, j sets col:j to red. Action NR5

lets a leaf process change its color from red to green: If j is a red leaf, then j separates

from its tree and resets its color to green, thus forming a tree consisting only of itself.

Action NR6 merges two trees: A process j merges into the tree of a neighboring

process k when root:k > root:j. Upon merging, j sets root:j to be equal to root:k,

par:j to be equal to k, and it copies the state and sequence number from k.

Formally, the actions of program NR at process j are as follows (Let Adj:j denote

the neighbors of j):
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NR1 :: R1

NR2 :: root:j=root:(par:j) ^ col:(par:j)=green ^

st(par:j)=reset ^ sn:j 6=sn:(par:j)

�! st:j; sn:j := reset; sn:(par:j); f reset local state of j g

NR3 :: st:j=reset ^ col:j=green

(8k : k2ch:j : root:j=root:k ^ sn:j=sn:k ^ st:k 6=reset)

�! st:j := normal; if par:j=j then f declare reset complete g

NR4 :: col:j=green ^ (par:j 62Adj:j[fjg _ col:(par:j)=red)

�! col:j := red

NR5 :: col:j=red ^ (8k : k2Adj:j : par:k 6=j)

�! col:j; par:j; root:j := green; j; j

NR6 :: k2Adj:j ^ root:j <root:k ^ col:j=green ^ col:k=green

�! par:j; root:j; := k; root:k; st:j; sn:j := st:k; sn:k
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Fault Actions. The fail-stop and repair actions are as follows:

Fail�stop :: up:j �! up:j := false

Repair :: :up:j �! up:j; par:j; root:j; col:j := true; j; j; red

Fault-Span and Invariant. From Arora's tree maintenance program, we know

that in the presence of fail-stops and repairs, the program actions preserve the acyclic-

ity of the graph of the parent relation as well as the fact that the root value of each

process is at most the root value of its parent. They also preserve the fact that if a

process is colored red then its parent has failed or its parent is colored red. Thus, the

predicate TTREE is in the fault-span, where

TTREE = the graph of the parent relation is a forest ^ (8j : up:j : T1:j), where

T1:j = ((col:j=red ) (par:j 62Adj:j[fjg _ col(par:j)=red)) ^

(par:j=j ) root:j=j) ^ (par:j 6=j ) root:j >j) ^

(par:j2Adj:j ) (root:j�root:(par:j) _ col(par:j)=red)))

Observe that Gd:j is preserved when root:j is same as root:(par:j) and col:(par:j)

is green. Hence, the predicate NGD = (8j :: NGd:j) is in the fault-span, where

NGd:j = (root:j=root:(par:j) ^ col:(par:j)=green ) Gd:j)

Thus, the fault-span of the program is

TNR = TTREE ^ NGD
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In a stable state, the color of all processes is green and the root value of all

processes are identical. Thus, the invariant of the program SNR is

SNR = TNR ^ SR ^ (8j; k :: par:j2Adj:j ^ col:j=green ^ root:j=root:k)

Theorem 8.1. Program NR is nonmasking tolerant to fail-stop and repair faults

from SNR.

8.5.2 Enhancing Tolerance to Masking

Program NR, being nonmasking tolerant, allows a reset operation to complete

prematurely. To enhance the tolerance of NR to masking, we now add a detector

that checks whether all processes participated in the given reset operation. In other

words, we need to add a detector whose detection predicate is `(8j : j has been up

throughout the di�using computation : j has reset its state in the current di�using

computation)'. Recall from Section 8.3 that this detection is made possible by letting

each process maintain for each reset wave a \result" that is true only if its neighbors

have propagated that wave. The result of each process is propagated towards the

initiator in the completion of the reset wave. In particular, if j has completed a reset

wave with the result false, then the parent of j completes that reset wave with the

result false, and so on. Also, if j fails or changes its tree, the (old) parent of j cannot

always determine the result of j. Hence, when j fails or changes its tree, the parent

of j completes the reset wave with the result false. It follows that when the root

completes the reset wave with the result true, all processes have participated in the

reset wave.
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It remains to specify how a process detects whether its neighbors have propagated

the current wave. One possibility is for j to detect whether the sequence numbers of all

its neighbors are the same as that of j. Unfortunately, because the sequence numbers

are bounded, such a detection is insuÆcient. We illustrate this by an example. In

particular, we exhibit a program computation whereby: (1) even though j and l have

the same sequence number, they are in di�erent reset waves, and (2) even though j

completes one reset wave after it changes its tree and j and l have the same sequence

number, they are in di�erent reset waves.

Let the initial state be as shown in Figure 8.2 (a). Process k is the root and

the root value of all processes is k. Also, k has initiated a reset wave with sequence

number 0, which all processes except l have propagated. The computation proceeds

as follows:

� Process n fails.

� Process k completes its reset wave and initiates a new reset wave with sequence

number 1 (Figure 8.2 (b)).

� Process j separates from the tree, changes its parent to k, and propagates the

reset wave with sequence number 1 (Figure 8.2 (c)).

� Process j completes its reset wave (Figure 8.2 (d)). Observe that when j com-

pletes this reset wave, although the sequence number of l is the same as that of

j, l has not propagated the current reset wave of k. Thus, (1) is satis�ed.

� Process l propagates the reset wave with sequence number 0. Also, k completes

its reset wave and initiates a new reset wave with sequence number 0 (Figure

8.2 (e)).
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� Process j propagates the new reset wave of k with sequence number 0 (Figure

8.2 (f)). Observe that although j has completed one reset wave since it changed

its tree and the sequence numbers of j and l are the same, they are in di�erent

reset waves. Thus, (2) is satis�ed.

From the above computation, we observe that after j changes its tree, it cannot

safely detect whether l is in the same wave as j during the subsequent two waves.

Fortunately, in the third wave after j changes its tree, j can safely detect whether l

is in the same wave provided j and l do not change their tree in the interim. Returning

to our example,

� Process j completes the reset wave with sequence number 0. Again, observe

that when j completes this second reset wave, l is still propagating an old reset

wave (Figure 8.2 (g)).

� Process k completes its reset wave and initiates a new reset wave with sequence

number 1. Also, process j propagates this reset wave (Figure 8.2 (h)).

Observe that starting from the state in Figure 8.2 (h), j can complete its reset

wave only when the sequence number of l is 1. However, since all ancestors of l have

sequence number 0 and none of them is a root, l cannot change its sequence number

to 1 unless l changes its tree. Also, in any tree that l joins and completes two reset

waves, l cannot propagate the next reset wave unless k is an ancestor of l, in which

case the reset wave propagated by l is the current reset wave of k. Thus, if j and l

both complete at least two reset waves since they changed their respective trees, j

can safely detect whether the reset wave propagated by l is the current current reset

wave of k. Thus, the following lemma holds.
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Lemma 8.2. (SuÆciency condition for bounded-memory safety detection)

Let j; k; l be processes such that j and l are neighbors. Consider a state in SMR where

root:j = root:l= root:k= k and k is an ancestor of j. In every computation of MR

starting from this state, if j and l do not change their tree and complete two reset

waves then the next reset wave propagated by j (respectively, l) is the current reset

wave being propagated by k.

We use Lemma 8.2 to specify how j detects whether its neighbors have propagated

the same reset wave as that of j, as follows. Process j maintains a ternary variable

new:j, whose value is either 0, 1, or 2. When j changes its tree, new:j is set to 2.

When j completes a reset wave, if new:j is nonzero, j decrements new:j by 1. Thus, j

detects that it has completed at least two reset waves since it last changed its tree by

checking that new:j is zero. And, j detects that all its neighbors have propagated at

least two reset waves since they changed their tree by checking that their new values

are zero.

Thus, new implements the \result" associated with the reset wave. The new value

being zero is equivalent to the result being true, and the new value being nonzero is

equivalent to the result being false. Therefore, if the new value of j or any neighbor

of j is nonzero, j sets new:(par:j) to a nonzero value to ensure that when par:j

completes the reset wave, par:j sets new:(par:(par:j)) to a nonzero value, and so on.

Thus, when the initiator completes the reset wave, its new value is nonzero, and the

initiator concludes that the reset wave has completed incorrectly.

As mentioned in Section 8.3, if the initiator detects that the reset wave has com-

pleted incorrectly, it initiates a new reset wave. Also, if a process j fails, the parent
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of j cannot obtain the value of new:j. In that case, the parent of j aborts that reset

wave by setting its new value to 2.

Variables. As described above, each process j additionally maintains the variable

new:j which is either 0 or 1 or 2.

Actions. The masking fault-tolerant program MR consists of the actions of the

fault-intolerant program, the corrector from Section 8.5.1 and the detector. In this

example, the detector does not have any new actions. However, it restricts the com-

pletion action in the fault-intolerant program so that a process checks the state of

its neighbors before completion and updates the variable new accordingly. Since the

added detector does not a�ect the tree reconstruction protocol of the corrector, the

detector does not interfere with the corrector. To ensure that the corrector does

not interfere with the detector, we require that whenever the corrector actions exe-

cute they abort the detector. This guarantees that as long as the corrector executes

the root will not be able to successfully complete its detection. Since the corrector

eventually terminates, the root will eventually be able to complete its detection.

Program MR consists of six actions for each process j. The �rst three actions

implement the reset wave. ActionMR1 is the initiation action; it is the same as action

NR1. Action MR2 is the propagation action; it is the same as action NR2. Action

MR3 is the completion action; it is a restricted version of NR3, where j executes

action NR3 only if the predicate (8l : l2Adj:j : root:j=root:l ^ sn:j=sn:l) holds.

Also, j updates the variable new as described above. If the initiator completes a reset

wave incorrectly, it initiates a new reset wave. Actions MR4�6 are the corrector

actions. Whenever j executes these actions, it aborts the detection by setting new:j
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and new:(par:j) to 2. (Note that when j changes its tree, by executing action NR5

and NR6, the new value of the old parent is set to 2.)

Formally, the actions for the process j are as follows: (For simplicity, we let actions

MR3;MR5 and MR6 at j update the value of new:(par:j). As discussed in Section

8.8, this program can be re�ned so that j writes only the variables at process j.)
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MR1 :: NR1

MR2 :: NR2

MR3 :: st:j=reset ^ col:j=green ^

(8l : l2Adj:j : root:l=root:j ^ sn:j=sn:l) ^

(8l : l2ch:j : st:l 6=reset)

�! st:j := normal;

if (9l : l2Adj:j[fjg : new:l>0) then

if (par:j=j) then

st:j; sn:j := reset; sn:j�1; f reset local state of j g

else new:(par:j) := max(new:(par:j); 1)

else if (par:j=j) then f declare reset complete g;

new:j := max(0; new:j�1)

MR4 :: NR4 k new:j; new:(par:j) := 2; 2

MR5 :: NR5 k new:j; new:(par:j) := 2; 2

MR6 :: NR6 k new:j; new:(par:j) := 2; 2

Fault Actions. As described above, when a process j fail-stops, par:j needs to set

new:(par:j) to 2. Since a process does not know whether j is its child, we implement
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this by letting all neighbors of j to set their new value to 2. When a process j is

repaired, j sets new:j to 2. Formally, the actions are as follows:

Fail�stop :: up:j �! up:j := false; (8l : l2 Adj:j : new:l := 2)

Repair :: :up:j �! up:j; par:j; root:j; col:j; d:j; new:j := true; j; j; red; 0; 2

Remark. In the fail-stop action, we have overloaded the operator 8 to denote that

the statement \new:l := 2" is executed at all processes in Adj:j. In Section 8.8,

we observe that this parallel execution can be re�ned so that these statements are

executed asynchronously.

Invariant. To characterize the predicates of the invariant, SMR, we de�ne:

X:j = fjg if par:j = j _ par:j 62 Adj:j _ col:j =

red _ root:j 6=root:(par:j)

fjg [X:(par:j) otherwise

pc:j:k = set of processes to whom j propagated the current reset wave of

k; thus if j is propagating the current reset wave initiated by k,

and a child of j, say l, propagates this reset wave by executing

action MR2, l is added to pc:j:k. If j has not propagated the

current reset wave initiated by k, or if k is not a root process,

pc:j:k is the empty set

des:j:k = fjg [ (
S
l : l 2 pc:j:k : des:l:k)

nbrs(des:j:k) = des:j:k [ fl : 9j :: (l2 Adj:j ^ j2 des:j:k)g

failed:k = set of processes that repaired after k started its reset wave

Intuitively, X:j is the set of ancestors of j that have the same root value as j

and their color is green, and des:j:k is the set of processes that have propagated the
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current reset wave initiated by k via j. It follows that des:k:k denotes the set of

processes that have propagated the current reset wave of k.

When j completes a reset wave initiated by k, j detects whether all of its neighbors

have propagated the current reset wave of k. It also detects that all processes that

have propagated this reset wave via j (i.e., des:j:k) have completed their detections

successfully. Thus, all neighbors of des:j:k have propagated the current reset wave of

k (i.e., they are in des:k:k) or they are newly repaired processes (they are in failed:k).

Thus, nbrs(des:j:k) is a subset of (des:k:k[failed:k).

Observe that when a process j, such that k2X:j, completes a reset wave, j detects

the predicate nbrs(des:j:k)�(des:k:k[failed:k) by checking new:j and the new values

of its neighbors. If j cannot conclude that nbrs(des:j:k)�(des:k:k [ failed:k) holds,

j sets new:(par:j) to a nonzero value. And, new:(par:j) remains nonzero until par:j

completes this reset wave. Thus, the predicate I1 is in the invariant, where

I1 = (k2X:j ^ new:j=0 ^ st:j 6=reset ^

st:k=reset ^ sn:j=sn:k) ) nbrs(des:j:k)�(des:k:k[failed:k) _

new:(par:j)>0 _

(par:j 6= j ^ st:(par:j) 6=reset)

For the following discussion (predicates I2�8), we assume that j and l are two

processes such that k2 X:j (i.e., there exists a path from j to k in the graph of the

parent relation, and all processes on this path are green and have the root value k)

and l2 Adj:j (i.e, l is a process adjacent to j).

When j completes a reset wave, sn:j is the same as sn:l. The predicate sn:j=sn:l

is violated only if either sn:j or sn:l is updated. The variable sn:j is updated only
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if j changes tree, or propagates a reset wave. If j (l) changes its tree, violating

sn:j = sn:l, then new:j (new:l) is set to 2. When l propagates a reset wave, from

NGD, all processes inX:l have the same sequence number. When j propagates a reset

wave, j is in the reset state and it cannot complete the reset wave until sn:j=sn:l is

(re)satis�ed. Thus, the predicate I2 is in the invariant, where

I2 = (new:j 6=2 ^ new:l 6=2) ) (st:j 6=reset � sn:j=sn:l)

_ (8m : m2 X:l : sn:m=sn:l)

When j completes a reset wave and decrements new:j from 1 to 0, j is in the

reset state and sn:j is the same as sn:l. Thus, from the predicate I2, the second

disjunct, (8m : m 2 X:l : sn:m= sn:l), must be true, i.e., all processes in X:l have

the same sequence number. Also, when j completes a reset wave, sn:l is the same as

sn:j, which in turn is equal to sn:k (from NGD). Thus, the predicate I3 is in the

invariant, where

I3 = (st:j 6=reset ^ sn:j=sn:k ^

new:j=0 ^ new:l 6=2) ) (8m : m2 X:l : sn:m=sn:k)

Consider the case where k starts a new reset wave by changing sn:k: From I3,

observe that all processes in X:l have the same sequence number (in this case di�erent

from sn:k) unless k2X:l. If k2X:l, then trivially there exists a process inX:l (namely

k itself) which has propagated the current reset wave of k. Thus, the predicate I4 is

in the invariant, where
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I4 = (sn:j 6=sn:k ^ new:j=0 ^

new:l 6=2) ) (8m : m2 X:l : sn:m 6=sn:k)

_ (sn:l 6=sn:k ^

(9m : m2 X:l\ des:k:k : sn:m=sn:k))

_ (sn:l=sn:k ^ l2 des:k:k)

Starting from a state where I4 holds, if j propagates a reset wave initiated by k,

then the consequent of I4 continues to hold. When l executes the completion action

and new:l is decremented from 2 to 1, from NGD, all ancestors of l have the same

sequence number. Thus, the predicate I5 is in the invariant, where

I5 = (sn:j=sn:k ^ st:j=reset ^ new:j=0 ^ new:l 6=2)

)

(8m : m2 X:l : sn:m 6=sn:k)

_ (sn:l 6=sn:k ^ (9m : m2 X:l\ des:k:k : sn:m=sn:k))

_ (sn:l=sn:k ^ l2 des:k:k)

_ (new:l=1 ^ (8m : m2 X:l : sn:m=sn:k) ^ st:l 6=reset)

As claimed earlier, when a process j completes a reset wave, if new:l and new:j

are zero, then l has propagated the current reset wave initiated by k. Thus, the

predicate I6 is in the invariant, where

I6 = (sn:j=sn:k=sn:l ^ st:j=reset ^

new:j=0 ^ new:l=0) ) (l2 des:k:k)
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When k starts a new reset wave, if sn:j is di�erent from sn:k, j has not propagated

this reset wave, i.e., pc:j:k is the empty set. When j propagates a reset wave, all

processes in pc:j:k are children of j, unless some of these children have moved to a

di�erent tree or failed. If one of the process in pc:j:k moves to a di�erent tree or fails,

new:j is set to 2. Thus, the predicate I7 is in the invariant, where

I7 = (new:j=0) ) (sn:j 6=sn:k ) pc:j:k=�)

^ (sn:j=sn:k ) pc:j:k2ch:j)

Finally, if j and par:j are propagating a reset wave initiated by k and par:j is

propagating the current wave of k, j is also propagating the current wave of k. Thus,

the predicate I8 is in the invariant, where

I8 = (par:j2des:k:k ^ sn:j=sn:(par:j) ^ st:j=reset) ) (j2des:k:k)

Finally, the predicates TTREE and NGD are in the invariant. Thus, the invariant

of the masking distributed reset program, MR, is

SMR = (NGD ^ TTREE ^ (8j; l : k2X:j ^ l2Adj:j ^ root:j=root:l=k :

I1 ^ I2 ^ I3 ^ I4 ^ I5 ^ I6 ^ I7 ^ I8)

Proof of Lemma 8.2. When j concludes that j and l are propagating the same

reset wave, new:j and new:l is zero. From I6, it follows that l has propagated the

current reset wave propagated by k.

Lemma 8.3. At any state where SMR holds, if a root process declares that a

distributed reset has completed correctly, then nbrs(des:k:k) � (des:k:k[failed:k).

Proof. When k declares that reset is complete by executing action MR3, we have
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(8l : l2(Adj:k[ fkg) : new:l=0 ^ root:l=root:k ^ sn:l=sn:k) ^

(8l : l2 ch:k : st:j 6=reset) ^ (st:k=reset)

) f from I6, I1, I7 g

(8l : l2(Adj:k[ fkg) : l2des:k:k) ^

(8l : l2 ch:k : nbrs(des:l:k)�(des:k:k[failed:k)) ^ (pc:k:k�ch:k)

) f by predicate calculus g

(8l : l2Adj:k : l2 des:k:k) ^

(8l : l2 pc:k:k : nbrs(des:l:k)�(des:k:k[failed:k))

) f by de�nition of des:k:k g

nbrs(des:k:k)�(des:k:k[failed:k)

Theorem 8.4. ProgramMR is masking tolerant to fail-stop and repair faults from

SMR.

8.6 Stabilizing and Masking Fault-Tolerant Distributed Re-

set

In this section, we transform programMR to add stabilizing tolerance to transient

faults. To this end, we add a corrector to program MR that restores it from an

arbitrary state to a state where SMR holds.

We proceed as follows: Since each state where SMR holds satis�es TTREE and

NGD, we add convergence actions to program MR that restore it from an arbitrary

state to a state where TTREE ^ NGD holds. Further, we show that starting from

a state where TTREE and NGD holds, the program converges to a state where SMR

holds.
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By the de�nition of TTREE and NGD, TTREE ^ NGD may be violated if any of

the following three conditions hold.

1. The graph of the parent relation contains cycles

2. There exists a process j such that T1:j is violated

3. There exists a process j such that NGd:j is violated

To handle (1), each cycle in the graph of the parent relation is detected and

removed. To detect cycles, j maintains a variable d:j to be the distance between j

and root:j in the graph of the parent relation. Thus, if j is a root process d:j is

zero; otherwise d:j is d:(par:j) + 1. Observe that if the graph of the parent relation

is acyclic and there are atmost K up processes, then for all processes their distance

is less than K. Hence, whenever par:j 2Adj:j and d:(par:j)<K, j maintains d:j to

be d:(par:j) + 1. If j belongs to a cycle then d:j increases repeatedly. Whenever d:j

exceeds K�1, a cycle is detected. To remove the detected cycle, j sets the parent of

j to j.

To handle (2), whenever T1:j is violated, j corrects T1:j by separating from the

tree and setting par:j and root:j to j.

To handle (3), whenever NGd:j is violated, j corrects NGd:j by copying the state

and sequence number values from its parent.

Variables. As described above, each process maintains a variable d:j to denote

the distance of j from root:j in the graph of the parent relation.

Actions. Program MSR consists of nine actions for each process j. Actions

MSR1�6 construct the spanning tree and implement the reset wave; they are identical

to the actions MR1� 6. Action MSR7 corrects d:j whenever par:j 2 Adj:j and
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d:(par:j) < K, by setting d:j to d:(par:j)+1. Action MSR8 is executed when d:j

exceeds K or T1:j is violated. As described earlier, when j executes MSR8, j sets

par:j and root:j to j and d:j to zero. Since j changes its tree in action MSR8, j sets

both new:j and the new of the old parent of j to 2. Action MSR9 is executed when

j violates NGd:j. j corrects NGd:j by copying the state and sequence number from

its parent.

Formally, the actions are as follows:

MSR1 :: MR1

...

MSR6 :: MR6

MSR7 :: par:j2Adj:j ^ d:j 6=d:(par:j) + 1 ^ d:(par:j)< K

�! d:j := d:(par:j) + 1

MSR8 :: d:j�K _ :T1:j _ (par:j=j ^ d:j 6=0)

�! par:j; col:j; root:j; d:j; new:j; new:(par:j) := j; red; j; 0; 2; 2

MSR9 : :NGd:j

�! st:j; sn:j := st:(par:j); sn:(par:j)

Invariant. The invariant of the stabilizing and masking program, MSR, is

SMSR = SMR
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To show that masking fault-tolerance to fail-stop and repair faults is preserved,

we prove the following lemma.

Lemma 8.5. Actions MSR7 � 9 preserve SMR and do not execute inde�nitely

after program MSR reaches a state in SMR.

Theorem 8.6. Program MSR is masking tolerant to fail-stop and repair faults

and stabilizing tolerant to transient faults from SMSR.

Proof. Here, we show that MSR is stabilizing tolerant to transient faults. The

proof of masking tolerance follows from Lemma 8.5 below. Proof of stabilization is

based upon the \convergence stair" method of Gouda and Multari [33]. In particular,

we exhibit predicates S:1; S:2; S:3; and S:4, where

S:1 = True

S:2 = NGD

S:3 = S:2 ^ graph of the parent relation forms a tree ^

(8j; k :: root:j=root:k ^ col:j=green ^ par:j2Adj:j ^

(par:j=j ) d:j=0) ^ (par:j 6=j ) d:j=d:(par:j) + 1))

S:4 = S:3 ^ SMSR

and show that for each i, 1� i < 4, S:i converges to S:(i + 1) in program MSR.

It follows that starting from an arbitrary state, program MSR reaches a state where

S:4 and, hence, SMSR holds.

To prove S:1 converges to S:2, consider the set of processes for which NGd:j is

violated. When a process executes actionMSR9, the cardinality of this set decreases

by 1. The cardinality of the set never increases. Thus, eventually, the cardinality of

the set reduces to zero and, hence S:2 holds. Also, it is easy to observe that S:2 is

closed under the execution of program MSR.
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To prove that S:2 converges to S:3, we use a proof identical to the convergence

proof in Arora and Gouda's reset [9]. For brevity, we omit this proof here. We merely

note that in a state that satis�es S:3, since the graph of the parent relation forms a

tree and the predicate NGd:j holds for all processes, actions MSR4�9 are disabled.

Actions MSR1� 3 trivially preserve S:3. Thus, S:3 is closed under execution of

program MSR. Also, if the set of processes form a rooted tree and all processes are

all green, the predicate TTREE holds trivially.

To prove S:3 converges to S:4, we need to prove that the program converges to

a state where the predicates I1�8 hold. We �rst prove that the program reaches a

state where k, the root of the graph of the parent tree, is in the normal state. We

then prove that in such a state, the predicates I1�8 hold.

As mentioned above, in a state satisfying S:3, only actions MSR1�3 may be

enabled. If action MSR1 is executed, then k is in the normal state. Hence, to prove

that eventually the program reaches a state where k is in the normal state, we can

assume that action MSR1 is not executed.

Consider the variant function jfj : st:j = resetgj + 2jfj : sn:j 6= sn:kgj. When

a process executes either the propagation or the completion action, the value of this

function decreases. Thus, eventually the system will reach a state where the value of

this function is zero, in which case k is in the normal state.

We now prove that when k is in the normal state, the predicates I1�I8 hold.

From NGD, we have that all processes are in the normal state with the sequence

number sn:k. Hence, the following predicate is true for each process j:

(8j :: sn:j=sn:k ^ st:j 6=reset)
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Since k is not in the reset state, predicates I1; I5; I6 are satis�ed. Since all

processes have the same sequence number, the predicate (8m : m2 X:l : sn:m=sn:k)

holds for all processes l, i.e., predicates I2; I3 are satis�ed. Since, sn:j is equal to

sn:k and j is in normal state, predicates I4; I7; I8 are also satis�ed. Thus, when k is

in the normal state, the predicate SMSR holds.

It now follows that starting from an arbitrary state, the program execution con-

verges to a state where the predicate SMSR holds.

Proof of Lemma 8.5. From the above proof eventually the program reaches a

state where S:3 is satis�ed. In a state where S:3 is satis�ed, MSR7�9 are disabled.

Since S:3 is closed in MSR, these actions remain disabled. Thus, actions MSR7�9

do not execute inde�nitely.

Since actionMSR7 does not update any variable in SMR andMSR9 is disabled in

SMR, these two actions trivially preserve SMR. Observe that when j executes action

MSR8, the e�ect is equivalent to a fail-stop of j followed by an instantaneous repair

of j. And, we know that SMR is preserved under fail-stop and repair faults. Thus,

MSR8 also preserves SMR.

Remark. The fault-span of MSR in the presence of fail-stop and repair faults, T1,

is identical to the invariant SMSR. Since the MSR is stabilizing tolerant to transient

faults, the fault-span in the presence of transient faults, T2, is true.

8.7 Bounding the Sequence Numbers of Multitolerant

Applications

In this section, we discuss how applications use the bounded sequence numbers

associated with the multitolerant distributed reset in order to become multitolerant.

For ease of exposition, we focus our attention on the case when the application has
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sNR4

sNR5

gR3 Actions R1-3

gNR3

gR2

Actions NR4-6 to maintain tree

sNR3

Fault-intolerant program, R

Action Yi of program Y is obtained by action Xi of program X

Masking program, MR

Nonmasking program, NR

Stabilizing and masking program, MSR

Actions MSR-9 converge to SMR

Legend :

gR2 = (root.j = root.(par.j)) and col.(par.j) = green

sNR3 = update new.j, new.(par.j)

sNR4 = new.j, new.(par.j) := 2, 2

sNR5 = new.j, new.(par.j) := 2, 2

gR3 = (forall k : k in ch.j : root.j = root.k and col.j = green)

gNR3 = (forall l : l in Adj.j : root.j = root.l and sn.j = sn.l)

with gXi added to the guard of Xi and sXi added to the statement

of Xi. Unless explicitly mentioned gXi is true and sXi is skip

Figure 8.3: Composition of the Masking and Stabilizing Reset Program (MSR)
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to be made masking fault-tolerant to some fault-class. In this case, when a fault is

detected, the application is reset while ensuring that both the old and the new instance

of the application execute correctly. In particular, we ensure that two processes

communicate only when they have been reset in the same reset wave.

Of course, if the sequence numbers associated with the distributed resets are

unbounded, ensuring this property is simple: it suÆces to restrict the communication

between any two processes to occur only when their sequence numbers are identical.

When the sequence numbers are bounded, however, it is possible for two processes to

have the same sequence number even though they have reset their states in di�erent

reset waves.

We therefore introduce an incarnation number for each process. Two processes

have the same incarnation number i� they have reset in the same reset wave. Hence,

it suÆces to restrict the communication between two processes to occur only when

their incarnation numbers are identical.

It turns out that a bound of two on the incarnation number is insuÆcient. To

see this, consider the following computation: The initial state is as shown in Figure

8.4 (a): Processes 1; 2; and 3 form a tree rooted at 3. Let 3 initiate a reset wave to

change the incarnation numbers to 1. Processes 1 and 3 propagate this reset wave, and

change their incarnation number to 1 (Figure 8.4 (b)). Before 2 propagates this reset

wave, 3 fails, and the resulting tree is rooted at 2 (Figure 8.4 (c)). Unfortunately, the

state in Figure 8.4 (c) can alternatively be reached by starting from a state in Figure

8.4 (d) and letting process 2 initiate a new reset wave. In the �rst computation,

all processes should change their incarnation numbers to 1 in the future. In the

second computation, all processes should change their incarnation numbers to 0 in
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the future. Thus, keeping only two incarnation numbers is insuÆcient, as processes

cannot determine which incarnation number is current.

1, 0 2, 0

up process

1, 1 2, 1 1, 1 2, 0

(a) (b) (c)

(d) (e)

3, 1 1, 1 2, 0 3, 1 1, 1 2, 0

Legend

failed process

k parent of  j  is  k

j, 0 incarnation number of  j is 0

j

j :

j :

3, 0

Figure 8.4: InsuÆciency of two incarnation numbers

Fortunately, determining the current incarnation number is possible if we use

ternary (0; 1 or 2) incarnation numbers and follow the rule that a new incarnation

number B + 1 can be created only if the incarnation number B � 1 does not exist in

the system (in this section, we let + and � denote modulo 3 addition and subtraction

respectively.) It follows that at any invariant state at most two incarnation numbers

may coexist. Also, for any pair of incarnation numbers, it is easy to determine which

of the two is associated with the current reset wave.

When to reset the local state of a process. When process j propagates a reset wave,

it resets its state i� the incarnation number of the parent of j is one greater (in mod

3 arithmetic) than the incarnation number of j. When j resets its state, it also copies

the incarnation number of its parent.
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When to create a new incarnation number. As motivated above, all three incarnation

numbers should not exist simultaneously. Hence, we ensure that a process changes

its incarnation number from B to B + 1 only if no process with incarnation number

B � 1 exists in the system. From the invariant of the reset program, we know that

when the root completes a reset wave successfully, all processes have propagated that

reset wave. Thus, if a process with incarnation number B � 1 existed in the system

when the root initiated the reset wave, this process would have set its incarnation

number to B upon propagation of the reset wave. Also, no process can change its

incarnation number from B to B�1. Hence, when the root process completes a reset

wave successfully, it can safely increment its incarnation number.

When to declare that reset is complete. When a root completes a reset wave

successfully with incarnation number B, no process in the system has incarnation

number B � 1. It is, however, possible that some processes have incarnation number

B + 1. (Such a state may arise if the tree program converges to a state where the

root does not have the current incarnation number). Hence, we let the root declare

completion of a reset only if the reset completes correctly and the root can detect that

the incarnation numbers of all processes are the same. To this end, we let each process

check whether all its children have the same incarnation numbers when it completes

in the reset wave. The completion wave propagates this information towards the root

so that the root can determine whether the incarnation numbers of all processes are

the same.

Variables. Every process j maintains the following variables.

� inc:j : incarnation number; one of 0, 1, or 2

� ares:j : application result; a boolean
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Actions. Program APP consists of nine actions for each process j. The �rst three

actions implement the reset wave. These actions are obtained by modifying actions

MSR1�3 to update inc and ares appropriately. Action APP1 is the initiation action;

whenever j initiates a reset wave, j increments its incarnation number i� new:j is

zero. Action APP2 is the propagation action; whenever j propagates a reset wave, j

increments its incarnation number i� the incarnation number of the parent of j is one

higher than that of j. Action APP3 is the completion action; whenever j completes a

reset wave, j sets ares:j to true i� all children of j have the same incarnation number

and their application result is true. Finally, the remaining actions APP4�9 break

cycles in the graph of parent relation and maintain the underlying tree; these actions

are identical to the actions MSR4�9 of program MSR.
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APP1 :: par:j=j ^ st:j=normal ^

fj needs to initiate a new reset waveg

�! st:j; sn:j := reset; sn:j�1;

if (new:j=0) then

inc:j := inc:j+1; f reset application state g

APP2 :: root:j=root:(par:j) ^ col:(par:j)=green ^

st(par:j)=reset ^ sn:j 6=sn:(par:j)

�! st:j; sn:j := reset; sn:(par:j);

if ((inc:j+1) = inc:(par:j))) then

inc:j := inc:(par:j); f reset application state g

APP3 :: st:j=reset ^ col:j=green ^ (8l : l2ch:j : st:l 6=reset) ^

(8l : l2Adj:j : root:l=root:j ^ sn:j=sn:l)

�! st:j; ares:j := normal; (8l : l2ch:j : ares:l ^ (inc:j= inc:l));

if (9l : l2Adj:j[fjg : new:l>0) then

if (par:j=j) then st:j; sn:j := reset; sn:j�1;

else new:(par:j) := max(new:(par:j); 1)

else if (par:j=j ^ ares:j) then f declare reset complete g

else if (par:j=j ^ :ares:j) then

st:j; sn:j; inc:j := reset; sn:j�1; inc:j + 1;

f reset application state g;

new:j := max(0; new:j�1)
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APP4 :: MSR4

...

APP9 :: MSR9

Outline of the proof. We need to show that: (1) When a root process with in-

carnation number B declares that a reset is complete, all processes have incarnation

number B. (2) At most two incarnation numbers co-exist at any invariant state. (3)

After a reset operation is initiated at an invariant state the root process eventually

declares that the reset is complete.

When j completes a reset wave, it checks that the incarnation number of j is the

same as its children. Thus, when j completes its reset wave, it can detect whether

all processes that received the reset wave via j have the same incarnation number.

Recall that when the root declares that reset is complete, we know from MSR that

all processes have propagated that reset wave. Hence, when the root declares that

a reset is complete, all processes have the same incarnation number. Thus, (1) is

satis�ed.

To show (2), we show that when a process creates a new incarnation number B+1,

after completing a reset wave with incarnation number B, no process has incarnation

number B � 1. Suppose not: consider the �rst process, say j, that has incarnation

number B � 1 after propagating this reset wave. We consider three cases depending

upon the value of the incarnation number of par:j when j propagated this reset wave.

(i) The incarnation number of par:j cannot be B � 1 since par:j has propagated the
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reset wave and j is the �rst process to change its incarnation number to B� 1. (ii) If

incarnation number of par:j is B, then after propagating the reset wave, incarnation

number of j is either B or B + 1. (iii) If incarnation number of par:j is B + 1, then

before j propagates the reset wave, incarnation number of j cannot be B� 1, as only

two incarnation numbers coexist. Thus, (2) is satis�ed.

From MSR, we know that eventually the root with incarnation number B will

either declare that reset is complete or initiate a new reset wave with incarnation

number B + 1. Upon propagation of this reset wave, all processes with incarnation

number B change their incarnation number to B + 1. It follows that the root will

eventually declare that the reset is complete. Thus, (3) is satis�ed.

8.8 Re�nement to Low Atomicity

In program MR, the actions MR3;MR4 and MR6 of process j update the

new:(par:j) variable of par:j simultaneously with the variables of j. We now re-

�ne program MR so that in each action a process updates only its own variables.

The re�nement is made possible by the fact that the parent of j cannot complete its

reset wave until j completes its reset wave. Hence, new:(par:j) can be updated after

the variables of j have been updated.

In the re�ned version of MR, for each of its neighbors k, j maintains a variable

new:j:k as a local copy of the nonlocal variable new:k. Whenever j needs to up-

date the new value of k, j updates the value of new:j:k. Process k asynchronously

reads new:j:k and updates new:k. More speci�cally, MR is modi�ed as follows (the

modi�cation to MSR is analogous):

1. Add a variable new:j:k in j for every neighbor k.
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2. Replace the statements new:k := m by new:j:k := m.

3. Add the following two actions, the �rst to k and the second to j.

new:j:k>0 ^ new:j:k>new:k �! new:k := new:j:k

new:j:k>0 ^ new:j:k�new:k �! new:j:k := 0

4. Replace action MR3 of j as follows:

(8j : j2Adj:j : new:j:k=0) ^ guard �! statement,

where guard and statement denote the guard and statement of action MR3

respectively.

With this re�nement, the predicates I1 and I7 of the invariant SMR change as

follows:

I1
0

= I1 _ new:j:(par:j)>0

I7
0

= (new:j=0) ) (sn:j 6=sn:k ) pc:j:k=�)

^ (sn:j=sn:k ) pc:j:k2ch:j

_(9l : l2Adj:j : new:l:j >0))

And, the invariant SMR changes as follows:

S
0

MR = (NGD ^ TTREE ^ (8j; l : j2KERN:k ^ l2Adj:j ^ root:j=root:l=k :

I1
0

^ I2 ^ I3 ^ I4 ^ I5 ^ I6 ^ I7
0

^ I8))
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Finally, in the fail-stop action of program MR, the state of all its the neighbors

is updated when process j fail-stops. This action can be easily re�ned so that each

neighbor asynchronously updates its own state when it detects that j has fail-stopped.

Thus, in the re�ned program, each process updates only its own state.

8.9 Chapter Summary

In this chapter, we presented the �rst bounded memory reset protocol that masks

failure and repair of processes and stabilizes in the presence of transient faults. Thus,

it provides the ideal type of tolerance to each of these two fault-classes. Following our

method in Chapter 6, we �rst designed a fault-intolerant program. Then, we added

detectors and correctors to achieve masking fault-tolerance to failure and repair of

processes; as suggested in Chapter 5, this itself was done in two stages. Finally, we

added a corrector to achieve stabilizing tolerance to transient faults. In designing this

reset program, we developed a multitolerant detector to check whether all processes

have participated in a di�using computation. This detector is applicable in designing

bounded state multitolerant programs for several problems. We have illustrated the

use of this detector in [42]

Distributed reset programs belong to the class of total programs [63]. Total pro-

grams characteristically contain one or more \decider" actions, whose execution de-

pends on the state of all processes. In the case of distributed reset programs, the

action which declares the completion of a reset operation is a decider action. The

safety of the execution of this decider action was achieved in this chapter by using

a detector that ensures that (1) if fail-stops and repairs occur, the decider action is

executed only after all processes are contacted, and (2) after transient faults occur,
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eventually the program reaches a state from where the decider action executes only

after all processes are contacted. This strategy provides a basis for making other

total programs likewise multitolerant: Before a process executes a decider action, it

waits for the detector to collect the state of all processes (i.e. whenever a process is

contacted, its state is collected). From (1) and (2), it follows that the resulting total

program is multitolerant.
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CHAPTER 9

APPLICATION IN MECHANICAL VERIFICATION : A

CASE STUDY

9.1 Introduction

In this chapter, we argue that the decomposition of a fault-tolerant program into

its components is bene�cial in its mechanical veri�cation, and that such a decom-

position admits reuse of the proofs for other fault-tolerant programs as well as the

variations of the given fault-tolerant program.

As described in Chapters 3 and 4, a fault-tolerant program can be decomposed into

a fault-intolerant program and a set of detectors and/or correctors. In particular, a

fail-safe program, which satis�es only its safety speci�cation in the presence of faults,

can be decomposed into a fault-intolerant program and detector(s). Likewise, a self-

stabilizing program, which guarantees recovery to a state from where its speci�cation

is satis�ed, can be decomposed into a fault-intolerant program and corrector(s).

Decomposition of a fault-tolerant program permits the veri�cation of a given prop-

erty by focusing on the component that is responsible for satisfying it. For example,

if we need to show that a program eventually recovers to a state from where it sat-

is�es its speci�cation, we should focus on its corrector components. Likewise, if we
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are interested in showing that the program satis�es its speci�cation in the absence

of faults, we should focus on the corresponding fault-intolerant program. Of course,

we will have to show that other components of the program do not interfere with the

component of interest. But this proof is typically simpler than the proof required to

show that the overall program satis�es the given property. Moreover, if we change

some components used in that program, the proofs of other components are not af-

fected. Thus, it is possible for a small change in the program to lead to a small change

in the proof.

With the motivation of developing a systematic approach for mechanical veri�ca-

tion using program decomposition, we are implementing the theory of detectors and

correctors into the theorem prover PVS [54]1. In this chapter, we present a proof

of one of Dijkstra's token ring program [25] that has been proved using this theory.

Previously, Qadeer and Shankar [56] have veri�ed this token ring program using PVS.

While their proof is impressive, it is very speci�c to one program and, hence, much of

their proof-technique cannot be reused to prove other fault-tolerant programs. More-

over, since they focus on the entire program, instead of its components, their proof

is more complex than it needs to be. We use this case-study to illustrate how the

decomposition of the program into its components can help in making the proofs

simple and reusable.

Being self-stabilizing, Dijkstra's program can be decomposed into a fault-intolerant

program and a corrector. The fault-intolerant program circulates the token along an

initialized ring in the absence of faults. On the other hand, if faults perturb the pro-

gram from its ideal states, the corrector restores the fault-intolerant program back

1The URL http://www.cis.ohio-state.edu/~kulkarni/pvs/ contains the PVS speci�cation
and proofs.
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to some ideal state, from where it continues to circulate the token. This program is

self-stabilizing in that even if the faults perturb the program to an arbitrary state,

the corrector restores it to an ideal state.

In Dijkstra's token ring program, processes 0::N , N � 1, are organized in a ring.

Each process j maintains a counter x:j, 0 � x:j < M for some M > 1. A non-zero

process j has a token i� x:j di�ers from x:(j � 1), and process 0 has a token i� x:0 is

the same as x:N . If process j has a token then it passes it to process j+1 mod N+1

by setting x:j to x:(j � 1), and if process 0 has a token then it passes it to process

1 by incrementing x:0. For any M , M > 1, the program guarantees that in the

absence of faults there will be exactly one token that is being circulated in the ring.

If M � N + 1, the program guarantees that starting from any arbitrary state, the

program will reach a state where there is exactly one token which is circulated along

the ring.

To decompose Dijkstra's program into a fault-intolerant program and a corrector,

we �rst consider the following question: If we are only interested in a token circulation

along an initialized ring, how can the token ring program be simpli�ed? The answer to

this question identi�es the fault-intolerant program. Next we ask the question about

fault-tolerance: what are the ideal states of the resulting fault-intolerant program,

and how can it be recovered to these ideal states if the faults perturb it? The answer

to this question identi�es the corrector. Then, we show how the fault-intolerant

program and the corrector can be independently veri�ed in PVS and how they can

be shown to be interference-free.

The rest of the chapter is organized as follows: In Section 9.2, we present Dijk-

stra's token ring program and its decomposition into a fault-intolerant program and a
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corrector. In Section 9.3, we show how the token ring program is modeled in PVS. In

Section 9.4 and 9.5, we present the correctness proof for the fault-intolerant program

and the corrector respectively. In Section 9.6, we show that the corrector and the

fault-intolerant program do not interfere with each other. Finally, in Section 9.7, we

discuss the advantages of component-based veri�cation over non-component-based

veri�cation.

9.2 The Token Ring Program and its Decomposition

In this section, we �rst present the decomposition of Dijkstra's token ring program

into a fault-intolerant program and a corrector. Then, we argue that they work in

isolation and that they do not interfere with each other. We use the same arguments

for mechanical veri�cation in Sections 9.4, 9.5 and 9.6.

Fault-intolerant program. If we are not interested in fault-tolerance, a token

ring program can be designed by maintaining a variable x:j (in the range 0..(M-1),

where M > 1) as follows: Each non-zero process j checks whether x:j is di�erent

from x:(j�1). If this condition is true then x:j is set to x:(j�1). Process 0 checks

whether x:0 is the same as x:N . If this condition is true, process 0 increments x:0.

Thus, the actions of the fault-intolerant program are as follows:

j 6= 0 ^ x:j 6= x:(j � 1) �! x:j := x:(j � 1)

x:0 = x:N �! x:0 := x:0 + 1

The invariant of this program is S, where
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S = (9j; v : 0�j�N; 0 � v < M :

(8k : 0�k<j : x:k=v) ^ (8k : j� k� N : x:k = v�1 mod M))

The invariant S characterizes the states where there exists a process j such that

the x values of processes 0::(j�1) are equal to v, and the x values of processes j::N

are equal to v�1 mod M . Thus, process j has the unique token, and only the action

at j is enabled in that state. The execution of this action results in a state where

process j+1 mod N+1 has the token. Thus, starting from a state where S is true,

the fault-intolerant program circulates a unique token along the ring.

Corrector. If the faults perturb the x values maintained at the processes, we need

to recover the program to a state where S holds in order to ensure that the token

circulation is re-established. This can be achieved by the corrector that lets each non-

zero process copy the x value of its predecessor. Thus, the actions of the corrector

are as follows:

j 6=0 ^ x:j 6=x:(j � 1) �! x:j := x:(j � 1)

Observe that if the corrector actions execute in isolation, a state is reached where

all x values are same, and at that state S is true. Also, if the corrector executes in

any state where S is true, S continues to be true in the resulting state.

Note that although the actions of the fault-tolerant program and that of the fault-

intolerant program are the same, when dealing with the fault-intolerant program we

can assume that the invariant S is true. In this sense, the fault-intolerant program is

simpler than the fault-tolerant program. Of course, the actions of the corrector are
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a subset of the fault-tolerant program and, hence, the corrector is simpler than the

fault-tolerant program.

Interference-freedom between the fault-intolerant program and the cor-

rector. Since the corrector is a subset of the fault-intolerant program, it is trivial

that the corrector does not interfere with the fault-intolerant program. Likewise, the

actions of the fault-intolerant program at non-zero processes are a subset of the cor-

rector and, hence, do not interfere with the corrector. Thus, we only need to show

that the action at process 0 does not interfere with the corrector. We prove the

interference-freedom as follows:

1. For process 0 to interfere with the corrector, it must execute in�nitely often.

Otherwise, after 0 stops executing, convergence to S will be achieved.

2. If the action at process 0 executes in�nitely often, x:0 will take all possible

values in the range 0::(M � 1) .

3. If the domain of x is large enough, speci�cally M � N + 1, then in the initial

state, there must be a value in the range 0::(M � 1) which is not present at any

non-zero process.

4. From 2 and 3, it follows that eventually x:0 will obtain a value missing in the

initial state.

5. After x:0 is equal to this missing value, process j will obtain this missing value

only after processes 0::(j � 1) obtain this missing value. Thus, when process 0

executes next (from 1, we know that process 0 will execute next), all processes

will have the same x value. Thus, a state where S is true is reached.
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9.3 Modeling of the Token Ring in PVS

In this section, we discuss how we modeled Dijkstra's token ring program in PVS.

More speci�cally, we �rst de�ne program independent concepts such as states, state

predicates, actions, program compositions, etc. Then, we de�ne the actions of the

token ring program and its invariant.

De�nition (State). The state of the program consists of the x values at processes

0::N , each x value is in the range 0::(M�1).

De�nition (Trace). A trace is an in�nite sequence of states. If seq is a trace

and i is a natural number then seq(i) denotes the ith element in seq.

De�nition (Assertion). An assertion is a predicate over states. If P is an

assertion and s is a state then P (s) denotes whether P is true in state s.

De�nition (Action). An action is a relation over states. If A is an action and

s1; s2 are states then A(s1; s2) denotes whether state s2 can be reached by executing

A in state s1.

De�nition (Property). A property is a predicate over traces. If R is a property

and seq is a trace then R(seq) denotes whether the property R is true of seq.

Notation. Henceforth, we use p and q to denote programs; s; s0; s1 and s2 to denote

program states; seq to denote a trace; S and T to denote assertions; R to denote a

property; m;n to denote natural numbers; j; k to denote processes; and v; v1; v2 to

denote the x values at processes. Moreover, given a state s, x(s)(j) denotes the value

of x:j in state s. These notations are described in Table 9.1.

De�nition (Program compositions). In the base case, a program is just a

single action. The parallel composition of programs p and q, denoted as p[]q, is a

program consisting of the actions of p and the actions of q. (While we have de�ned
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Variable Used as

p; q program

s; s0; s1; s2 state

seq trace

S; T assertion

R property

m;n natural number

j; k process, domain 0::N

v; v1; v2 x value for a process, domain 0::(M�1)

Expression Meaning

x(s)(j) The value of x:j in state s

seq(n) nth state in the sequence seq

Table 9.1: PVS Notations used in this chapter

other program compositions used for fault-tolerant programs, we omit them here as

they are not used in Dijkstra's token ring program.)

De�nition (CanExecute). Program p can execute in state s1 i� there exists a

state s2 such that p(s1; s2) is true.

CanExecute(p)(s1) = (9s2 :: p(s1; s2))

De�nition (Next). The predicate Next(p)(s1; s2) denotes whether state s2 can

be reached by execution of some action of p. If no action of p is enabled in state s1

then Next(p)(s1; s2) is true i� s1=s2.

Next(p)(s1; s2) = (CanExecute(p)(s1) ^ p(s1; s2))

_ (:CanExecute(p)(s1) ^ s1=s2)

De�nition (Computation). A computation of a program p is a trace s0; s1; :::

such that for each n, Next(p)(sn; sn+1) is true. Thus, the predicate characterizing

`seq is a computation of program p' is represented as follows:

167



run(p)(seq) = 8n :: Next(p)(seq(n); seq(n+1))

De�nition (Satis�es). Program p satis�es a property R i� for every trace that

is a computation of p, R(seq) is true. Thus, satisfies(p)(R) is de�ned as follows:

satisfies(p)(R) = 8seq :: run(p)(seq)) R(seq)

We use two types of properties in the proof of Dijkstra's token ring program,

closure and convergence.

De�nition (Closure). The property closed(S) is the set of all traces s0; s1; :::

where for each n; n � 0, if S is true at sn then S is true sn+1. Thus, closed(S) is

de�ned as follows:

closed(S)(seq) = 8n :: S(seq(n))) S(seq(n+1)))

De�nition (Convergence). The property converges(T; S) is the set of all traces

s0; s1; ::: where closed(S) and closed(T ) are true, and if there exists n; n � 0, for

which T is true at sn then there exists m, m� n, for which S is true at sm. Thus,

converges(T; S) is de�ned as follows:

converges(T; S)(seq) = closed(T )(seq) ^ closed(S)(seq) ^

8n :: T (seq(n)) ) (9m : m�n : S(seq(m)))

De�nition (Num steps). Given an action ac, a trace seq, and a natural number

n, the number of times action ac is executed until the nth state is de�ned as follows:

num steps(ac)(seq; n) = 0 if n=0

num steps(ac)(seq; n�1) + 1 if ac(seq(n�1); seq(n))

num steps(ac)(seq; n�1) otherwise
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De�nition (Corrector). The corrector action at a non-zero process j is executed

only in states where x:j di�ers from x:(j � 1). The execution of this action results

in a state where x:j has the same value as that of x:(j � 1) and the other x values

remain unchanged. Thus, corrector action at j is de�ned as follows:

corr(j)(s0; s1) = x(s0)(j) 6=x(s0)(j � 1) ^ x(s1)(j) = x(s0)(j � 1) ^

8k : k 6=j : x(s1)(k) = x(s0)(k)

The corrector consists of the actions at all non-zero processes. We, therefore,

use parallel composition of corr(j), 0<j�N , to de�ne the corrector, corr prog, as

follows :

corr prog = ([]j : j 6=0 : corr(j))

Action at process 0. The action at process 0 is executed only in states where x:0 is

the same as x:N . The execution of this action results in a state where the value of

x:0 is one greater than its initial value (in mod M arithmetic) and the other x values

remain unchanged. Thus, the action at process 0 is de�ned as follows:

action zero(s0; s1) = x(s0)(0) = x(s0)(N) ^

x(s1)(0) = x(s0)(0) + 1 mod M ^

8j : j 6=0 : x(s1)(j) = x(s0)(j)

Note that the fault-intolerant program consists of the parallel composition of

the action at process 0 and the corrector. Thus, the fault-intolerant program is

action zero[]corr prog .

j has a token. We de�ne the predicate, `j has a token in state s' as follows:
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token(s)(j) = (j=0 ^ x(s)(0) = x(s)(N))

_ (j 6=0 ^ x(s)(j) 6=x(s)(j � 1))

Invariant of the fault-intolerant program. Finally, we de�ne the invariant of the

fault-intolerant program, corr pred, as follows:

corr pred(s) = (9j; v :: 8k : k<j : x(s)(k) = v ^

8k : k�j : x(s)(k) = v�1 mod M)

Remark. Although in this presentation, we have given a speci�c instantiation for the

program state, it is initially de�ned as an uninterpreted type, and then instantiated

suitably for the token ring program. This allows program independent concepts such

as traces, assertions to be reused for di�erent programs.

9.4 Veri�cation of the Fault-Intolerant Program

To prove the correctness of the fault-intolerant program, we need to show (1)

corr pred is closed in the fault-intolerant program, and (2) if the token is at process j

and an action of the fault-intolerant program is executed then the token is at process

j+1 mod N+1 in the resulting state.

In Theorem 9.3, we show that corr pred is closed in the fault-intolerant program.

In this proof, we use Lemmas 9.1 and 9.2 which show that corr pred is closed in the

action of process 0 and the actions of non-zero process respectively. Finally, we show

the token circulation property in Theorem 9.5.

Lemma 9.1 In the computation of action zero alone, corr pred is closed. Formally,

satisfies(action zero)(closed(corr pred))
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Proof. After eliminating the quanti�ers and expanding the de�nitions, we need to

show that if corr pred is true in the nth state of the computation then it is true in

(n+1)th state of that computation. To this end, we �rst do a case split on the process

that has the token in the nth state: In the case, where process 0 has the token, i.e.,

the x values of processes 0::N are v�1 mod M for some v, we show that execution

of action zero results in a state where the x values of 1::N remain v�1 mod M and

the x value of 0 is v, i.e., corr pred is true. In the case, where process j, j 6= 0, has

the token, we show that x:0 is v and x:N is v�1 mod M for some v and, hence,

action zero is disabled, i.e., the (n+1)th state is identical to the nth state and, hence,

corr pred is true in (n+1)th state.

Lemma 9.2 In the computation of the action at a non-zero process, corr pred is

closed. Formally,

8j :: satisfies(corr(j))(closed(corr pred))

Proof. The proof of this lemma is similar to that of Lemma 9.1. We show that

if process j has the token then in the resulting state process j+1 mod N+1 has the

token, and if any other process has the token, the execution results in a stuttering.

In either case, corr pred is true.

Theorem 9.3 In the computation of the fault-intolerant program, corr pred is

closed. Formally,

satisfies(action zero[]corr prog)(closed(corr pred))

Proof. This lemma is proved by using Lemmas 9.1 and 9.2 and the following

property about parallel composition: if an assertion S is closed in programs p and q

then it is closed in p[]q.
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Lemma 9.4. At least one action of the fault-intolerant program is enabled in any

program state. Formally,

8s :: CanExecute(action zero[]corr prog)(s)

Proof. We prove this lemma by �rst doing a case-split on whether all x values

are equal. If all x values are equal, it follows that x:0=x:N and, hence, action zero

is enabled. If all x values are not equal, we induct on the processes to �nd the �rst

process, say j, such that x:j di�ers from x:0. Since x:(j�1) = x:0 and x:j 6= x:0, it

follows that process j is enabled.

Theorem 9.5 Starting from a state where corr pred is true, if the token is at process

j then the execution of an action of the fault-intolerant program results in a state

where the token is at process j+1 mod N+1. Formally,

8j :: token(s1)(j) ^ corr pred(s1) ^ Next(action zero[]corr prog)(s1; s2)

)

(j 6=N ) token(s2)(j+1)) ^ (j=N ) token(s2)(0))

Proof. Lemma 9.4 shows that execution of the fault-tolerant program does not

result in stuttering. We then show that if process j has the token no other process is

enabled. Finally, we show, as in Lemmas 9.1 and 9.2, that the execution of the action

at j results in a state where j+1 mod N+1 has the token.

9.5 Veri�cation of the Corrector

To prove that corr prog satis�es its speci�cation, we need to show (1) corr pred

is closed in corr prog, and (2) starting from any state, in the execution of corr prog

alone a state is reached where corr pred is true. Note that (1) follows from Lemma
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9.2. In this section, we prove that the corrector satis�es property (2) based on the

following observation:

Observation. If only the actions at processes j::N execute in a computation

then eventually the x values of processes j�1::N will be identical and the actions of

processes j::N will be disabled.

If j=1, the actions at processes j::N are the same as the actions of the corrector

and, hence, in the execution of the corrector, eventually the x values of all processes

will be identical. Thus, convergence to corr pred is achieved.

In order to obtain the proof of the above observation in PVS, we �rst de�ne the

program consisting of actions of processes j::N and an assertion characterizing the

states where the x values of processes j::N are equal. Then, we provide a proof of

the above observation in Lemma 9.8. Finally, we prove the convergence property in

Theorem 9.9.

We de�ne corr above(j), and same as N(j) as follows:

corr above(j). For any j, j 6= 0, corr above(j) is the program consisting of the

actions at processes j::N . Formally,

corr above(j) = ([]k : j�k�N : corr(k))

same as N(j). For any j, same as N(j) is an assertion which is true in state s i�

the x values of processes j::N are identical in state s. Formally,

same as N(j)(s) = 8k : j�k�N : x(s)(k) = x(s)(N)
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Lemma 9.7 If x:j is the same as x:(j�1) in some state in the computation of

corr above(j), then this condition continues to be true in the rest of the computation.

Formally,

8seq; j; n : j 6=0 : run(corr above(j))(seq) ^

x(seq(n))(j � 1) = x(seq(n))(j))

)

8m : m�n : x(seq(m))(j � 1) = x(seq(m))(j)

Lemma 9.8 In the computation of the corrector actions at processes j::N , a state

is reached where the x values of processes (j�1)::N are identical. Formally,

8seq; j :: run(corr above(j))(seq) ) 9n :: same as N(j�1)(seq(n))

Proof. We prove this lemma by measure-induction on the j, where the measure

used is N�j. In the base case, j = N , we do a case split on whether corr(N) is

enabled in the initial state: If corr(N) is enabled, we show that in the successor

state, same as N(N�1) is true. If corr(N) is disabled, we show that in the initial

state same as N(N�1) is true.

In the induction case, we do a case-split on whether the action at process j executes

in the computation of corr above(j). If j executes in the nth state, we show that the

suÆx of the computation from the (n+1)th state is a computation of corr above(j+1).

Therefore, there exists a state, say s, where same as N(j) is true. Moreover, since

the values of x:j and x:(j�1) are equal in the (n+1)th state, by Lemma 9.7, it follows

that the values of x:j and x:(j�1) are equal in state s. Thus, same as N(j�1) is

true in state s.
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If j never executes in the computation of corr above(j), we show that that com-

putation is also a computation of corr above(j+1). Therefore, there exists a state,

say s, in this computation where same as N(j) is true. Thus, the actions of j+1::N

are disabled in state s. Since the program tries to execute an action unless all its

actions are disabled, it follows that the action at j must also be disabled. It follows

that same as N(j�1) is true in s.

Theorem 9.9 The computation of the corrector eventually converges to corr pred.

Formally,

satisfies(corr prog)(converges(true; corr pred))

Proof. We prove this lemma by instantiating j=1 in Lemma 9.8. From Lemma

9.8, it follows that in the computation of the corrector alone, eventually a state is

reached where all x values are identical and, hence, corr pred is true in that state.

Moreover, the closure of corr pred follows from Lemma 9.2.

9.6 Interference-Freedom Between the Corrector and the

Fault-Intolerant Program

After we showed that the fault-intolerant program and the corrector satisfy their

speci�cation in isolation, we proceed to show that they do not interfere with each

other. As mentioned in Section 9.2, towards this end, we show that the action at

process 0 does not interfere with the corrector. Our proof follows the outline discussed

in Section 9.2. More speci�cally, in Lemma 9.10, we show that process 0 executes

in�nitely often. Then, in Lemma 9.13, we show that there exists a value that is

di�erent from the x values of all non-zero processes. Subsequently, in Lemma 9.15,
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we show that eventually process 0 gets this missing value, and in Theorem 9.17, we

conclude that the action at process 0 does not interfere with the corrector.

Lemma 9.10 In the computation of the corrector and the action at process 0,

either process 0 executes in�nitely often or a state is reached where corr pred is true.

Formally,

8seq; n :: run(action zero[]corr prog)(seq)

)

8m :: (9n : n�m : action zero(seq(n); seq(n+1)))

_ 9m :: corr pred(seq(m))

Proof. Note that process 0 executes in�nitely often i� given any number m, it

executes in the nth state for some n � m. Thus, to prove this lemma we need to

show that either (1) there exists a number n, n� m, such that action zero executes

in the nth state, or (2) there exists a state where corr pred is true. We prove this

lemma by a case-split on whether the suÆx of the computation starting from mth

state is a computation of corr prog. If that suÆx is a computation of corr prog,

by Theorem 9.9, it is straightforward to show that (2) is true. If the suÆx is not a

computation of corr prog, there exists a number n, n � m, such that the (n+1)th

state is not obtained by executing corr prog in the nth state. Since in the nth state

either action zero executes or corr prog executes, it follows that in the nth state

action zero executes, i.e., (1) is true.
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Lemma 9.11 In the computation of the corrector and the action at process 0, the

value of x:0 in the nth state of the computation is equal to the sum of the initial value

of x:0 and the number of steps taken by process 0. Formally,

8seq :: run(action zero[]corr prog)(seq)

)

x(seq(n))(0) = (x(seq(0))(0) +

num steps(action zero)(seq; n)) mod M

Proof. We prove this lemma by induction on the length of the computation. In

the initial state, this condition is trivially satis�ed. In the induction case, we do a

case-split on whether process 0 executes or whether corr prog executes. In each case,

the proof is straightforward.

Lemma 9.12 In the computation of the corrector and the action at process 0, either

x:0 takes on all possible values in the range 0::(M�1) or a state is reached where

corr pred is true. Formally,

8seq :: run(action zero[]corr prog)(seq) )

8v : 0�v< M : (9n :: x(seq(n))(0) = v)

_ 9n :: corr pred(seq(n))

Proof. We prove this lemma by using Lemmas 9.10 and 9.11 . In Lemma 9.11, if

the value of x:0 in the initial state is v0 then after process 0 executes (v�v0) mod M

steps, the value of x:0 will be v. By Lemma 9.10, either process 0 executes in�nitely

often or a state is reached where corr pred is true. In the former case, we know that

process 0 executes (v � v0) mod M times and, hence, the value of x:0 is eventually

v. In the latter case, the lemma is trivially true.
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Lemma 9.13 If M � N + 1, then in any state there exists a value, say v, in the

range 0::(M�1) such that the x values of all non-zero processes are di�erent from v.

Formally,

8s :: (9v : 0�v<M : (8j : j 6=0 : x(s)(j) 6=v))

Proof. Note that this lemma essentially states the pigeonhole principle: There are

at most N distinct x values of non-zero processes and, hence, if M �N + 1, there

must exist a value that is di�erent from the x values of all non-zero processes. We

prove this lemma in the following steps:

(1) jfx:j : j 6=0gj is at most N ,

(2) (jfv : 0�v<Mg � fx:j : j 6=0gj) is non-zero if M� N+1.

We use the set library in PVS in our proof of (1) and (2). This library de�nes

various operations with sets such as union, intersection, di�erence, cardinality, etc,

and provides some standard lemmas about them.

Given a state s, we de�ne the set of x values of non-zero processes upto j,

nonz set upto(s)(j) as follows:

nonz set upto(s)(j) = fg if j=0

nonz set upto(s)(j � 1) [ fx(s)(j)g otherwise

By induction on j, we then prove that the cardinality of nonz set upto(s)(j) is

atmost j: The base case, j = 0, is trivial since nonz set upto(s)(0) is the empty set.

For the induction case, we use the fact that nonz set upto(j+1) = nonz set upto(j)[

fj+1g and that the cardinality of the union is no greater than the sum of cardinalities.

Now, observe that (1) is trivially true if we instantiate j=N .
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To prove (2), we use the fact that the for any two sets X and Y , jX � Y j �

jXj � jY j . Letting X be the set 0::(M � 1), and Y be the set x values of non-zero

processes, we show that in any state there exists a missing value, i.e., a value that is

di�erent from the x values of all non-zero processes.

To identify some missing value in state s, we de�ne a constant missing(s) which

denotes some arbitrary value that is missing in state s .

De�nition. Given a state s, missing(s) is some arbitrary value in the set (fv :

0�v<Mg � fx:j : j 6=0g)

Remark. Note that the de�nition of missing(s) is sensible only if M�N+1. Thus,

all theorems that use this de�nition rely on this assumption. For brevity, however,

we will not explicitly specify this assumption in the subsequent theorems. In PVS,

we de�ne M �N+1 as an axiom so that it can be omitted in the statement of the

theorems.

Lemma 9.14 Let s be any state in the computation of the corrector and the action at

process 0. The x value of any non-zero process in s is either present in the initial state

of that computation or it is generated by process 0 in a state preceding s. Formally,

8seq; n :: run(action zero[]corr prog)(seq)

)

8j : j 6=0 : (9k :: x(seq(n))(j) = x(seq(0))(k))

_ (9m : m<n : x(seq(n))(j) = x(seq(m))(0))

Proof. We prove this lemma by induction on the length of the computation. The

base case, the initial state, is trivial; the x values of all non-zero processes are present

in the initial state.
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For the inductive case, our proof obligation is that if the x value of a non-zero

process is changed in the (n+1)th state then that new value is either present in the

initial state or it is generated by process 0 in an earlier state. Towards this end, we

�rst do a case-split on which process executes in the nth step: If process 0 executes in

the nth step, the x values of non-zero processes remain unchanged. Thus, the proof

obligation is trivially satis�ed. If a non-zero process, say j, executes in the nth step,

only the value of x:j is changed it is set to x:(j�1). We then do a case-split on

whether j =1 or j 6=1. If j =1, we show that the value of x:j in the (n+1)th state

is generated by process 0 in the nth state. If j 6= 1, by induction on the value of

x:(j�1), it follows that the new value of x:j is either present in the initial state or it

is generated by process 0 in an earlier state.

Lemma 9.15 In the computation of the corrector and the action at process 0, a

state is reached that satis�es one of the following conditions: (1) x:0 is equal to a

value missing in the initial state and the x values of non-zero processes are di�erent

from x:0, or (2) corr pred is true. Formally,

8seq :: run(action zero[]corr prog)(seq)

)

9n :: x(seq(n))(0) = missing(seq(0)) ^

(8j : j 6=0 : x(seq(n))(j) 6=missing(seq(0)))

_ 9n :: corr pred(seq(n))

Proof. From Lemma 9.12, in the computation of the corrector and the action at

process 0, a state is reached where either x:0=missing(seq(0)) is true or corr pred is

true. In the latter case, Lemma 9.15 is trivially satis�ed. In the former case, we induct

on the length of the computation to show that there exists a state, say s, such that
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x:0=missing(seq(0)) is true in state s, and x:0=missing(seq(0)) is false in all states

preceding s in the computation. We then use Lemma 9.14 to show that in state s, x:0

is di�erent from the x values of all non-zero processes. By the construction of s, x:0

is never equal to missing(seq(0)) in any state preceding s. Moreover, by de�nition of

missing(seq(0)), it is not present in the initial state at any non-zero process. Thus,

from Lemma 9.14, it follows that in state s, the value of x:0 is di�erent from the x

values of non-zero processes.

Lemma 9.16 If the corrector executes starting from a state where x:0 di�ers from

the x values of all non-zero processes then in any state of that computation if x:0 is

the same as x:j then the x values of processes 0::j are the same as x:0. Formally,

8seq :: run(corr prog)(seq) ^ (8j : j 6=0 : x(seq(0))(j) 6=x(seq(0))(0))

)

(8n; j :: x(seq(n))(j) = x(seq(0))(0))

(8k : 0�k�j : x(seq(n))(k) = x(seq(0))(0)))

Proof. We prove this result by induction on the length of the computation as well.

In the induction case, let j1 be a process that executes in the nth step, and let j2 be

any process that satis�es x:j2=x:0 in the (n+1)th state. To prove that in the (n+1)th

state the x values of 0::j2 are the same as x:0, we do a case-split on whether j2<j1,

j2=j1, or j2>j1.

In the �rst case, we show that the x values of processes 0::j2 remain unchanged

and, hence, x:j2=x:0 must be true in the nth state. Therefore, in the (n+1)th state

of the computation, the x values of processes 0::j2 are the same as x:0.

In the second case, we show that it must be the case that in the nth state, x:(j2�1)

is the same as x:0. Hence, in the nth state, the x values of 0::(j2�1) are the same as
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x:0. Since in the (n+1)th state x:j2 is the same as x:0 and the x values of processes

0::(j2�1) remain unchanged, it follows that in the (n+1)th state the x values of

processes 0::j2 are the same as x:0.

In the third case also, x:j2 remains unchanged. Thus, in the nth state, the x:j2=

x:0 is true. Therefore, in the nth state x:j=x:0 and x:(j1�1)=x:0 is also true. Thus,

the action of process j1 is disabled.

Theorem 9.17 The action at process 0 does not interfere with the corrector, i.e.,

the computation of action zero[]corr prog converges to corr pred. Formally,

satisfies(action zero[]corr prog)(converges(true; corr pred))

Proof. We use Lemmas 9.10, 9.13 and 9.16 to prove the above lemma. From 9.13,

a state, say s, is reached where x:0 di�ers from the x values of all non-zero processes.

From Lemma 9.10, process 0 executes after s. Until 0 executes for the �rst time,

the corresponding computation is a computation of the corrector. Moreover, when 0

executes x:0 is the same as x:N . Hence, by Lemma 9.16, the x values of all processes

are identical. It follows that when 0 executes for the �rst time after state s, corr pred

is true.

9.7 Discussion

9.7.1 Related Work.

Since Dijkstra presented the self-stabilizing token ring program in 1974, it has

been proved using various techniques [6,27,51,56,65]. Of these, the proofs by Qadeer

and Shankar [56] and Merz [51] have been veri�ed by a theorem prover. Merz con-

structs a complicated variant function{consisting of the enabled processes, the dis-

tance between the x value of the process 0 and the missing value, etc.|and shows
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that it decreases in every step. In terms of number of interactions required with the

theorem prover, it outperforms the proof presented here as well as that by Qadeer and

Shankar. However, these reduced interactions come at a very high cost; the creativity

required to �nd this variant function. Also, that proof is hard to comprehend since

it does not match with the intuitive understanding of the token ring program.

Qadeer and Shankar closely follow the proof by Varghese [65], and their proof is

simpler than that by Merz. However, since they try to prove the properties of the

entire program, some of their proofs are more complex than they need to be. For

example, they prove that each process eventually gets the token using the following

variant: p(j) = sumfk : k has a token : (i�j) mod N +1 g. One of the reasons they

need such a variant function is that they are trying to prove that starting from an

arbitrary state eventually each process will get the token. However, this property is

more general than necessary; one only needs to prove that after the invariant is estab-

lished, eventually each process will get the token. Since we prove the token circulation

property only in the invariant states, we do not need such a variant function.

In related work on mechanical veri�cation of self-stabilization, Prasetya [55] has

veri�ed a self-stabilizing routing program in a variant of UNITY logic [22] using the

theorem prover HOL [32]. He also presents an elegant development of the theory

needed in the veri�cation but he seems to require a prohibitively high level of veri�-

cation e�ort.
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9.8 Advantages of Component-Based Mechanical Veri�ca-

tion.

Fault-tolerant programs are often tricky and so need strong assurance; mechanical

veri�cation is a very strong form of assurance but previous examples were tours-de-

force that required great insight and talent and are not readily transferable to other

problems or other people. By way of contrast, our component-based approach is

systematic and o�ers some hope of making these veri�cations routine. The detector-

correctors theory and its application to Dijkstra's token ring program shows that

the e�ort required as well as the amount of invention is reduced. We �nd that the

advantages of component-based mechanical proofs are the same as that of component-

based non-mechanical proofs. We discuss some of these advantages below.

Reusability for a variation of the token ring program. The modi�cation of

a component in the program preserves the correctness proofs of other components.

We �nd that this property is useful in the mechanical veri�cation of the resulting

program as well. For example, observe that if the action at process 0 is changed

so that x:0 is incremented by k (instead of 1), where k is relatively prime to M , the

self-stabilization is preserved. After we proved the correctness of Dijkstra's token ring

program, we veri�ed the self-stabilization property of this new program and found

that it took approximately 30 additional minutes to obtain the new proof (compared

to approximately 4-5 days for the initial proof), and most of the proof was reused.

Reusability of proofs for other fault-tolerant programs. Lemma 9:10 shows

that either process 0 executes in�nitely often or the correction predicate is established.

This proof only depends on the fact that the corrector satis�es its speci�cation in iso-

lation, and not on the actual programs and predicates involved. We, therefore, have
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extracted a simple interference-freedom lemma that is applicable in other programs.

Likewise, Lemma 9.8, only depends upon the ordering between the corrector actions.

Such a ordering exists in various programs|including most tree based programs.

Therefore, the same proof technique can be used in those programs as well. Also,

lemmas that relate to program compositions or interference-freedom techniques such

as superposition and eventual termination can be reused in other fault-tolerant pro-

grams.

Role of assumptions. Observe that our proof clearly shows the assumption

M � N+1 is not required for the correctness of the fault-intolerant program or the

corrector; it is required only to prove that they do not interfere with each other. Thus,

if we were to weaken this assumption|say because it is possible to prove stabilization

when M�N| we will need to redo only the proofs that depend on this assumption,

namely Lemmas 9.13, 9.15 and 9.17. Likewise, if we could relax this assumption, say

by providing higher atomicity to process 0, we could reuse most of the proof.

9.9 Chapter Summary

In this chapter, we presented a component-based proof of Dijkstra's self-stabilizing

token program that has been veri�ed in PVS. To prove correctness of this self-

stabilizing program, we needed to show two properties: (1) in the absence of faults,

the program circulates a token along the ring, and (2) in the presence of faults, the

program eventually recovers to a state from where the token circulation is restored.

Following our philosophy of program decomposition, we decomposed the fault-tolerant

program into the corresponding fault-intolerant program and the corrector. Then, we

proved that property (1) is satis�ed by focusing on the fault-intolerant program, and
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considering its execution starting from the invariant states. Subsequently, we proved

property (2) by focusing on the corrector, and considering its execution starting from

all states. Finally, we showed that the fault-intolerant program and the corrector do

not interfere with each other.

Our case study illustrates that the advantages of program decomposition in non-

mechanical proofs also apply to mechanical veri�cation. It shows that by focusing on

the component responsible for satisfying the property at hand, the proof of the re-

quired property is simpli�ed. Also, it shows that the component-based approach read-

ily supports design exploration as modi�cations to a program often permits the reuse

of proofs. Moreover, it demonstrates that mechanical veri�cation of fault-tolerant

programs is less of a tour-de-force and more of a straightforward activity.
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CHAPTER 10

CONCLUSION AND FUTURE WORK

In this dissertation, we presented a methodology that permits a uniform design of

a rich class of fault-tolerant systems. Such a methodology is bound to raise several

questions. We �rst answer some of these questions (cf. Section 10.1). Then, we

summarize the contributions in this thesis and discuss how it will a�ect the design

of fault-tolerant systems (cf. Sections 10.2 and 10.3). Finally, we outline possible

extensions of this work (cf. Section 10.4).

10.1 Discussion

We have represented faults as state perturbations. This representation readily han-

dles transient faults, but does it also handle permanent faults? intermittent faults?

detectable faults? undetectable faults?

All these faults can indeed be represented as state perturbations. The token ring

case study illustrates the use of state perturbations for various classes of transient

faults. The repetitive Byzantine agreement example and the multitolerant reset ex-

ample analogously illustrate the representation of permanent faults, detectable faults

and undetectable faults.
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It is worth pointing out that representing permanent and intermittent faults, such

as Byzantine faults and fail-stop and repair faults, may require the introduction of

auxiliary variables [6, 8]. For example, to represent Byzantine faults that a�ects a

process j, in Chapter 7, we introduced an auxiliary boolean variable b:j that is true

i� j is Byzantine. Similarly, to represent fail-stop and repair faults that a�ects a

process j, in Chapter 8, we have introduced an auxiliary boolean variable up:j that

is true i� j has not fail-stopped.

How would our method of considering the fault-classes one-at-a-time compare with a

method that considers them altogether?

There is a sense in which the one-at-a-time and the altogether methods are equiva-

lent: programs designed by the one method can also be designed by the other method.

To justify this informally, let us consider a program p designed by using the altogether

method to tolerate fault-classes F1, F2, ... , Fn. Program p can also be designed

using the one-at-a-time method as follows: Let p1 be a subprogram of p that toler-

ates F1. This is the program designed in the �rst stage of the one-at-a-time method.

Likewise, let p2 be a subprogram of p that tolerates F1 and F2. This is the pro-

gram designed in the second stage of the one-at-a-time method. And so on, until p

is designed. To complete the argument of equivalence, it remains to observe that a

program designed by the one-at-a-time n-stage method can trivially be designed by

the altogether method.

In terms of software engineering practice, however, the two methods would exhibit

di�erences. Towards identifying these di�erences, we address three issues: (i) the
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structure of the programs designed using the two methods, (ii) the complexity of

using them, and (iii) the complexity of the programs designed using them.

On the �rst issue, the stepwise method may yield programs that are better struc-

tured. This is exempli�ed by our hierarchical token ring program (cf. Chapter 6

which consists of three layers: the basic program that transmits the token, compo-

nents for the case when at least one process is not corrupted, and components for the

case when all processes are corrupted

On the second issue, since we consider one fault-class at a time, the complexity

of each step is less than the complexity of the altogether program. For example, in

the token ring program, we �rst handled the case where the state of some process

is not corrupted. Then, we handled the only case where the state of all processes

is corrupted. Thus, each step was simpler than the case where we would need to

consider both these cases simultaneously.

On the third issue, it is possible that considering all fault-classes at a time may

yield a program whose complexity is (in some sense) optimal with respect to each

fault-class, whereas the one-at-a-time approach may yield a program that is optimal

for some, but not all, fault-classes. This suggests two considerations for the use of our

method. One, the order in which the fault-classes are considered should be chosen

with care. In our experience, we have found that it is desirable to deal with the

`common case' fault �rst. Also, it is desirable to deal with masking fault-tolerance

�rst and stabilizing fault-tolerance last. (Again, in principle, programs designed with

one order can be designed by any other order. But, in practice, di�erent orders may

yield di�erent programs, and the complexity of these programs may be di�erent.)

And, two, in choosing how to design the tolerance for a particular fault-class, a
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\lookahead" may be warranted into the impact of this design choice on the design of

the tolerances to the remaining fault-classes.

How does our compositional method a�ect the trade-o�s between dependability prop-

erties?

Our method makes it possible to reason about the trade-o�s locally, i.e., focusing

attention only on the components corresponding to those dependability properties,

as opposed to globally, i.e., by considering the entire program. Thus, our method

facilitates reasoning about trade-o�s between dependability properties.

Moreover, as can be expected, if the desired dependability properties are impos-

sible to cosatisfy, it will follow that there do not exist components that can be added

to the program while complying with the interference-freedom requirements of our

method.

How do detectors in our work compare with the failure detectors [20] of Chandra and

Toueg?

In [20], Chandra and Toueg introduced the concept of failure detectors that are

necessary and suÆcient in solving various problems in asynchronous distributed sys-

tems [31]. Each of these failure detectors guarantees that any process that crashes is

eventually suspected by every correct processes. Depending upon how processes may

be suspected incorrectly, these failure detectors are classi�ed into four categories:

� Perfect (P) A process is suspected only if it has crashed.

� Strong (S) Some non-failed process is never suspected.
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� Eventually perfect (� P) Eventually the program reaches a state from

where a process is suspected only if it has crashed.

� Eventually strong (� S) Eventually the program reaches a state from where

some non-failed process is never suspected.

The failure detectors in each of these categories can be expressed in terms of de-

tectors de�ned in Chapter 3. The detection predicate (X) for all the failure detectors

is :up:j, where up:j is true i� j has not failed, and the witness predicate (Z) is wit:k:j

which is true i� k suspects that j has failed. Observe that the detection predicate is

stable.

Note that P always satis�es the Safety, Progress and Stability of the detector.

Thus, we have \wit:k:j detects :up:j" in P from true. Also, �P eventually reaches a

state from where further computation satis�es the Safety, Progress and the Stability of

the detector. Therefore, �P re�nes the nonmasking tolerance speci�cation of \wit:k:j

detects :up:j" from true. S and �S also satisfy similar detector speci�cation for a

limited number of processes. It follows that the failure detectors used in [20] are

instances of our detectors.

Our detectors are, however, more general than in [20] because the detection pred-

icate in our detector can be more general. Also, unlike our detectors that focus on

states reached in the execution of the program and the faults, failure detectors focus

on the states reached immediately after the fault and, hence, for a given problem de-

tectors are typically more abstract than failure detectors. Also, for a given problem

it is possible to design the detectors required for designing a fault-tolerant program

for that problem using failure detectors.
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10.2 Contributions

In this dissertation, we showed that the design of fault-tolerance includes two

basic concepts: detection and correction. We identi�ed the components that are

necessary and suÆcient for them, showed how these components can be designed in

an hierarchical manner, and how to design components required to transform a given

fault-intolerant program into a fault-tolerant one.

Regarding the generality of components, in Chapters 3-5, we identi�ed, the class of

fault-tolerant programs for which detectors and correctors are necessary and suÆcient.

Also, in Chapter 7, we showed that the components used in existing methods such

as replication and Schneider's state machine approach can be alternatively designed

in terms of detectors and correctors. These results, in turn, imply that the use of

detectors and correctors generalizes these methods in that the class of programs that

can be made fault-tolerant using detectors and correctors is a superset of the class

programs that can be designed using these methods.

Using the detectors and correctors, in Chapter 6, we presented a systematic

method for designing multitolerant programs. We illustrated this method in the

design of repetitive Byzantine agreement (cf. Chapter 7) and distributed reset (cf.

Chapter 8). This method has also been used in design of several other multitolerant

programs such as leader election [10], mutual exclusion [12], network management [42],

resource synchronization [41]. It follows that the method can deal with multiple types

of faults, can be used to incrementally add fault-tolerance to a new type of fault and

is not application dependent. Also, due to the generality of detectors and correctors,

the method can be used to make a rich class of systems fault-tolerant.
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We also showed that the decomposition of a fault-tolerant program into its com-

ponents is useful in veri�cation of that fault-tolerant program. We illustrated this

by presenting a mechanically veri�ed proof of Dijkstra's token ring program that is

based on decomposing the program into a fault-intolerant program and a corrector.

10.3 Impact

We would like to note that the use of detectors and correctors not only general-

izes the existing fault-tolerance methods but it also di�ers in the design philosophy.

Existing methods such as replication, Schneider's state machine and checkpointing-

and-recovery add components of certain type to a fault-intolerant program. These

methods, however, do not provide a formal basis as to why the added components

are the right type of components in designing fault-tolerance. For example, the basic

components used in replication based methods are comparators and voters. How-

ever, these replication based methods (apart form intuition and experience) do not

address why comparators and voters are the right components to use in designing

fault-tolerance. By way of contrast, we justify the components presented in this dis-

sertation by showing that they are both necessary and suÆcient. Subsequently, we

also illustrate that these components are useful in the design and analysis of multi-

tolerant programs. Moreover, by designing the components used in replication and

Schneider's state machine approach, we also identify the role of the components used

in those methods. In sum, our work identi�es the components that are useful in the

design and analysis of fault-tolerance and that provide a validation for the components

used in existing methods.
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10.4 Future Directions

Our work on component based design of fault-tolerance has opened up several new

directions for further research. Some of these are outlined below.

From the fault-tolerant programs we developed using detectors and correctors,

we have observed that detectors and correctors required in one program as well as

across di�erent programs are often similar. Therefore, we will be developing a frame-

work of such components. This framework will speed up the development time for a

new fault-tolerant program as instantiation of the framework may be used to design

the components required for the problem at hand. It will also simplify proofs of in-

terference freedom between components when we can discharge these proofs at the

framework level.

We will also be working on mechanized veri�cation and synthesis of component

based fault-tolerant programs. Towards mechanized veri�cation, we will extend the

case study discussed in Chapter 9 and encode the theory of detectors and correctors

into PVS. Also, we plan to investigate whether other techniques such as phased rea-

soning [60] based on convergence stairs [33] and hierarchical design of components

o�er the same advantage in mechanical veri�cation as they do in non-mechanical ver-

i�cation. We also plan to investigate the use of program decomposition in mechanical

veri�cation of multitolerant programs. Towards mechanized synthesis, we will be

working towards automating our design method so that the required fault-tolerance

components can be synthesized.

Another extension of this work lies in the application of our design method for

developing network protocols for problems such as congestion control, network man-

agement and routing. We will also be working on the development of component
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based security protocols. We believe that protocols satisfying security properties such

as authentication, authorization, privacy, non-repudiation and intrusion detection is

possible using detectors and correctors alone, and we plan to apply our component

based method for designing such protocols. Higher order security properties such

as information 
ow may, however, require additional components, and we plan to

investigate the components required for such security properties.
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APPENDIX A

NOTATION

Symbols

p; q; c; d programs

d detectors

c correctors

F faults

s; st state

ac action

R; S; T; U; V;X; Z; g state predicates

X; sf detection/correction predicates

Z witness predicates

SPEC problem speci�cation

SSPEC safety speci�cation

Compositions

guard ^ action restriction of action

guard ^ program restriction of program

p [] q parallel

g ^ p restriction

p ; q sequential
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Propositional connectives (in decreasing order of precedence)

: negation

^;_ conjunction, disjunction

);( implication, consequence

�; 6� equivalence, inequivalence

First order quanti�ers

8; 9 universal, existential
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