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D 
system failures, and means must be pro- 
vided to tolerate faults in the system. 

igital systems have been entrusted 
with increasingly more critical re- 
sponsibilities, requiring high de- 

pendability. Often the use of high-quality 
components and design techniques does 
not sufficiently reduce the likelihood of 

This article reviews the basic concepts 
of fault-tolerant computing, focusing on 
hardware. It examines failures, faults, and 
errors in digital systems and defines meas- 
ures of dependability, which dictate and 
evaluate fault-tolerance strategies for dif- 
ferent classes of applications. The various 
mechanisms for implementing a fault-tol- 
erance strategy are reviewed, including 
error detection, fault masking, fault con- 
finement, system reconfiguration and re- 
pair, and system recovery. 

aerospace computing, 
and desirable in other 

applications. This 
review discusses basic 

concepts, 
mechanisms, and 

strategies and 
sketches future 

Fault tolerance is 

directions. 

crucial in military and 
model and protect against, because their 
occurrences and effects are hard to pre- 
dict. 

and external disturbances, such as harsh 
environmental conditions, electromag- 
netic interference, ionizing radiation, un- 
anticipated inputs, or system misuse. 
Faults resulting from design errors and 
external factors are especially difficult to 

An error is a manifestation of a fault in 
a system, in which the logical state of an 
element differs from its intended value. A 
fault in a system does not necessarily 
result in an error. An error occurs only 
when a fault is “sensitized”; in other 
words, for a particular system state and 
input excitation, an incorrect next state 
and/or output results. A fault is referred to 
as latent if it has not yet been sensitized in 
the system. The term soft is often applied 
to errors that persist after the originating 

Failures, faults, 
fault disappears. Once corrected,-soft er- 
rors usually leave no damage in the sys- 

and errors its environment, which in turn are caused 
tern. 

by various faults. Hierarchical models of faults and er- 
When applied to digital systems, the A fault is an anomalous physical condi- rot-s. Device testing and fault-tolerant 

terms failure, fault, and error have differ- tion. Causes include design errors, such as design require fault and error modeling at 
ent meanings.‘.* Failure denotes an mistakes in system specification or im- one or more levels of design abstraction, 
element’s inability to perform its designed plementation; manufacturing problems; with various trade-offs between accuracy 
function because of errors in the element or damage, fatigue, or other deterioration; and ease of modeling and analysis. At the 
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lowest level, faults are technology depend- 
ent. Such physical defects as shorts or 
opens in metal or polysilicon signal lines 
can alter voltages, switching times, and 
other properties.3 External disturbances 
also work at this level, affecting signal 
lines, charge storage, and other properties. 

At the logical level, a digital system is 
modeled with gates and memory elements, 
with all signals represented as binary val- 
ues. Low-level fault-tolerance strategies 
are designed to detect or mask faults that 
produce erroneous logical values. Because 
of its simplicity, the “stuck-at” model is 
the most widely used logical fault model, 
assuming that a fault manifests itself as a 
fixed logical value on a signal line. A more 
complex model is the “bridging” fault, in 
which coupling between signal lines re- 
sults in the logical value of one line affect- 
ing the value of another. Other complex 
faults alter the basic logical function of a 
gate, as often happens in programmable 
logic arrays, where the presence or ab- 
sence of connections in an AND/OR array 
results in implicants being added to or 
removed from a function. 

At higher levels of abstraction (regis- 
ters, arithmetic logic units, processors, 
etc.) faults typically appear as changes in 
the module’s behavior, as represented by 
its truth table or state table. At this level 
fault modeling is usually more abstract to 
facilitate simulation at the behavioral 
level; hence, accuracy is often sacrificed. 

Fault properties. A fault can be classi- 
fied by its duration, nature, and extent. The 
duration of a fault can be transient, inter- 
mittent, or permanent. A transient fault, 
often the result of external disturbances, 
exists for a finite length of time and is 
nonrecurring. A system with an intermit- 
tent fault oscillates between faulty and 
fault-free operation. Usually, an intermit- 
tent fault results from marginal or unstable 
device operation. Permanent or “hard” 
faults are device conditions that do not 
correct with time. They result from compo- 
nent failures, physical damage, or design 
errors. Transient and intermittent faults 
typically occur with greater frequency than 
permanent faults and are more difficult to 
detect, since they may disappear after 
producing errors. 

The nature of a fault is determined by its 
behavior in the system. A logical fault 
produces errors that can be represented as 
logical values, while errors resulting from 
indeterminate faults do not have logical 
equivalents. For example, the shorting of a 
logic gate input to ground can be modeled 
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A fault-tolerant system 
is not necessarily 

highly dependable, 
nor does high 

dependability necessarily 
require fault tolerance. 

as a stuck-at-0 fault at that input. However, 
the behavior of a gate input whose signal 
voltage floats between the logic 1 and 0 
thresholds cannot be represented as a 
simple logical value. Other indeterminate 
faults affect propagation times and other 
electrical parameters, making them diffi- 
cult to model. 

The extent of a fault is determined by the 
area affected at the level of abstraction 
being considered: Local faults affect 
single components, and global faults affect 
multiple components. Because of cost con- 
straints, many fault-tolerance and device- 
testing strategies address only single, sta- 
tistically independent faults. Multiple 
faults require more extensive fault models 
and global approaches ‘to fault tolerance. 
However, multiple faults become more 
likely at increased very large scale integra- 
tion levels. In addition, external distur- 
bances tend to have global effects, espe- 
cially in military and aerospace applica- 
tions subject to electromagnetic interfer- 
ence and ionized-particle radiation. 
Hence, multiple faults are receiving in- 
creasing attention. 

Evaluating 
dependability and 
fault tolerance 

The goal of fault-tolerant design is to 
improve dependability* by enabling a sys- 
tem to perform its intended function in the 
presence of a given number of faults. Note, 
however, that a fault-tolerant system is not 
necessarily highly dependable, nor does 
high dependability necessarily require 
fault tolerance. 

Dependability can be quantified by de- 
terministic or probabilistic measures. A 

deterministic goal for a fault-tolerant sys- 
tem might be that no single fault can cause 
system failure. Many commercial system 
manufacturers advertise their systems’ 
ability to tolerate some maximum number 
of processor, disk drive, and other compo- 
nent failures. However, such advertising 
does not mention the frequency or likeli- 
hood of such failures, or their cost. 

Reliability and availability. Dependa- 
bility is most often quantified probabilisti- 
tally in terms of either reliability or availa- 
bility. Reliability, R(t), is the conditional 
probability that a system can perform its 
designed function at time t, given that it 
was operational at time t = 0. Thus R(t) is 
a function of the fault processes affecting 
the system, and of any mechanisms that 
prevent system failure when a fault occurs. 
Many real-time systems, such as those 
used for aircraft or nuclear power plant 
control, require a high R(t) because a single 
error could be fatal. For long-life unat- 
tended systems, such as those used in deep- 
space probes, the probability of multiple 
faults increases dramatically with mission 
time. Automatic repairs must be made with 
spare resources to maintain reliability over 
the life of the mission, although some 
performance degradation may be accept- 
able during these repairs. 

Where cost prohibits sufficient fault 
tolerance to ensure continuous error-free 
operation, some amount of downtime for 
repair is inevitable. Availability, A(t), is a 
useful measure for systems subject to fail- 
ure and repair; it is defined as the probabil- 
ity that a system is operational at time t. 
Availability is often expressed as a steady- 
state value, either as the probability that 
the system is operational at any random 
time, or as a given amount of downtime 
over a specified interval. For example, the 
availability goal for the Bell System elec- 
tronic switching system was specified as 
two minutes of downtime per year.“ Com- 
mercial systems, which must be affordable 
as well as dependable, are normally de- 
signed for high availability. They use fault- 
tolerant protocols and other operations to 
protect the database from contamination, 
while using redundant processors and 
other resources for diagnosis and repair. 
Some systems can continue operating at a 
degraded level during repair. 

Statistical mean values of system failure 
and repair times are often used in system 
evaluation. However, they can be mislead- 
ing, since they are computed over infinite 
time intervals rather than the relatively 
short lifetime of the evaluated system. The 
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two most common parameters are “mean 
time to failure” (MTTF), which is the 
expectation of the time at which the system 
will fail, and “mean time to repair” 
(MTTR), the expectation of the time to 
restore a failed system to correct operation. 
These two parameters are most often used 
to compute steady-state availability, given 
by 

A steady.<tdic = MK’-FIMTTF + 1m7-R ( 1) 

If a system is highly reliable-that is, if 
MTTF is large relative to MTTR - then 
availability is close to I. For smallerMT7’F 
values, availability varies significantly 
with repair time. Complete derivations of 
the above parameters and other reliability 
and availability measures are discussed 
elsewhere.’ KS. Trivedi discusses system 
reliability modeling in this issue of Cotn- 
puter.5 

Improving reliability with fault toler- 
ance. The effects of a fault-tolerant design 
strategy on system reliability can be ex- 
pressed as follows: 

R \y>rem = Pr(no fault] + 
Pr( correct operation/fault] * (2) 

Pr( fault] 

The first term is the probability that no 
fault will occur. It is maximized by “fault- 
intolerant” design, that is, by high-quality 
components, proofs of design correctness, 
and other formal design methodologies. If 
Pr( no fault] can be made sufficiently high, 
a target system reliability can be achieved 
without fault-tolerance strategies. 

The effects of fault tolerance on reliabil- 
ity are represented by the second term in 
Equation 2, which is the probability that a 
fault will occur but will not result in system 
failure, computed over all possible faults. 
Pr( correct operation/fault], referred to as 
the coverage of the fault-tolerance mecha- 
nism, is the conditional probability that a 
system will continue to operate correctly 
given the occurrence of a particular fault. 
Each coverage term is weighted by the 
probability that the corresponding fault 
will occur, so for a cost-effective system 
design, fault-tolerance mechanisms 
should be targeted at the most likely faults. 
Note that if fault probabilities are high, a 
system may be able to tolerate all of a given 
set of faults and yet not be sufficiently 
reliable for the application. Automatic 
fault-detection, diagnosis, repair, and re- 
covery mechanisms can reduce or elimi- 
nate downtime, improving availability. 

Fault tolerance in a 
digital system is achieved 

through redundancy in 
hardware, software, 
information, and/or 

computations. 

A fault-tolerant-system designer must 
also consider performance, complexity, 
cost, size, and other constraints, all of 
which are affected by the redundancy and 
fault-tolerance strategies used. These costs 
must be weighed against such conse- 
quences of system failure as lost produc- 
tion or danger to life, which may be diffi- 
cult to quantify. 

Elements of fault- 
tolerance strategies 

Fault tolerance in a digital system is 
achieved through redundancy in hardware, 
software, information, and/or computa- 
tions. Such redundancy can be imple- 
mented in static, dynamic, or hybrid con- 
figurations. A fault-tolerance strategy in- 
cludes one or more of the following ele- 
ments: 

l Masking. Dynamic correction of gen- 
erated errors. 

l Detection. Detection of an error - a 
symptom of a fault. 

l Containment. Prevention of error 
propagation across defined bounda- 
ries. 

l Diagnosis. Identification of the faulty 
module responsible for a detected er- 
ror. 

8 Repaidreconfiguration. Elimination 
or replacement of a faulty component, 
or a mechanism for bypassing it. 

l Recovery. Correction of the system to 
a state acceptable for continued opera- 
tion. 

For short-term ultrareliable operation, 
where no time is available for off-line fault 
diagnosis and repair, a static or passive 
configuration 
mask a given 

Dynamic redundancy, on the other hand, 
involves the switching of modules or re- 
routing of communications as faults occur. 
The faulty components are detected, diag- 
nosed, and repaired or replaced. 

In a hybrid approach a static base con- 
figuration masks a given number of faults, 
while faulty modules are detected and 
replaced within the configuration. Hybrid 
redundancy is desirable for long-term 
ultrareliable applications in which the 
probability of multiple faults is high. 

High-availability applications do not 
necessarily require continuous error-free 
operation, although databases and other 
critical resources must be protected. In 
such cases, errors are detected and con- 
tained within replaceable modules, rather 
than masked. System operation is then 
degraded or halted to perform diagnosis, 
reconfiguration or repair, and recovery. 

Error detection, masking, and correc- 
tion. Component complexity affects the 
ability to distinguish errors from correct 
values. Errors occurring in data-storage 
components, such as registers and mem- 
ory, or during data transmission via buses 
or network links, are more easily detected 
than errors originating within modules that 
generate or transform data. Masking or 
correcting errors is more difficult, requir- 
ing multiple copies of an element or other 
redundancy so that correct data can be 
extracted from the redundant information. 
Error detection and correction can be con- 
current with normal system operations or 
executed off line during specified testing 
intervals. 

Error detection and correction codes. 
Coding theory is the most widely devel- 
oped mechanism for error detection and 
correction in digital systems, typically 
requiring less redundancy than other error 
detection and correction schemes. A 
code’s error detection and correction prop- 
erties are based on its ability to partition a 
set of 2” n-bit words into a code space of 2” 
words and a noncode space of 2” - 2” 
words. For most codes, each word 
comprisesm bits of information and k = n - 
m check bits. Each code is designed so that 
a given number of errors transforms a code- 
space word into a word in the noncode 
space. Errors are detected by decoding 
circuits that identify any word outside the 
code space. Error correction is performed 
by more extensive decoding that uniquely 
associates a noncode-space word with the 
original code word transformed by the 
errors. 
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Figure 1. Replicated lockstep operation of modules with redundant outputs 
checked in each clock cycle: (a) logic compared externally; (b) logic compared 
on chip. 

Within a single word, the number of 
errors detectable or correctable by a given 
code is related to the minimum separation 
or Hamming distance between the words 
of the code space. The distance is the 
minimum number of bit positions by which 
any two words from the code space differ. 
If two words differ by only one bit posi- 
tion, then an error in that bit transforms one 
word into the other. If the minimum dis- 
tance is 2, a single error can produce only 
a noncode word, with at least two errors 
required to transform one code word into 
another. If the minimum separation is 3, 
any noncode word produced by a single 
error is distance 1 from the original code 
word and at least 2 from any other code 
word, allowing the original word to be 
uniquely identified. 

Larger separations permit detection and/ 
or correction of greater numbers of errors, 
generally by increasing the size of the 
noncode space (2m+t) relative to that of the 
code space (2”), making it more likely that 
errors will result in noncode words. The 
cost of this increased coverage is usually a 
lower code efficiency (code bits versus 
total bits) or a more complex encoding 
algorithm. 

Error detection and correction codes 
vary widely in detection and correction 
properties, encoding and decoding com- 
plexity, and code efficiency. The most 
common codes include simple parity 
checks to detect errors in buses, memory, 
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and registers. Parity-based Hamming 
codes detect and correct errors in memory; 
cyclic redundancy checks and other cyclic 
codes detect and correct errors in commu- 
nications channels and disk storage; m- 
out-of-n codes detect errors in micropro- 
gram control stores and other ROMs; and 
arithmetic codes detect errors originating 
within arithmetic logic units. 

Many computer memory subsystems 
include single-error correction and 
double-error detection using inexpensive 
Hamming-code-based support chips that 
efficiently encode and decode words dur- 
ing memory operations. Other commercial 
very large scale integration components 
include parity generators for buses and 
storage elements, and encoding/decoding 
circuits for disk drives, tapes, networks, 
and other communications channels. Some 
new VLSI components incorporate on- 
chip parity generation and checking logic; 
for example, the Advanced Micro Devices 
Am29300 chip set generates and checks 
parity on data paths to and from the device, 
and on internal data paths. In addition, 
several recent VLSI memories incorporate 
on-chip error detection and correction to 
mask memory cell faults arising in manu- 
facturing or normal operation. 

Self-checking logic. Self-checking 
logic designs detect faulty logic circuits,6 
especially in code checkers and other cir- 
cuits that could be single points of failure 

in a system.4 (Several experimental VLSI 
designs have been implemented entirely 
with self-checking circuits.) Each self- 
checking circuit has coded inputs and out- 
puts, typically in the form of 2-bit “dual- 
rail” logic, which has two valid code words 
and two noncode words for each logic line. 
A circuit is classified as fault secure if, for 
any specified fault within the circuit, the 
circuit never produces an incorrect output 
code word when stimulated by a correct 
input code word. A self-testing circuit, on 
the other hand, outputs a noncode word for 
at least one code word input for each pos- 
sible fault. A totally self-checking circuit 
has properties of both fault-secure and self- 
testing circuits; hence, no internal fault can 
convert an erroneous input into a valid 
output, and at least one normally occurring 
input will detect each possible internal 
fault. 

Module replication for error detec- 
tion and masking. With circuits that gen- 
erate or transform information, complete 
module replication is often the only cost- 
effective approach for error detection and 
correction. Figure 1 shows the most 
straightforward approach to error detec- 
tion: The outputs of identical modules 
operating in lockstep are compared. Sev- 
eral commercial transaction-processing 
systems have been built around pairs of 
off-the-shelf microprocessors with com- 
parator circuits at their bus interfaces to 
detect processor faults (Figure la). 

Simple disagreement detection indi- 
cates a fault but cannot identify the faulty 
unit. The system must be interrupted for 
further diagnosis. Continuous operation 
can be attained by using additional error- 
detection mechanisms to make the dupli- 
cated modules self-checking, as in the 
AT&T 3A electronic switching system 
processor, which uses self-checking logic 
circuits4 Figure 2a shows that when one 
module signals an error, it can be disabled 
while the other module continues to supply 
correct information, effectively masking 
the fault in the failed unit. Normally the 
disagreement detector between modules is 
eliminated and all errors are assumed to be 
detected within the redundant modules. 
Figure 2b shows how self-checking mod- 
ules can be built with off-the-shelf compo- 
nents: One of the configurations of Figure 
I is duplicated, so four units and two 
comparators are needed for continuous 
fault masking. This approach has been 
used in the Stratus computer family and 
other systems. 

Continuous operation is often provided 
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by using the majority vote of the outputs of 
three or more identical modules, masking 
failures of the minority. Triple modular 
redundancy has been used extensively in 
ultrareliable systems for aerospace and 
industrial applications, with two out of 
three votes masking single-module fail- 
ures. Additional fault coverage can be at- 
tained with N modules by deploying them 
in a hybrid modular-redundant configura- 
tion, in which failed modules are replaced 
within a triple modular-redundant core 
configuration. Hybrid modular-redundant 
configurations can mask failures of all but 
two modules. compared with a simple 
minority in M-out-of-N majority-voting 
systems. 

A significant problem with module rep- 
lication is synchronization of the redun- 
dant modules. If comparison or voting is 
done in hardware, tight coupling of the 
redundant modules is needed toensure that 
comparison or voting takes place on valid 
data samples. Fault-tolerant clocking 
schemes and other means of synchroniza- 
tion have been studied extensively, and 
several recent commercial VLSI chips 
include on-chip support for duplex, mas- 
ter/checker operation. Figure I b shows 
paired master and checker chips operating 
in lockstep, with all corresponding pins 
connected to the same input/output lines. 
Both chips receive all inputs and perform 
all operations. The output lines are driven 
only by the master. with output also routed 
into the corresponding pins of the checker 
to on-chip comparators for comparison 
with values produced by the checker. The 
result is indicated by a match or an error 
signal. 

An alternative to tight coupling is to 
compare only selected outputs from 
loosely synchronized units. In the SIFT 
system,’ critical-process outputs are ex- 
changed by the redundant processors in 
each process step and compared in subse- 
quent process steps by a software voter. In 
the space shuttle, selected data values are 
mathematically combined into “compare 
words,” which are periodically exchanged 
and compared by software in four redun- 
dant processors.’ 

Voters and comparators, although typi- 
cally much more reliable than the redun- 
dant modules they protect, represent po- 
tential single-failure points in replicated 
systems. Fault tolerance and reliability can 
be increased by replicating the compara- 
tors or voters, usually at the module inputs, 
as in the triple modular-redundant system 
stage of Figure 3. Failure of any single 
voter or the module to which its output is 
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Figure 2. Continuous operation with duplex self-checking modules: (a) two self- 
checked modules; (b) four simple modules as two self-checked pairs. 

connected is masked by the voters at subse- 
quent module inputs. Redundancy 
schemes have also been extended to many 
nondigital devices (motors, actuators, 
sensors) used in redundant systems to 
minimize the number of single-failure 
points. 

Protocol and timing checks. The be- 
havior of most sequential logic circuits and 
systems can be described by state ma- 
chines or other protocols. Protocol vari- 
ation resulting from a fault can be detected 
several ways without massive replication 
of modules.’ Selected process states or 
module outputs can be compared with 

predicted values or other heuristic infor- 
mation, generated by alternative algo- 
rithms or off-line units. Data values can be 
checked for proper structure or consis- 
tency with previous or predicted values. 
Handshaking sequences between elements 
involved in data transfers can be moni- 
tored by hardware or software, especially 
over buses and network links. Operational 
“capabilities,“- the activities allowed by 
various processes - can be verified be- 
fore allowing an operation on a critical re- 
source. Such approaches often reduce 
hardware redundancy requirements but 
may be more difficult to implement, re- 
quiring application-specific information 
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. v Module 
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-- v ’ Module 
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- v . Module 
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Inputs from Majority Redundant outputs to 
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Figure 3. Triplicated voters and modules forming one triple modular-redundant 
stage of a system, with voting at module inputs. 
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which might, in turn, depend on unpredict- 
able system inputs. 

A simple fault-detection mechanism is 
the time-out check. An event failing to take 
place within some predefined time interval 
usually indicates a fault (an event can be a 
single data transfer or an entire process 
step). Such occurrences can be monitored 
by a “watchdog timer” set at the beginning 
of each event to time-out after some time 
T m,,r, interrupt the system, and signal an er- 
ror. If the event completes before T,,,,, has 
elapsed, the timer is stopped and reset for 
the next event. 

Error correction without massive redun- 
dancy is difficult. However, for many tran- 
sient faults, simple repetition of an opera- 
tion after the fault disappears may produce 
correct results, provided the system state 
can be restored to the beginning of the op- 
eration. Many processors support single- 
instruction retry, with facilities to detect 
errors and save and restore register values. 
Several microprocessors also support bus- 
cycle retries, which can be performed with 
minimal saving of information. In both 
cases, hard faults are signaled if errors 
persist after some maximum number of 
retries. 

Fault containment. To protect critical 
system resources and minimize recovery 
time, errors must be confined to the mod- 
ule in which they originate. Typically, 
error-containment boundaries are hierar- 
chically defined, with errors confined at 
the lowest level to single replaceable or 
repairable modules, and additional 
boundaries set around subsystems contain- 
ing these modules. Johnson’s excellent 
case study of fault-containment boundary 
definition and support describes the estab- 
lishment of containment boundaries 
around buses, processors, and memory 
modules in the former Intel iAPX-432 fam- 
ily.” 

Containment boundaries can be estab- 
lished in two ways: Each module can check 
its own outputs, or each can check all 
incoming information. The most common 
approach is to require each module to sus- 
pect all incoming information and correct 
or block faulty data at the module inter- 
face. Voters in software’ or hardware” are 
used in the logical configuration shown in 
Figure 3. 

If a module is to be responsible for its 
own output, it needs an error-containment 
boundary. An error detection or correction 
circuit, such as a voter, a comparator, or a 
code checker, is placed at the interface 
between the module and the system bus or 

communications channel, along with a 
circuit capable of disabling the module’s 
output. If error correction is not possible, a 
faulty module must be isolated to prevent 
error propagation; its process is effectively 
halted. A disadvantage in this configura- 
tion is that the module interface often 
cannot protect the system from failures of 
the interface circuits themselves. 

Reconfiguration and repair. A system 
is repaired either by replacing the failed 
module with a spare or by reconfiguring 
the system structure or work load distribu- 
tion to circumvent the module. Module 
replacement restores the system to full 
operation but requires redundant modules 
not used for normal operations. 

Many reconfiguration strategies use all 
system components to perform useful 
work. When a fault occurs, system per- 
formance is degraded by redistributing the 
work load among the remaining resources. 
Or system redundancy can be reduced, 
affecting subsequent fault tolerance. The 
space shuttle computer complex is an ex- 
ample of the latter strategy. It uses four 
processors with majority voting for critical 
operations.” Voting continues after one 
failure, but a second failure ends voting 
and a single processor performs all remain- 
ing operations. 

A failed module may be physically or 
logically removed from a system. Logical 
removal is accomplished by switching off 
the module’s power, forcing its output into 
an inactive state, or instructing all units to 
ignore or bypass it. 

Replacement units can be either “hot” or 
“cold.” A hot spare concurrently performs 
the same operations as the module it is to 
replace, needing no initialization when it is 
switched into the system. A cold spare is 
either not powered or used for other tasks, 
requiring initialization when switched into 
the system. System designers must weigh 
the cost of unused spares against that of 
initialization time when deciding between 
hot or cold spares. 

If a failed module is not replaced, sys- 
tem operation degrades as work is distrib- 
uted among remaining resources. In multi- 
processors and other parallel processing 
systems, tasks are typically distributed 
across the available processors, so that 
processor loss only reduces system 
throughput. I2 This happens in commercial 
transaction-processing multiprocessors 
advertised to operate continuously in the 
presence of faults. In these systems, all 
critical data is replicated or otherwise 
protected to facilitate transfer of opera- 

tions between processors. Special care is 
taken to duplicate global data or provide 
other redundant information to allow cor- 
rupted data to be repaired. Global data 
usually resides in shared memory or in 
“mirrored” disk volumes - duplicated 
disk drives and controllers accessible by 
multiple processors. In massively parallel 
machines or cellular arrays with complex 
interconnection architectures, algorithms 
reassign tasks and reroute communications 
to bypass faulty processing cells for grace- 
ful degradation of system operation.‘3 

System recovery. If an unmasked error 
has propagated through a system or if sys- 
tem hardware or software has been recon- 
figured, a recovery period is needed to 
correct the system. The elapsed time be- 
tween the occurrence and the detection of 
an error determines the amount of damage 
and the length of the recovery period. 

Most system-recovery schemes restore 
system operation to a previous correct state 
or recovery point. A processor is rolled 
back to a recovery point by restoring regis- 
ters and memories to the saved state and 
invalidating cache memories, forcing 
cached data to be restored from global 
memory. Global data is typically protected 
through redundant protocols that allow 
updates to be completed or undone and 
repeated following a failure. In shared- 
memory multiprocessor systems,12 global 
data and lists of tasks to be performed are 
kept in shared memory, allowing proces- 
sors to continue automatically with tasks 
on the list as failed processors are disabled. 
This approach also helps balance loads on 
the individual processors. 

In loosely coupled systems, spare pro- 
cessors are periodically updated at prede- 
fined checkpoints, so that when a spare is 
given control of a task after failure of a 
master processor, processing can continue 
from the most recent checkpoint rather 
than from the beginning of the task. The 
degree of rollback is limited by using 
atomic actions - small, indivisible pro- 
cessing steps completed and verified be- 
fore global updates and the next action. Re- 
covery from a failure occurring before 
saving the results is usually performed by 
repeating the entire action. 

C omputer architectures are changing 
rapidly, with increased integration 
in VLSI devices, new parallel pro- 

cessing architectures, and widely distrib- 
uted networks presenting new challenges 
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to fault-tolerant-design engineers. Much 
previous work in fault-tolerant-hardware 
design focused on gate-level approaches, 
but now more work is needed at much 
higher levels of abstraction, making com- 
plete design validation more difficult. 
Consequently, new approaches and tools 
must be developed for fault-tolerant de- 
sign, simulation, and reliability analysis. 

Large systolic arrays, massively parallel 
architectures, and other large-scale dis- 
tributed systems with complex intercon- 
nection networks present challenges in 
system control, performance, and fault 
tolerance. Engineers working on commu- 
nications structures and algorithms for 
mapping applications onto systolic arrays 
and other cellular parallel systems are also 
developing extensions to detect and diag- 
nose faulty cells and circumvent them in 
real time. 

Most of the fundamental concepts dis- 
cussed here deal primarily with localized 
rather than system-wide fault tolerance. 
Localized strategies are easy to understand 
and apply. System-level fault tolerance 
requires considerable work, especially in 
wafer-scale systems and other highly inte- 
grated systems. which are subject to mul- 
tiple component failures. System-level 
fault tolerance is also a challenge in dis- 
tributed systems subject to synchroniza- 
tion problems and global upset, especially 
in aerospace, military, and other applica- 
tions where external disturbances are 
likely. The challenge in commercial appli- 
cations is to provide fault tolerance that is 
both dependable and affordable. n 
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