
1

Using Reflection for Incorporating Fault-Tolerance Techniques
into Distributed Applications*

Anh Nguyen-Tuong and Andrew S. Grimshaw

University of Virginia Department of Computer Science
{nguyen,grimshaw}@virginia.edu

http://legion.virginia.edu

*This work is partially supported by DARPA (Navy) contract # N66001-96-C-8527, DOE grant DE-FD02-

96ER25290, DOE contract Sandia LD-9391, Northrup-Grumman (for the DoD HPCMOD/PET program), DOE
D459000-16-3C and DARPA (GA) SC H607305A.

Abstract
As part of the Legion metacomputing project, we have developed a reflective
model, the Reflective Graph & Event (RGE) model, for incorporating
functionality into applications. In this paper we apply the RGE model to the
problem of making applications more robust to failures. RGE encourages
system developers to express fault-tolerance algorithms in terms of
transformations on the data structures that represent computations—
messages and methods—hence enabling the construction of generic and
reusable fault-tolerance components. We illustrate the expressive power of
RGE by encapsulating the following fault-tolerance techniques into RGE
components: two-phase commit distributed checkpointing, passive
replication, pessimistic method logging, and forward recovery.

1 Introduction
The advent of fast networks and the wide availability of computing resources make possible the

realization of powerful virtual computers, or metasystems, that harness resources on a national or global
scale. One of the technological challenges that must be solved before such virtual machines can be used in
production mode is the adoption of fault-tolerance techniques for system-level services and user
applications. Unfortunately, fault-tolerance protocols are widely regarded as complex. Implementing them
correctly is likely to overwhelm all but the best programmers.

Our approach to remedying this problem is to view fault-tolerant applications as the sum of three parts:
the application, the fault-tolerance technique, and the infrastructure required to enable their composition.
Application programmers should focus on writing applications while fault-tolerance experts should
encapsulate algorithms inside components. Within the context of the Legion metacomputing project, we
have developed a reflective computational model, the Reflective Graph and Event (RGE) model, for
enabling the composition of fault-tolerance techniques with user applications [11][13].

The basic design philosophy behind a reflective architecture is to expose—instead of hide—the
elements that make up the structure of the system to developers. A reflective system is introspective; the
system has a representation of itself that it can observe—its self-representation. Often, the self-
representation of a reflective architecture is expressed in terms of abstract entities that may be manipulated
to modify the behavior of the system. Thus, a reflective system promotes the writing of generic and
reusable components that manipulate the self-representation. Such components may be written by domain
experts and incorporated transparently into user applications. For example, Fabre et al. use a reflective
programming language to incorporate fault-tolerance techniques into non-fault-tolerant applications [8],
thereby freeing application programmers from the complex and error-prone task of implementing fault-
tolerance algorithms.

In this paper, we demonstrate the applicability of the RGE model in encapsulating the following fault-
tolerance techniques: distributed checkpointing, passive replication, pessimistic method logging, and
forward recovery. The RGE model enables the manipulation of user computations at an abstract level by
representing them as events, event handlers and program graphs [24]. These data structures are the self-
representation of our reflective architecture and manipulating them is the basis for expressing fault-

2

tolerance algorithms. The advantages of using an event-based architecture are well-known: components are
decoupled from one another spatially and temporally, and they may be added/removed dynamically.
Developers may extend object functionality by registering handlers with the appropriate events and by
defining new events. A novel feature of the RGE event mechanism is that handlers may be executable
program graphs that specify method invocations on remote objects. Graphs may be bound to their
associated events at run-time, enabling the dynamic composition of functionality to objects.

The paper is organized as follows. We present related work in Section 2 and introduce the Legion
system model in Section 3. We provide an overview of the RGE model in Section 4 and apply the model to
encapsulate fault-tolerance techniques in Section 5. We conclude in Section 6.

2 Related Work
The RGE model provides a blueprint for structuring distributed applications based on reflective

principles. The concept of reflection is not novel; its use has been advocated in several contexts, including
programming languages [19][22], soft real-time systems [16], real-time global databases [27], agent-based
systems [6], and in general, to incorporate non-functional requirements into user applications [28].

Reflection has also been used to incorporate fault-tolerance techniques into applications. Lee extends
the Common List Object System [19] to support persistence using reflection in [20]. Fabre exploits
reflective features of the language open-C++ to incorporate replication techniques into applications
transparently [8]. MAUD is a meta-level architecture for building adaptively dependable systems that has
been implemented on an actor-based system [1]. To our knowledge, RGE is the only reflective model that
uses graphs and events as data structures for representing computations.

The event paradigm is well established and many systems use it as the basis for extensibility, e.g.,
Coyote [5], the Java Bean Component Model [29], SPIN [26], and Ensemble [15]. We use the event
abstraction within the RGE model to capture and reflect the “internals” of objects to programmers. Events
allow programmers to intercept and reroute both messages and method invocations. More importantly,
associating events with the acts of receiving/sending messages/methods allows protocol writers to express
many algorithms in a natural way by treating messages as abstract entities. Furthermore, RGE events may
be associated with graph handlers dynamically—enabling the run-time binding of functionality to objects.
Graphs used in RGE are the embodiment of the Macro-Data Flow model [14]. Other data-flow systems
include Paralex [2], CDF [3], HeNCE [4], Mentat [12][23] and Code/Rope [7]. Of these, Paralex and
Mentat support replication. Unlike most graph systems, RGE graphs are exposed to system developers;
they can be assembled dynamically and executed remotely. Graphs are reflective: graphs are the self-
representation of a computation and transforming them has a direct impact on the future of a computation.

Globus is another metasystem project [9]. The primary difference between Globus and Legion is a
philosophical one: Globus employs a “sum-of-service” approach for supporting users and specifies
standard interfaces for such functions as security and resource management. Legion employs an
“architecture” approach—system developers target a unified model that enables component reuse and
interoperability. To our knowledge Globus does not provide integrated support for incorporating fault-
tolerance techniques into user applications. Instead, application writers may use a hearbeat monitoring
service as a base for implementing fault-tolerance techniques. Note that the two approaches are not
mutually exclusive—RGE fault-tolerance components can make use of an external failure detecting
service.

3 System Model
Legion is based on an object model of computing. Legion objects encapsulate both hardware and

software resources. Objects are logically independent collections of data and associated methods with
disjoint address spaces. Objects can contain one or more associated threads of control, and communicate
via asynchronous method invocations. Objects are named entities identified by a location-independent
Legion Object IDentifer (LOID) and are mapped to Legion Object Addresses (LOA) for actual
communication. The LOA of an object includes the necessary information to communicate with it for
remote method invocation, e.g., the IP address and port number.

Objects are persistent and can be in one of two states: active or inert. Active objects contain one or
more threads of control and are ready to service method calls. Inert objects exist on persistent storage as
passive object state representations (OPR) organized in a directory structure. Legion moves objects

3

between active and inert states to use resources efficiently, to support object mobility, and to enable failure
resilience.

Every Legion object is defined and managed by its class object. Class objects in Legion are
themselves active objects, and are given system-level responsibility. They create new instances; schedule,
activate, and deactivate their instances; and assist client objects in locating instances of the class.

For a detailed description of the Legion object model, please see Grimshaw [13].

4 Reflective Graph and Event Model
As the name indicates, RGE uses graphs and events to specify and represent user computations. We

provide an overview of graphs in Section 4.1, events in Section 4.2, followed by a discussion of
exoevents—events whose handlers are graphs—in Section 4.3. For a more detailed presentation of the RGE
model, please see Nguyen-Tuong et al. [24].

4.1 Graphs
Our use of graphs originated in the Mentat project, a high-performance object-oriented parallel

processing system [12]. Graphs are the embodiment of the Macro-Data Flow model, an extension of pure
data flow designed for coarse-grained parallel processing. For more details on Macro-Data Flow and how it
is used to exploit opportunities for parallelism please see Grimshaw et al. [14].

Graphs specify method invocations and data dependencies between objects. Graph nodes are called
actors and represent method invocation on objects, arcs denote data-dependencies between actors, and
tokens flowing across arcs represent data or control information. When an actor has a token on each of its
input arcs, it may execute its corresponding method, and deposit a result token on each output arc. Figure 1
illustrates a fragment of code and the corresponding graph representation.

Unlike a traditional client/server model, the results from the method invocations on lines 4 and 5 do
not return to the Main object.1 Instead they are forwarded directly to A.op2. When A.op1 and B.op1
execute, they each receive a logical copy of the graph.2 The graph specifies where they should send their
return values, namely, A.op2. Thus, graphs are reflective data structures that represent the future flow of
the current computation. Graphs are first-class entities and may be assembled at run-time, transformed,
passed as arguments to other objects, and executed remotely. Graphs enable system developers to build
objects that adapt to their environment by assembling the proper method invocations dynamically and
modifying the future flow of the computation.

Graphs may be annotated with <name, type, value> triples. The name field is simply a generic string,
the type field indicates the type, and the value field consists of arbitrary data. The name and type fields
dictate the interpretation of the value field. Annotations are properties tied to individual arcs and nodes,

1 A client/server call is a special case of a 2-node graph: one for the server and the other for the return value.
2 In practice, we only send the subset of the graph required for future computations, i.e., the transitive set of

reachable graph nodes.

(1) main() {
(2) int a = 10, b = 15, x, y, z;
(3) MyObject A, B;
(4) x = A.op1(a);
(5) y = B.op1(b);
(6) z = A.op2(x,y);
(7) printf("z=%d\n", z);
(8) }

z

A.op1 B.op1

A.op2

a b

Figure 1. Sample code fragment and corresponding RGE program graph

4

e.g., “Architecture=C90”, “Memory Usage=20MB”, “Semantic Property=Stateless”, and denote meta-level
information. Annotations may propagate through the object method invocation chain, in which case we call
them implicit parameters. If object A annotates its graph with an implicit parameter, invokes a method on
object B, and B invokes a method on object C, A’s implicit parameter propagates to C. Implicit parameters
provide a mechanism for adding meta-level information transitively and are similar to CORBA’s contexts
[25]. The primary difference with CORBA’s contexts is that implicit parameters propagate automatically
through the method invocation call chain.

4.2 Events
The event paradigm provides a well-understood

mechanism for adding new functionality to objects.
The versatility of the event paradigm resides in its
ability to decouple communication between various
components of a system both temporally and
spatially—essential features of a component-based
systems. Events provide a uniform infrastructure to
bind components together. When component X
wishes to announce to the system that something of
interest has happened, it announces an event E.
Components that have registered their event
handlers with the event manager previously are
notified of the event E. The handlers are then called
immediately upon the announcement of E
(synchronous), or alternatively, the execution of the
handlers may be deferred (asynchronous). In
addition, events may carry arbitrary data.

One of the primary applications of the RGE
model is to implement a configurable protocol stack
for Legion objects [30]. A striking feature of the
protocol stack is that only a few events are
employed. These events may be classified into three broad categories: message-related, method-related and
object management-related events. These categories reflect the fact that Legion is an object-based system
implemented at the low level over message passing. Table 1 describes several event kinds used in
configuring the protocol stack.

Category Event Data Event Kind Description
MessageReceive Object has received a message
MessageSend Object is sending a message
MessageComplete Message has been successfully sent

Message-related
events

Message and
message
headers

MessageError Error in sending message
MethodReceive Object has received a complete method

invocation; all parameters have been received
MethodReady A method has passed the security method

access control check and is ready to be serviced
MethodSend Object is invoking a method on a remote object

Method-related
events

Method
signature,
arguments,
annotations

MethodDone Object is done servicing a method
ObjectCreated An object has been createdLOID of the

object ObjectDeleted An object has been deleted
SaveState Saves the state of the object in its OPR

(persistent storage)

Object-
management-
related events State of the

object. OPR
organized in
directory
structure

RestoreState Restores the state of the object from its OPR
This event is raised upon object startup.

Table 1. Events used to configure the protocol stack of Legion objects

Protocol Stack of Object using Components

Network

Events

Network
Component

Method
Assembly

Component

Method
Invocation

Component

MessageReceive Event

MethodReceive Event

Network
Component

Message
Layer

Component

Graph
Component

MethodSend Event

MessageSend Event

Figure 2. Sample protocol stack.

5

Figure 2 illustrates the major components of the Legion protocol stack. When an object receives a message
from the network, it announces a MessageReceive event. The MethodAssemblyComponent determines
whether the received message is sufficient to form a complete method invocation (recall that in data flow
multiple tokens/messages may be required to trigger a method execution). If the message results only in a
partial method invocation, the object stores the message in an internal database. When the required
messages arrive to complete the method invocation, a MethodReceive event is raised. At this point, the
MethodInvocationComponent, stores the complete method in a database of ready methods. Then, a
server loop may extract ready methods from the database and execute them. Once the method finishes
executing, a MethodDone event is raised.

On the sending side, the GraphComponent announces a MethodSend event for each node in the
graph that has the sender as a source of an input token. In turn, the MessageLayerComponent
transforms each parameter into messages and announces a MessageSend event. Finally, the
NetworkComponent sends messages over the network.

4.3 Exoevent Notification Model
The RGE model provides several ways of associating graphs and events. One way is for protocol

writers to inspect and transform program graphs, or create and execute new graphs, within an event
handler. Another more flexible approach is to associate graphs and events dynamically and execute a
program graph when an event is raised, thereby enabling the run-time composition of functionality to
objects. We call events associated with graphs exoevents to highlight the fact that raising such events may
result in a set of remote method invocations. The benefit for object designers is that they need not anticipate
all possible policies when building their objects.

Before showing an application of the exoevent notification model, we define the following terms:
exoevent, exoevent interest, and exoevent interest set (EIS).

- Exoevent. An exoevent is a set of 3-tuple items <item-name, data-type, data-value>. The
item-name field is a string to identify an item; the data-type specifies how to interpret the
data-value field of an item. Items may be added or removed from an exoevent. Users may
search for a specific item by using the name field as a key. By convention, all exoevents
contain an item with item-name=”ExoEventType”. The data-type field is a string describing
the type of exoevents. By convention, we classify exoevent types within broad categories
and further divide them using a “:” to delineate subcategories, e.g., “Exception”, “Warning”,
“Exception:Security”, “Exception:Security:Access Control”.

- Exoevent Interest. An exoevent interest is a 2-tuple <exoeventType, notificationGraph> that
associates an exoevent type with a computation graph. The exoevent type specifies the kind
of exoevent of interest. The notificationGraph is a first-class program graph and specifies a
computation to be executed if a match is made between an exoevent and an exoevent
interest.

- Exoevent Interest Set (EIS). An exoevent interest set is a set of exoevent interests. The EIS
propagates to remote objects using implicit parameters.

Consider a server S used by multiple clients (Figure 3). By inserting the proper exoevent interest in its
exoevent interest set, each client may specify its own exoevent propagation policy. Client C1 specifies that
exceptions propagate back to itself whereas C2 specifies that warnings propagate to a third-party monitor
object.

5 Incorporating Fault-tolerance Techniques into Applications using RGE
We present designs for encapsulating several well-known fault-tolerance techniques using the RGE

model: two-phase commit distributed checkpointing, pessimistic method logging, passive replication and
forward recovery. To encapsulate fault-tolerance techniques inside components, developers express their
algorithms using graphs and events. Typically, this involves inserting handlers with the appropriate events
or associating graphs with events.

Note that for these examples, we make the following assumptions:
� Objects are fail-stop, i.e., objects fail by halting and other objects may detect the failure.

6

� Objects are deterministic. Given a given sequence of input methods, objects will make the same
state transitions.

� Objects always have access to stable storage via their OPR (Object Persistence Representation).
Note that the OPR does not include the program counter or stack of the object as this information
is not portable across heterogeneous architectures. This assumption can be relaxed using tools
such as April that allow heterogeneous checkpoints [10].

Furthermore, we present only salient features of each technique due to space restrictions.

C2

S.service C.return

ExoeventInterest =
<exoeventType = "Warning",

>

notificationGraph

Monitor.notifyWarning

C1

ExoeventInterest =
<exoeventType = "Exception",

>

notificationGraph

C1.notifyException

Figure 3. Clients C1 and C2 specify two different exoevent propagation policies. C1 specifies that
exceptions propagate back to it via the notifyException() method. C2 specifies that warnings
propagate to a third-party monitor object via the notifyWarning() method.

5.1 Two-Phase Commit Distributed Checkpointing (2PCDC)
A common method for ensuring the progress of long-running application is to checkpoint its state

periodically on stable storage. Checkpoints may be viewed as “insurance policies” against failures—in the
event of a failure, the application can be rolled back and restarted from its last checkpoint—thereby
bounding the amount of lost work that must be recomputed. As with all insurance policies, there are
choices and costs involved. Users may select from a variety of checkpointing algorithms, each providing a
specified level of service for a given cost. Costs include the cost of the algorithm itself—memory, CPU,
stable storage requirements, and run-time overhead—as well as the cost of implementing a given algorithm
correctly. The RGE model directly addresses the latter cost: domain experts encapsulate fault-tolerance
techniques into components that may be composed with user applications.

The basic idea behind a two-phase commit distributed checkpointing protocol is to ensure that either
all objects in an application checkpoint or none do [21]. The set of local checkpoints taken must form a
consistent global state—all methods received by an object must be recorded as having been sent. Two
problems must be addressed to ensure a consistent global checkpoint: lost methods and orphan methods.
Lost methods are methods that are marked as sent but not received, while orphan methods are methods
marked as received but not sent (Figure 4). The algorithm presented here only seeks to prevent orphan
methods; lost methods are assumed to be handled by the underlying communication channels.

7

Lost method

O
rphan

m
ethod

O1

O2

Figure 4. Two objects, O1 and O2, with local checkpoints (black boxes). Orphan
methods result when a method is marked as received in one checkpoint (O2) but not
marked as sent in any other. Lost methods result when a method is marked as sent in one
checkpoint (O1) but not marked as received in any other.

The algorithm consists of two phases. In phase I, a coordinator requests participants to take a tentative
checkpoint. If a participant rejects the request for any reasons, it replies No. Otherwise, the participant takes
a tentative checkpoint, replies Yes, suspends communication with other objects, and awaits the
coordinator’s decision. If all participants reply Yes, the coordinator’s decision is to commit the
checkpoints, otherwise its decision is to abort the protocol. The coordinator’s authoritative decision marks
the end of the first phase. In phase II, the coordinator sends its decision to all participants. If the decision is
Yes, participants commit the tentative checkpoint taken in the first phase to stable storage. Otherwise,
participants may discard the tentative checkpoint previously taken.

Coordinator Participants
Phase I
requests participants to take tentative

checkpoints
await all replies
if all replies = “Yes”
 decide Yes
else
 decide No

Phase I
if accept request
 take a tentative checkpoint
 reply Yes
 suspend communication
else
 reply No

Phase II
inform participants of decision

Phase II
if decision = “Yes”
 commit tentative checkpoint
else
 discard tentative checkpoint
resume communication

Table 1. Overview of the Two-Phase Commit Distributed Checkpointing Algorithm

This basic algorithm may be extended in several ways. The coordinator can bound the amount of time
that it waits for participants to reply. To handle a coordinator crash, the coordinator can save its decision
onto stable storage at the end of phase I. The number of participants may be reduced by exploiting semantic
information [21]. For the sake of brevity, we do not include these extensions in our mapping of the
algorithm onto the RGE model, nor do we discuss the associated recovery algorithm.3

Mapping onto the RGE model
The algorithm is encapsulated using a

���������
 component.

���������
 adds the following methods to the

participant’s public interface, void TakeTentativeCheckpoint() and void Decision() so
that the coordinator may invoke these methods.

In phase I, the
���������

 component takes a tentative checkpoint by raising a SaveState event. The
default handlers for the event write the state of the object into the object’s OPR. To suspend
communication at the end of phase I and prevent orphan methods, we ensure that the next method serviced
after TakeTentativeCheckpoint() is Decision().

�	�������
 adds a handler, AwaitDecision, to

the MethodReceive event. AwaitDecision intercepts all methods until the receipt of Decision(), at
which point AwaitDecision announces a MethodReady event.

3 Similarly to the checkpointing algorithm, the recovery algorithm uses a two phase-commit protocol

8

To commit the checkpoint in phase II,
���������

 creates a new directory in the OPR, “/2PC-Commit”, in
which it writes the state of the object.

We ensure that there are no lost methods by preventing lost messages (recall that multiple messages
may be needed to form a method invocation). Upon receipt of a message, an object raises a
MessageReceive exoevent. The sender of the message registers its interest in MessageReceive using the
Exoevent Notification Model (Section 4.3). If the invoker is not notified of MessageReceive in a timely
manner, it retransmits the message. To handle duplicate messages, the invoking object appends a message
identification number. The invoked object may then discard duplicates based on this number.

5.2 Pessimistic Method Logging (PML)
The two-phase commit distributed checkpointing algorithm requires objects to coordinate their local

checkpoints to establish a consistent application global state. Further, during recovery, even objects that did
not fail are potentially required to rollback their state. We now describe an adaptation of pessimistic
message logging [31] for an object-based environment—pessimistic method logging (PML)—in which
objects establish checkpoints and recover independently from one another.

In PML, objects checkpoint their state periodically and log received methods onto stable storage upon
receipt before delivering the methods to the application layer. In the event of a failure, objects restart from
their saved checkpoint and replay their log. Since objects are deterministic, replaying methods in the same
order will produce the same execution (Figure 5).

PML is attractive due to its simple recovery characteristic—objects restart independently without the
need for a costly coordination protocol. The disadvantage of PML is the high cost of saving methods onto
stable storage. We do not discuss here techniques to reduce the overhead of pessimistic logging [17][18].

O1

O2

m
1

m
2

m
3 m

4M1(m1,m2)

M2(m3)

M3(m4)

(a) (b) (c)

Figure 5. Multiple messages (lowercase m) may be needed to form a method invocation (uppercase M).
Object O1 crashes at (a), (b) or (c). If O1 crashes at (a), O1 replays messages m1 and m2 from the log. If O1

crashes at (b), O1 replays the method M1 from the log. During recovery, message m4 is retransmitted by O2.
If O1 crashes at (c), O1 replays method M1 and message m4 from the log.

Mapping onto the RGE model
The algorithm is encapsulated using a

� ���
 component.

� ���
 creates the following directories in the

OPR of the object, “/MessageLog/” and “/MethodLog/”.
� ���

 inserts a LogMessage handler with the
MessageReceive event as well as a LogMethod handler with the MethodReady event. When an object
receives a message, LogMessage writes it into the “/MessageLog/” directory. If the received message
results in a full method invocation (recall that in our model, multiple messages may be needed to form a
method), a MethodReady event is generated. LogMethod catches the event and writes the method into the
“/MethodLog/” directory. To reclaim storage space, LogMethod also deletes the messages associated with
the received method from “/MessageLog/”.

� ���
 also inserts a Restart handler with the RestoreState event

to ensure that
� ���

 is notified when an object restarts.
When communication is attempted on a crashed object, its class will restart it on an available host and

restore its saved state. In the process, a RestoreState event is raised and caught by the Restart handler.
Restart first replays the partial methods, i.e., messages, contained in “/MessageLog/”. Then, it replays the
methods contained in “/MethodLog/” before allowing normal processing to resume for the object.
Replaying the method log may result in duplicate method invocations on remote objects. To prevent
methods from executing multiple times, objects append to each message a unique message identifier so that
receiving objects may discard duplicate entries.

9

To prevent lost methods and messages,
� ���

 uses the MessageReceive exoevent as described
previously in Section 5.1. There are no orphan messages since all received messages are stored in the
“/MessageLog/” directory in the OPR of objects.

5.3 Passive Replication
In passive replication, a primary object services method invocations. When the primary object finishes

servicing a state-updating method it sends its new state to a backup object before replying to the caller.
Upon failure of the primary, the backup takes over and services subsequent method invocations (Figure 6).

Primary(O)

Class O

Client

int write(int,int)

read-only int add(int,int)

Backup(O)

ReceiveState(State)

ReceiveReply(Reply)

BecomePrimary(LOID Backup)

int write(int,int)

read-only int add(int,int)
[1] [2]

[3] [4]

[5]

Figure 6. To communicate with O, a client first obtains a binding from Class O [1][2]. The client
invokes a state-updating method, write(), on Primary(O) [3]. Before the result of write() is
returned to the client [5], Primary(O) first forwards its state to the Backup [4]. If the primary fails,
Class O invokes BecomePrimary() on the backup. Subsequent binding requests from clients
will result in a binding to the new primary. Note that the methods ReceiveState(),
ReceiveReply() and BecomePrimary(), are added transparently to the user code.

Mapping onto the RGE model
The passive replication algorithm is encapsulated inside of a

� ������� ���	�
�	���������������
 component. Inside

the primary,
� ������� ���	�	�	����� ������� ��

 inserts a SendStateToBackup handler with the MethodDone event. If
� ������� ���	�	�	�����������������

is contained within the backup, it adds and exports the methods
BecomePrimary(LOID NewBackup), ReceivePrimaryState(State S), and
ReceiveReply(Reply R).

At the primary, if the method serviced is state-updating, SendStateToBackup extracts the state of the
object from its OPR and forwards it by invoking the method SendStateToBackup on the backup.
SendStateToBackup determines whether a method is state-updating by inspecting the function signature. If
the signature is not of the form “read-only return-type func(args…)”, then the method is state-updating. If
the method is non-state-updating, the primary sends only the reply value to the backup by invoking
ReceiveReply().

At the backup,
� ������� ���	�	�	����� ���������	�

 waits for the invocation of either the BecomePrimary() or
ReceivePrimaryState() methods. If BecomePrimary() is invoked, the backup becomes primary
and forwards its state to the new backup. Since the old primary can crash before sending the return value to
the client, the new primary resends the last return value. Thus, clients may receive duplicate return values.
We assume that clients can handle duplicate values.

When a binding request is issued for a crashed object, the default behavior is for the class of the object
to restart the object on an available host, and return the new binding. Instead, the class now selects a replica
as the new primary and invokes the BecomePrimary() method on the new primary, before returning the
binding of the new primary. Passive replication results in faster recovery of crashed objects than the default
algorithm as the backups are already active and ready to service methods.

5.4 Forward recovery
In forward recovery, applications do not rollback to a previously consistent state. Instead, they attempt

to repair themselves so as to continue processing from a consistent state. By its nature, forward recovery is
application-dependent and not as general as the backward-recovery methods discussed in the previous
sections.

10

Our approach for supporting forward recovery is to use the exoevent notification model described in
Section 4.3 in which the concepts of raising and propagating exceptions are decoupled. Thus, object
writers need not specify exception propagation policies at design time.

Mapping onto the RGE model
If an object wishes to be notified of an exoevent raised by objects in its future call chain, it inserts an

exoevent interest in its exoevent interest set. Consider a remote method invocation in which a client C
invokes a method service on an object. To be notified of all exceptions raised by S.service(), C
annotates its program graph with the exoevent interest shown in Figure 7. Since the exoeventType field is
set to “Exception”, all exceptions propagate back via the notifyException method on C.

Graph

C
S.service C.return

ExoeventInterest =
<exoeventType = "Exception",

>

notificationGraph

C.notifyException

Figure 7. Client C specifies interest in exceptions raised by S.

6 Conclusion
To achieve our goal of alleviating the difficulty of writing robust metacomputing applications, we have

presented a reflective model of computation, the Reflective Graph and Event model, for expressing fault-
tolerance techniques inside reusable components and enabling the composition of such components with
user applications. We have presented designs for mapping several well-known fault-tolerance techniques to
the RGE model: two-phase commit distributed checkpointing, passive replication, pessimistic logging, and
forward recovery.

The RGE model is implemented and deployed within the Legion metacomputing system. The forward
recovery example has also been implemented and is in use. Future work consists of implementing and
deploying the other examples described in this paper, as well as mapping other fault-tolerance techniques
onto the RGE model.

7 References
[1] G. Agha and D. C. Sturman, “A Methodology for Adapting Patterns of Faults”, Foundations of Dependable

Computing: Models and Frameworks for Dependable Systems, Kluwer Academic Publishers, Vol. 1, pp. 23-60,
1994.

[2] O. Babaoglu et al., "Paralex: An Environment for Parallel Programming in Distributed Systems", Technical
Report UBLCS-92-4, Laboratory for Computer Science, University of Bologna, Oct. 1992.

[3] R. F. Babb, “Parallel Processing with Large-Grain Data Flow Techniques”, IEEE Computer, pp. 55-61, July 1984.
[4] A. Beguelin et al., “HeNCE: Graphical Development Tools for Network-Based Concurrent Computing”,

Proceedings SHPCC-92, pp. 129-36, Williamsburg, VA, May 1992.
[5] N. T. Bhatti, et al., “Coyote: A System for Constructing Fine-Grain Configurable Communication Services”,

Department of Computer Science Technical Report TR 97-12, University of Arizona, July 1997.
[6] P. Charlton, “Self-Configurable Software Agents”, Advances in Object-Oriented Metalevel Architectures and

Reflection, CRC Press, pp. 103-127, 1996.
[7] J. C. Browne, T. Lee and J. Werth, “Experimental Evaluation of a Reusability-Oriented Parallel Programming

Environment”, IEEE Transactions on Software Engineering, pp. 111-120, February 1990.
[8] J. C. Fabre et al., “Implementing Fault Tolerant Applications using Reflective Object-Oriented Programming”,

The Twenty-fifth Symposium on Fault-Tolerant Computing (FTCS-25), pp. 489-498, 1995.
[9] I. Foster and C. Kesselman, “Globus: A metacomputing infrastructure toolkit”, International Journal of

Supercomputing Applications, 1997.

11

[10] A. Ferrari, “Process Introspection: A Checkpoint Mechanism for High Performance Heterogeneous Distributed
Systems”, Department of Computer Science Technical Report CS-96-15, University of Virginia, October 1996.

[11] A. S. Grimshaw, “The Legion vision of a worldwide virtual computer”, Communications of the ACM, 40:1, pp.
39-45, January 1997.

[12] A. S. Grimshaw, A. Ferrari and E. West, “Mentat”, Parallel Programming Using C++, The MIT Press,
Cambridge, Massachusetts, pp. 383-427, 1996.

[13] A. S. Grimshaw et al., “Architectural Support for Extensibility and Autonomy in Wide-Area Distributed Object
Systems “, Department of Compter Science Technical Report CS-98-12, University of Virginia, June 1998.

[14] A. S. Grimshaw, J. B. Weissman and T. Strayer, “Portable Run-Time Support for Dynamic Object-Oriented
Parallel Processing”, ACM Transactions on Computer Systems, Vol. 14, Num. 2, 1996.

[15] M. Hayden, “The Ensemble System”, Cornell University Technical Report, TR98-1662, January 1998.
[16] Y. Honda and M. Tokoro, “Soft Real-Time Programming through Reflection”, Proceedings of the International

Workshop on New Models for Software Architecture: Reflection and Metalevel Architecture, pp. 12-23, 1992.
[17] P. Jalote, “Fault Tolerance in Distributed Systems”, Prenctice Hall, 1994.
[18] D. B. Johnson and W. Zwaenepoel, “Sender-Based Message Logging”, The Seventeenth Symposium on Fault-

Tolerant Computing (FTCS-17), pp. 14-19, 1987.
[19] G. Kiczales, J. D. Rivieres and D. G. Bobrow, “The Art of the Metaobject Protocol”, MIT Press, 1991.
[20] A. H. Lee and J. L. Zachary, “Reflections on metaprogramming”, IEEE Transactions on Software Engineering,

vol. 21, pp. 883-892, November 1995.
[21] R. Koo and S. Toueg, “Checkpointing and Rollback-Recovery for Distributed Systems”, IEEE Transactions on

Software Engineering, pp. 23-31, January 1987.
[22] P. Maes, “Concepts and Experiments in Computational Reflection”, Proceedings of the ACM Conference on

Object-Oriented Programming Systems, Languages and Applications (OOPSLA), pp. 147-55, October 1987.
[23] A. Nguyen-Tuong et al., “Exploiting Data-Flow for Fault-Tolerance in a Wide-Area Parallel System”,

Proceedings of the 15th International Symposium on Reliable and Distributed Systems (SRDS-15), pp. 2-11, 1996.
[24] A. Nguyen-Tuong et al., “Using Reflection for Flexibility and Extensibility in a Metacomputing Environment”,

Technical Report CS-98-33, Department of Computer Science, University of Virginia, 1998.
[25] OMG, “The Common Object Request Broker: Architecture and Specification”, OMG, 1995.
[26] P. Pardyak and B. Bershad, “Dynamic Binding for an Extensible System”, Proceedings of the Second USENIX

Symposium on Operating Systems Design and Implementation (OSDI), Seattle, WA, pp. 201-212, October 1996.
[27] J. A. Stankovic, S. H. Son and J. Liebeherr, “BeeHive: Global Multimedia Database Support for Dependable,

Real-Time Applications”, Technical Report CS-97-08, Department of Computer Science, University of Virginia,
1997.

[28] R. J. Stroud and Z. Wu, “Using Metaobject Protocols to Satisfy Non-Functional Requirements”, Advances in
Object-Oriented Metalevel Architectures and Reflection, Chapter 3, CRC Press, pp. 31-52, 1996.

[29] Sun Microsystems, “JavaBeans™”, http://www.javasoft.com/beans/, September 1998.
[30] C. L. Viles et al., “Enabling Flexibility in the Legion Run-Time Library”, International Conference on

Parallel and Distributed Processing Techniques (PDPTA ’97), Las Vegas, NV, 1997.
[31] Y. Huang and C. Kintala, “A software fault tolerance platform”, Practical Reusable Software, Ed. B.

Krishnamurthy, John Wiley & Sons, pp. 223-245, 1995.

