
Fundamentals of Fault-Tolerant Distributed Computing in
Asynchronous Environments
FELIX C. GÄRTNER

Darmstadt University of Technology

Fault tolerance in distributed computing is a wide area with a significant body of
literature that is vastly diverse in methodology and terminology. This paper aims
at structuring the area and thus guiding readers into this interesting field. We use
a formal approach to define important terms like fault, fault tolerance, and
redundancy. This leads to four distinct forms of fault tolerance and to two main
phases in achieving them: detection and correction. We show that this can help to
reveal inherently fundamental structures that contribute to understanding and
unifying methods and terminology. By doing this, we survey many existing
methodologies and discuss their relations. The underlying system model is the
close-to-reality asynchronous message-passing model of distributed computing.

Categories and Subject Descriptors: A.1 [General Literature]: Introductory and
Survey; C.4 [Computer Systems Organization]: Performance of
Systems—Modeling techniques; Reliability, availability, and serviceability

General Terms: Algorithms, Design, Reliability, Theory

Additional Key Words and Phrases: Asynchronous system, agreement problem,
consensus problem, failure correction, failure detection, fault models, fault
tolerance, liveness, message passing, possibility detection, predicate detection,
redundancy, safety

1. INTRODUCTION

Research in fault-tolerant distributed
computing aims at making distributed
systems more reliable by handling
faults in complex computing environ-
ments. Moreover, the increasing depen-
dence of society on well-designed and
well-functioning computer systems has
led to an increasing demand for depend-
able systems, systems with quantifiable
reliability properties. The necessity for
such quantification is especially obvious

in mission-critical settings like flight
control systems or software to control
(nuclear) power plants. Until the early
1990s, work in fault-tolerant computing
focused on specific technologies and ap-
plications, resulting in apparently unre-
lated subdisciplines with distinct termi-
nologies and methodologies. Despite
attempts to structure the field and unify
its terminology [Cristian 1991; Laprie
1985], Arora and Gouda [1993] subse-
quently assessed that “the discipline it-

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) as part of the Graduierten-
kolleg ISIA at Darmstadt University of Technology.
Author’s address: Department of Computer Science, Darmstadt University of Technology, Alexander-
straße 10, D-64283 Darmstadt, Germany; email: fcg@acm.org.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication, and its date appear, and notice is given that copying is by
permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and / or a fee.
© 1999 ACM 0360-0300/99/0300–0013 $5.00

ACM Computing Surveys, Vol. 31, No. 1, March 1999

self seems to be fragmented.” Hence,
people approaching the field are often
perplexed, sometimes even annoyed.

Since that time, much progress was
made by viewing the area in a more
abstract and formal way. This has led to
a clearer understanding of the essential
and inherent problems in the field and
shown what can be done to harness the
complexity of systems that counteract
faults. This paper draws from these re-
sults and uses a formal approach to
structure fault-tolerant distributed
computing. It concentrates on an impor-
tant and intensely studied system envi-
ronment called the asynchronous system
model. Informally, this is a model in
which processors communicate by send-
ing messages to one another delivered
with arbitrary delay, in which the
speeds of the nodes can get out of synch
to an arbitrary extent. We use this
model as a starting point because it is
the weakest model (i.e., methods for this
model work in other models, too) and is
arguably the most realistic for distrib-

uted computing in today’s large-scale
wide-area networks.

The purpose of this paper is twofold.
First, we want to structure the area
clearly, using the latest research results
on formalizations of fault tolerance
[Arora and Kulkarni 1998a; Arora and
Kulkarni 1998b]. For people familiar
with the area, this perspective may be
unusual and, at first glance, collide with
the traditional approaches to structur-
ing the field [Nelson 1990; Cristian
1991; Jalote 1994], but we think the
approach here offers insights that com-
plement current taxonomies and con-
tributes to the understanding of fault-
tolerance phenomena. This paper can
also serve as an introductory tutorial.

Our second aim is to survey the fun-
damental building blocks that can be
used to construct fault-tolerant applica-
tions in asynchronous systems. By do-
ing this, we also want to show that
formalization and abstraction can lead
to more clarity and interesting insights.
However, to comply with a tutorial
style, this survey tries to argue in an
informal way, retaining formalizations
only where needed. We assume that the
reader has some basic understanding of
computers, formal systems, and logic,
but not necessarily of distributed sys-
tems theory. Note that we are not con-
cerned with security aspects, although
they are becoming more and more im-
portant and are sometimes discussed
under the heading of fault tolerance.

The structure of the paper echoes the
two goals. First, we define the relevant
terms and the basic system model used
throughout (Section 2). Next, we for-
mally define what it means for a system
to tolerate certain kinds of faults (Sec-
tion 3) and derive four basic forms of
fault tolerance in Section 4. This leads
the way to a discussion of methods for
achieving fault tolerance: Section 5
shows that there can be no fault toler-
ance without redundancy. We briefly re-
visit system models and argue for the
asynchronous system model in Section 6
and then dicuss refined and practical
examples of fault-tolerance concepts in

CONTENTS

1. Introduction
2. Terminology

2.1 States, Configurations, and Guarded Commands
2.2 Defining Faults and Fault Models
2.3 Properties of Distributed Systems: Safety and

Liveness
3. A Formal View of Fault Tolerance
4. Four Forms of Fault Tolerance
5. Redundancy as the Key to Fault Tolerance

5.1 Defining Redundancy
5.2 No Fault Tolerance Without Redundancy
5.3 Conclusions from the Necessity of Redundancy

6. Models of Computation and Their Relevance
7. Achieving Safety

7.1 Detection as the Basis for Safety
7.2 Detection in Distributed Settings
7.3 Adapting Consensus Algorithms for Fault-Toler-

ant Possibility Detection
7.4 Detecting Process Crashes
7.5 Summary

8. Achieving Liveness
8.1 Correction as the Basis for Achieving Liveness
8.2 Correction via Consensus
8.3 Summary

9. Related and Current Research
10. Conclusions and Future Work

2 • F. C. Gärtner

ACM Computing Surveys, Vol. 31, No. 1, March 1999

Sections 7 and 8. Finally, Section 9 dis-
cusses related work and sketches the
current state-of-the-art. Section 10 con-
cludes the paper and outlines directions
for future work.

2. TERMINOLOGY

The benefits of fault-tolerance are usu-
ally advertised as improving depend-
ability—the amount of trust that can
justifiably be put in a system. Normally,
dependability is defined in statistical
terminology, stating the probability
that the system is functional and pro-
vides the expected service at a specific
point in time. This results in common
definitions like the well-known mean
time to failure (MTTF). While terms like
dependability, reliability, and availabil-
ity are important in practical settings,
they are not central to this paper be-
cause we focus on the design phase of
fault tolerance, not on the evaluation
phase. So while the above terms may
remain a little imprecise, it is important
to define the characteristics of a distrib-
uted system precisely. This is done in
the following section. For precise defini-
tions of the defining attributes of de-
pendability, see other introductory
works; e.g., the book by Jalote [1994].

2.1 States, Configurations, and Guarded
Commands

We model a distributed system as a
finite set of processes that communicate
by sending messages from a fixed mes-
sage alphabet through a communication
subsystem. The variables of each pro-
cess define its local state. Each process
runs a local algorithm that results in a
sequence of atomic transitions of its lo-
cal state. Every state transition defines
an event, which can be a send event, a
receive event, or an internal event. No
assumptions regarding network topol-
ogy or message delivery properties of
the communication system are made,
except that sending messages between
arbitrary processes must be possible.

We use guarded commands [Dijkstra

1975] as a notation to abstractly repre-
sent a local algorithm. A guarded com-
mand is a pair consisting of a boolean
expression over the local state (called
the guard) and an assignment that sig-
nifies an atomic and instantaneous
change of the local state (called the com-
mand). It is written as ^guard& 3
^command&. A guarded command

(which for sake of variety is sometimes
called an action) is said to be enabled if
its guard evaluates to true. A local
algorithm is a set of guarded commands
(in the notation the commands are sep-
arated by a ‘[]’ symbol). A process exe-
cutes a step in its local algorithm by
evaluating all its guards and nondeter-
ministically choosing one enabled action
from which it executes the assignment.
We assume that the choice of actions is
fair (meaning that an action that is
enabled infinitely often is eventually
chosen and executed); this corresponds
to strong fairness [Tel 1994]. Communi-
cation is embedded within the notation
as follows: The guard can contain a spe-
cial rcv statement that evaluates to
true iff the corresponding message can
be received. A command may contain
one or more snd statements that, in
effect, send a message to another pro-
cess.

A distributed program (or distributed
algorithm) consists of a set of local algo-
rithms. The overall system state of such
a program, called a configuration, con-
sists of all the local states of all pro-
cesses plus the state of the communica-
tion subsystem (i.e., the messages in
transit). To make this paper more read-
able, we often use the terms configura-
tion and state synonymously, and ex-
plicitly write “local” state when
referring to the local state of a process.
All processes have a local starting state
that defines the starting configuration
of the system. We do not attempt to
distinguish exactly among the terms
distributed system, distributed pro-
gram, and distributed algorithm. While
the latter two are used synonymously,
the former usually refers to the entirety

Fundamentals of Fault-Tolerant Distributed Computing • 3

ACM Computing Surveys, Vol. 31, No. 1, March 1999

of program, state, and execution envi-
ronment (i.e., hardware).

To help in understanding all these
definitions, consider Figure 1, which de-
picts a simple distributed algorithm us-
ing guarded command notation. The al-
gorithm is the well-known “ping-pong”
example of two processes that keep al-
ternately sending messages to each
other. For example, the local state of
process Ping consists of the values of
the variables z and ack (which are ini-
tialized to 0 and true, respectively).
The global state in turn consists of the
values of all variables (z, ack and wait),
as well as the set of messages that may
be in transit (i.e., a or m). The starting
configuration is the global state where
z 5 0, ack 5 true, wait 5 true, and
where no messages are in transit. Note
that, at every point in time, there is
always at most one enabled action in
both processes: either it is the process’s
turn to send or the process is waiting to
receive. If a guarded command is en-
abled, it may be executed, resulting in
the change of the local state and equally
in the change of the global configura-
tion.

2.2 Defining Faults and Fault Models

There is a considerable ambiguity in the
literature on the meaning of some cen-
tral terms like fault and failure. Cris-
tian [1991] remarks that “what one per-
son calls a failure, a second person calls

a fault, and a third person might call an
error.” The term fault is usually used to
name a defect at the lowest level of
abstraction, e.g., a memory cell that al-
ways returns the value 0 [Jalote 1994].
A fault may cause an error, which is a
category of the system state. An error,
in effect, may lead to a failure, meaning
that the system deviates from its cor-
rectness specification. These terms are
admittedly vague, and here again for-
malization can help clarification.

Traditionally, faults were handled by
describing the resulting behavior of the
system and grouped into a hierarchic
structure of fault classes or fault models
[Cristian 1991; Schneider 1993a]. Well-
known examples are the crash failure
model (in which processors simply stop
executing at a specific point in time),
fail-stop (in which a processor crashes,
but this may be easily detected by its
neighbors), or Byzantine (in which pro-
cessors may behave in arbitrary, even
malevolent, ways). System correctness
was always proved with respect to a
specific fault model. But, unfortunately,
slight ambiguities or differences in defi-
nition have worked against any common
understanding of even simple fault
models, and thus more formal methods
were developed to describe them.

A formal approach to defining the
term “fault” is usually based on the
observation that systems change their
state as a result of two quite similar
event classes: normal system operation
and fault occurrences [Cristian 1985].
Thus, a fault can be modeled as an
unwanted (but nevertheless possible)
state transition of a process. By using
additional (virtual) variables to extend
the actual state space of a process, ev-
ery kind of fault from common fault
classes can be simulated [Arora 1992;
Arora and Gouda 1993; Völzer 1998;
Gärtner 1998]. As an example, consider
Figure 2, which shows code from one of
the processes in Figure 1 that may be
subject to crash failures. The occurrence
of a crash can be modeled by adding an
internal boolean “fault variable” up to
the process’s state, which is initially

Figure 1. A simple distributed algorithm.

4 • F. C. Gärtner

ACM Computing Surveys, Vol. 31, No. 1, March 1999

true. An additional action up 3 up
:5 false, which models the crash, can
now be added to the set of guarded
commands. To comply with the expected
behavior of the crash model, all other
actions of the process must be stopped,
which can be achieved by adding up as
an additional conjunct to the guards of
these actions. Where virtual error vari-
ables may inhibit normal program ac-
tions, we call the error variable effec-
tive. (Note that a subsequent repair
action must simply set up to true
again.) The addition of virtual error
variables and fault actions can be
viewed as a transformation of the initial
program into a possibly faulty program
[Gärtner 1998]. Investigating and im-
proving the properties of such programs
is the subject of fault-tolerance method-
ologies.

We call the state containing such ad-
ditional error variables the extended lo-
cal state or the extended configuration
when referring to the entire system. We
therefore define a fault as an action on
the possibly extended state of a process.
A set of faults is called a fault class. The
advantages of this definition are not
only in the clarity of its semantics; but
by defining faults in this way, programs
susceptible to faults can be reasoned
about easily by using the standard tech-
niques aimed at normal fault-free oper-
ation. We avoid the term error and use
the term failure to denote the fact that a
system has not behaved according to its
specification.

2.3 Properties of Distributed Systems:
Safety and Liveness

We adopt the usual definitions of sys-
tem properties proposed by Alpern and
Schneider [1985], whereby an execution
of a distributed program is an infinite
sequence e 5 c0, c1, c2, . . . of global
system configurations. Configuration c0
is the starting configuration and all
subsequent configurations ci (with i .

0) result from ci21 by executing a single
enabled guarded statement. Finite exe-
cutions (e.g., of terminating programs)
are technically turned into infinite se-
quences by infinitely repeating the final
configuration. In places where we ex-
plicitly refer to finite executions, we call
them partial executions.

A property of a distributed program is
a set of system executions. A distributed
program always defines a property in
itself, which is the set of all system
executions that are possible from its
starting configuration. A specific prop-
erty p is said to hold for a distributed
program if the set of sequences defined
by the program is contained in p.

Lamport [1977] reported on two major
classes of system properties necessary
to describe any useful system behavior:
safety and liveness. Informally, a safety
property states that some specific “bad
thing” never happens within a system.
This can be characterized formally by
specifying when an execution e is not
safe for a property p (i.e., not contained
in a safety property p): if e [/ p, there
must be an identifiable discrete event
within e that prohibits all possible con-
tinuations of the execution from being
safe [Alpern and Schneider 1985] (this
is the unwanted and irremediable “bad
thing”). For example, consider a traffic
light that controls the traffic at a road
intersection. A simple safety property of
this system can be stated as follows: At
every point in time no two traffic lights
shall show green. The system would not
be safe if there were an execution of the

Figure 2. A process that may crash.

Fundamentals of Fault-Tolerant Distributed Computing • 5

ACM Computing Surveys, Vol. 31, No. 1, March 1999

system where two distinct traffic lights
show green.

A safety property is usually expressed
by a set of “legal” system configurations,
commonly referred to as invariant. By
proving that a distributed program is
safe, we are assured that the system
will always remain within this set of
safe states. Thus the safety property
unconditionally prohibits the system
from switching into configurations not
in this set. (In general, if the violation
of a property p can be observed in finite
time, then p is a safety property.)

On the other hand, a liveness property
claims that some “good thing” will even-
tually happen during system execution.
Formally, a partial execution of a sys-
tem is live for property p iff it can be
extended to still remain in p. A liveness
property is one for which every partial
execution is live [Alpern and Schneider
1985]. Consider the traffic-light exam-
ple again. The liveness property could
be stated as follows: A car waiting at a
red traffic light must eventually receive
a green signal and be allowed to cross
the intersection. This shows that live-
ness properties are “eventuality” prop-
erties (as opposed to “always” properties
like safety). Every partial execution
must be live, i.e., the system guarantees
that a car driver will eventually cross
the street whereby the expected “good
thing” happens. Note that this good
thing must not be discrete: The liveness
property refers to the crossing of all
cars that arrive at the intersection.
Thus, liveness properties can capture
notions of progress.

The most common example of liveness
in distributed systems is termination.
Examples where the prescribed “good
thing” is not discrete are properties like
guaranteed service (which states that
every request will eventually be satis-
fied). Liveness properties make no fore-
cast as to when the “good thing” will
happen, they only keep it possible. The
actual proof that a system satisfies a
liveness property usually includes a
well-foundedness argument.

A problem specification consists of a
safety property and a liveness property.
A distributed algorithm A is said to be
correct regarding a problem specifica-
tion if both the safety and the liveness
property hold for A.

3. A FORMAL VIEW OF FAULT
TOLERANCE

Informally, fault tolerance is the ability
of a system to behave in a well-defined
manner once faults occur. When design-
ing fault tolerance, a first prerequisite
is to specify the fault class that should
be tolerated [Avižienis 1976; Arora and
Kulkarni 1998b]. As we saw in the pre-
vious section, this was traditionally
done by naming one of the standard
fault models (crash, fail-stop, etc.), but
is done more concisely by specifying a
fault class (a set of fault actions). The
next step is to enrich the system under
consideration with components or con-
cepts that provide protection against
faults from the fault class.

Example 1. Consider the example
program in Figure 3. It shows a simple
process that keeps on changing its only
variable x between the values 1 and 2.
To make it fault tolerant, we first have
to say which faults it should tolerate. To
keep things simple, we consider only a
single type of fault specified by the fault
action true 3 x :5 0. The next step is
to provide a protection mechanism

Figure 3. A simple fault-tolerant program.

6 • F. C. Gärtner

ACM Computing Surveys, Vol. 31, No. 1, March 1999

against this type of fault, namely the
action x 5 0 3 x :5 1.

We have now refined our intuition to
the point that we can formally define
what it means for a system to tolerate a
certain fault class.

Definition 1. A distributed program
A is said to tolerate faults from a fault
class F for an invariant P iff there
exists a predicate T for which the fol-
lowing three requirements hold:

—At any configuration where P holds, T
also holds (i.e., P f T).

—Starting from any state where T
holds, if any actions of A or F are
executed, the resulting state will al-
ways be one in which T holds (i.e., T
is closed in A and T is closed in F).

—Starting from any state where T
holds, every computation that exe-
cutes actions from A alone eventually
reaches a state where P holds.

If a program A tolerates faults from a
fault class F for invariant P, we say
that A is F-tolerant for P.

To understand this definition, recall
the program from Example 1. The in-
variant of the process can be stated as
P [x [$1,2%, and the fault class to be
tolerated as F 5 $true 3 x :5 0%. The
predicate T is called the fault span
[Arora and Kulkarni 1998b], and can be
understood as a limit to perturbations
made possible by the faults from F. In
our example, T is equivalent to x [

$0,1,2%. Definition 1 states that faults
from F are handled by knowing the
fault span T (see Figure 4, where pred-
icates are depicted as state sets). As
long as such faults f [F occur, the
system may leave the set P but will
always remain within T. When fault
actions are not executed for a suffi-

ciently long period of time, but only
normal program actions t [/ F, the sys-
tem will eventually reach P again and
resume “normal” behavior.

Note also that the definition does not
refer directly to the problem specifica-
tion of A. It assumes that the invariant
P and the fault span T characterize the
program’s safety property and that live-
ness is best achieved within the invari-
ant. (Examples of systems that may not
be live starting from states in P are
given in the next section.) We therefore
call states within P legal, states within
T but not within P illegal, and — be-
cause they are not handled — states
outside of T untolerated (see Figure 5).
For instance, the correctness specifica-
tion of the program in Example 1 could
be stated as

(safety) The value of x is always ei-
ther 1 or 2.

(liveness) At any point in the execu-
tion of the program, there is
a future point where x will
be 1 and there is a future
point where x will be 2.

The legal states of the program there-
fore are those where x [$1,2% and the
state x 5 0 is called illegal. Because
the program cannot recover from x 5 3,
this state is called untolerated. In legal
states, the program will satisfy safety,
whereas safety may or may not be met
in illegal states. The reason for not re-

Figure 4. Schematic overview of Definition 1.

Fundamentals of Fault-Tolerant Distributed Computing • 7

ACM Computing Surveys, Vol. 31, No. 1, March 1999

ferring directly to the correctness speci-
fications of A is to be able to define
different forms of fault tolerance, as ex-
plained in the next section.

In general, there can be different
predicates T that cause A to be fault
tolerant. This is an indication that the
same fault-tolerance can be achieved by
different means. In the above example,
if T were specified as x [$0,1,2,3%, an
additional “recovery” action x 5 3 3 x
:5 1 would be necessary to comply

with the definition. As more states are
tolerated, this is a distinct fault-toler-
ance ability.

4. FOUR FORMS OF FAULT TOLERANCE

To behave correctly, a distributed pro-
gram A must satisfy both its safety and
its liveness properties. This may no
longer be the case if faults from a cer-
tain fault class are allowed to occur. So
if faults occur, how are the properties of
A affected? Four different possible com-
binations are shown in Table 1.

If a program A still satisfies both its
safety and its liveness properties in the
presence of faults from a specified fault
class F, then we say that A is masking
fault tolerance for fault class F. This is
the strictest, most costly, and most de-
sirable form of fault tolerance because
the program is able to tolerate the
faults transparently. Formally, this
type is an instantiation of Definition 1,
where the invariant P is equal to the
fault span T. This means that faults

from F and program actions from A
cannot lead to states outside of P, thus
never violating safety and liveness.

If neither safety nor liveness is guar-
anteed in the presence of faults from F,
then the program does not offer any
form of fault tolerance. This is the
weakest, cheapest, most trivial, and
most undesirable form of fault toler-
ance. In fact, one shouldn’t speak of
fault tolerance ability here at all, at
least not when referring to fault class F.

Two intermediate combinations exist:
one guarantees safety, but is not live
(e.g., does not terminate properly), the
other may still meet the liveness speci-
fication but is not safe. The former is
called fail-safe fault tolerance and is
preferable to the latter whenever safety
is much more important than liveness.
An example is the ground control sys-
tem of the Ariane 5 space missile project
[Dega 1996]. The system was masking
fault tolerance for a single component
failure, but was also designed to stop in
a safe state whenever two successive
component failures occurred [Dega
1996]. For the latter type of faults, the
launch of the missile (liveness) was less
important than the protection of its pre-
cious cargo and launch site (safety). It
must be formally possible to divide the
fault span into two disjoint sets, L and
R. Both state sets are safe, but the
system is live only in L. This is guaran-
teed if faults from a certain fault class
F1 are considered. However, if faults
from another, and more severe, fault
class F2 occur, the system may reach
states in R that are safe but not live
anymore.1

1This captures the idea of a system being live as
long as possible. Of course, liveness is a static

Figure 5. Overview of state sets (with corre-
sponding predicates) and colloquial characteriza-
tions.

Table I. Four Forms of Fault Tolerance

live not live

safe masking fail safe
not safe nonmasking none

8 • F. C. Gärtner

ACM Computing Surveys, Vol. 31, No. 1, March 1999

In contrast to masking fault toler-
ance, we call the latter combination
from Table I (which ensures liveness
but not safety) nonmasking, as the ef-
fect of faults are revealed by an invali-
dation of the safety property. In effect,
the user may experience a certain
amount of incorrect system behavior
(i.e., failures). For example, a calcula-
tion result will be wrong or a replication
variable may not be up to date [Gärtner
and Pagnia 1998]. But at least liveness
is guaranteed, e.g., the program will
terminate or a request will be granted.2

With respect to Definition 1, the fault
span T contains states where the safety
property does not hold.

Research has traditionally focused on
forms of fault tolerance that continu-
ously ensure safety. In particular,
masking fault tolerance has been a ma-
jor area of research [Avižienis 1976;
Jalote 1994; Nelson 1990]. This can be
attributed to the fact that in most fault-
tolerance applications, safety is much
more important than liveness.3In many
cases an invalidation of liveness is also
more readily tolerated and observed by
the user because no liveness means no
progress. In such cases, the user or an
operator usually reluctantly (but at
least safely) restarts the application.

For a long time nonmasking fault tol-
erance has been the “ugly duckling” in
the field, as application scenarios for
this type of fault tolerance are not
readily visible (some are given by Arora
et al. [1996] and by Singhai et al.

[1998]). However, the potential of non-
masking fault tolerance lies in the fact
that it is strictly weaker than masking
fault tolerance, and can therefore be
used in cases where masking fault toler-
ance is too costly to implement or even
provably impossible.

There has recently been much work
on a specialization of nonmasking fault
tolerance, called self-stabilization
[Schneider 1993b; Dijkstra 1974] due to
its intriguing power: Formally, a pro-
gram is said to be self-stabilizing iff the
fault span from Definition 1 is the pred-
icate true. This means that the pro-
gram can recover from arbitrary pertur-
bations of its internal state, so that
self-stabilizing programs can tolerate
any kind of transient faults. However,
examples show that such programs are
quite difficult to construct and verify
[Theel and Gärtner 1998]. Also, their
nonmasking nature has inhibited them
from yet becoming practically relevant.4

It should be noted that the liveness
properties that are guaranteed in mask-
ing and nonmasking fault tolerance are
guaranteed only eventually, i.e., the
system may be inhibited from making
progress as long as faults occur. This
can be viewed as a temporal stagnation
outside of the invariant but within the
fault span. Thus, the system may slow
down, but will at least eventually make
progress. This can model aspects of a
phenomenon known as graceful degra-
dation [Herlihy and Wing 1991].

5. REDUNDANCY AS THE KEY TO FAULT
TOLERANCE

5.1 Defining Redundancy

When dealing with fault-tolerance prop-
erties of distributed systems, a first ob-
servation is immediately at hand: No
matter how well designed or how fault
tolerant a system is, there is always the
possibility of a failure if faults are too

property of a piece of code, and so formally A is
not live if fault class F1 ø F2 is considered.
2Nonmasking fault tolerance usually requires the
safety property to hold eventually [Arora and
Kulkarni 1998b]. It is an open question whether
programs that continuously violate safety are of
any practical use.
3Interestingly, we are more liable to call the fact
that a system has not met its safety property a
failure than when it invalidates liveness. Note
that in the strict sense of a failure, both fail-safe
and nonmasking fault tolerances can lead to fail-
ures. But since at least one of the two necessary
correctness conditions holds, we should speak of a
partial failure only.

4To our knowledge, Singhai et al. [1998] are the
first and only ones to describe a self-stabilizing
algorithm implemented in a commercial system.

Fundamentals of Fault-Tolerant Distributed Computing • 9

ACM Computing Surveys, Vol. 31, No. 1, March 1999

frequent or too severe. At first glance
this frustrating evidence is an immedi-
ate consequence of the topic discussed
in this section, i.e., fault-tolerance is
always limited in space or time.

The second central observation, which
we try to substantiate here, is that to be
able to tolerate faults, one must employ
a form of redundancy. The usual mean-
ing of redundancy implies that some-
thing is there but is not needed because
something else does the same thing. For
example, in information theory, the bits
in a code that do not carry information
are redundant. We now define what it
means for a distributed program to be
redundant and distinguish two forms of
redundancy, namely in space and in
time.

Definition 2. A distributed program
A is said to be redundant in space iff for
all executions e of A in which no faults
occur, the set of all configurations of A
contains configurations that are not
reached in e.

Dually, A is said to be redundant in
time iff for all executions e of A in which
no faults occur, the set of actions of A
contains actions that are never executed
in e.

A program is said to employ redun-
dancy iff it either is redundant in space
or in time.

To better understand the intuition be-

hind Definition 2, consider the code in
Figure 6. The process in Figure 6 is
redundant in space because in normal
operation the state x 5 0 is never
reached. Redundancy in space refers to
the superfluous part of the state of a
system, i.e., states never reached when
faults do not occur. (A program that is
not redundant in space must eventually
visit every state in every possible execu-
tion.)

On the other hand, redundancy in
time refers to superfluous state transi-
tions of a system, i.e., the superfluous
work it performs. For example, in Fig-
ure 6 action 3 is never executed during
normal operation because the state with
x 5 0 is never reached. Thus, according
to Definition 2, the program is redun-
dant in time. (A program that is not
redundant in time must eventually exe-
cute every action in every possible exe-
cution.)

The definition of redundancy in space
is quite strong. Most programs we write
contain states that are never reached
simply because (for example) the ranges
of variables are not properly subtyped.
In fact, every program that does any-
thing useful is redundant in space. This
is obvious from a simple example: Imag-
ine a program that first calculates the
sum s of two variables x and y (which
contain nondeterministic integer values
from a range 0. . . m) and then stops.
(Nondeterministic values could depend,
for example, on the relative ordering of
messages received.) The result in s is in
the range of 0. . . 2m, and when the
sum has been calculated, there are
many local states that are never
reached during the computation, and
thus are redundant. By this argument,
one can show that all programs that do
some simple form of arithmetics contain
unsafe states that may be reached if
faults occur. If some of these states are
outside the fault span, then the pro-
gram cannot tolerate these kinds of
faults. This is an indication that redun-
dancy alone does not guarantee fault

Figure 6. A program with redundancy in space
and in time.

10 • F. C. Gärtner

ACM Computing Surveys, Vol. 31, No. 1, March 1999

tolerance. However, in the next section
we see that redundancy is necessary to
prevent failures.

5.2 No Fault Tolerance Without
Redundancy

The code in Figure 6 from the previous
subsection employs redundancy. The ob-
jective now is to look at programs lack-
ing any form of redundancy and study
their fault-tolerance properties. Figure
7 contains an example of such a pro-
gram. It shows a process that periodi-
cally runs through the states x 5
0,1,2,3,0,1,2,3, . . . forever. What can
we say about the fault-tolerance proper-
ties of this code?

As a first observation, the reader will
notice that the usual invariant of the
program, namely P [x [$0,1,2,3%,
cannot be violated, because in effect it
reduces to the predicate true. This is
because no redundancy in space implies
that all states are reached during nor-
mal operation of the program. So such a
program cannot violate safety proper-
ties defined as state sets. However, we
see now that even these kinds of pro-
grams can still deviate from their speci-
fication in the presence of faults. The
argument is valid for all kinds of non-
trivial computations (we give a short
definition of the term “nontrivial com-
putation”; (informally) it rules out triv-
ial programs that do nothing and thus
can tolerate any kinds of faults).

We use a very weak notion of a “non-
trivial” program here, so that the result

is as strong as possible, and use the
code in Figure 7 as an example. In a
nontrivial program, every event on each
individual process is assumed to be
meaningful to the progress of the com-
putation. So, in order to be correct, the
program must satisfy the following
specification: starting from an initial
configuration, all specified events must
occur in a certain prescribed order.5 For
the code from Figure 7, this means that
every execution must be of the form 00,
10, 20, 30, 01, 11, 21, 31, 02, 12, 22,
32, 03, . . . (where ni denotes the event
of the i-th occurrence of the state x 5
n). Thus, the program must satisfy the

following two properties:

(liveness) For all i in N and for all n in
$0,1,2,3%, ni must eventu-
ally occur.

(safety) If ni and mj are two succes-
sive events within the com-
putation, either i 5 j and n
1 1 5 m or i 1 1 5 j and
n 5 3 and m 5 0.

The central point of this section is
formulated in the following claim.

Claim 1. If A is a nontrivial distrib-
uted program that does not employ re-
dundancy, then A may become incorrect
regarding its correctness specification
in the presence of nontrivial faults.

In the context of this claim, a non-
trivial fault is a fault action that actu-
ally changes program variables or effec-
tive error variables (recall that error
variables are called effective if they gov-
ern the applicability of program ac-
tions). We now argue for this claim us-
ing the example code in Figure 7 and its
correctness specification above.

We have already seen that the code in

5The order can be thought of as a form of intran-
sitive causality relation [Lamport 1978; Schwarz
and Mattern 1994]. This notion includes normal
sequential programs as well as distributed compu-
tations.

Figure 7. A program that does not employ redun-
dancy.

Fundamentals of Fault-Tolerant Distributed Computing • 11

ACM Computing Surveys, Vol. 31, No. 1, March 1999

Figure 7 does not employ redundancy,
and so its set of configurations contains
no redundant (and thus possibly illegal)
states. So safety properties that are ex-
pressible as sets of legal states cannot
be violated. Also, all program actions
are used during normal executions, so
there are no program actions that are
merely inhibited from occurring due to
error variables within their guard. Our
goal is now to show that this program
(and analogously the program A from
Claim 1) does not satisfy its specifica-
tion.

The argument is straightforward: As-
sume that at some point during an exe-
cution a nontrivial fault occurs; this is
shown for our example program in Fig-
ure 8. The configuration in which the
fault occurs is one where x 5 1. Since
the fault is nontrivial, it results in a
change of the extended system configu-
ration. Here, two cases can occur: (1)
the fault changes the normal program
variables, or (2) the fault changes any
(virtual) error variables. (A third case,
in which both program and error vari-
ables are changed, can be ignored, since
it can be reduced to one of the first two
cases.) Let’s look at these two cases in
turn.

Case 1 (program variables have
changed). For the example code, this
means that the value of x must have
changed, and thus the program finds
itself in a new configuration with a dif-
ferent value of x. Let’s assume that x
was decremented and changed to 0.
Now a state where x 5 0 follows a state
where x 5 1, and thus the safety condi-
tion is violated. In general, such

changes can cause a program to be
“time-warped” into the past and execute
events that causally precede events that
have long since taken place, thus violat-
ing causality.6

Something similar occurs if the
change to x is an incrementation. If x is
set to 2, nobody could distinguish the
transition from a normal program ac-
tion, but we cannot assume that faults
are always so benign. So let’s assume x
was changed to 3. Now the program
misses an occurrence of x 5 2, and thus
safety is violated again. In general, this
corresponds to a “time warp” into the
future that jumps over important events
that are necessary for the program to
function correctly.7

Case 2 (effective error variables have
changed). The code in Figure 7 con-
tains neither fault actions nor (virtual)
error variables. This makes reasoning
about the properties of the program a
little complicated, since, in this case, we
do not know the concrete effects of
changes to error variables. However, we
assume that at least one effective error
variable e has changed. Without loss of
generality, let e be a boolean variable
that changed from true to false. Be-
cause e is effective, it now inhibits reg-
ular program actions from occurring
(i.e., those actions that have e as a
conjunct in the guard). For example, e
might inhibit action 1, action 2, or an
arbitrary set of the four actions from
Figure 7. It is clear that inhibiting a
single action will inhibit progress of the
complete process and that this fact is
due to the nonredundant nature of the

6Imagine the state x 5 1 as the receipt of a mes-
sage that the program is about to send when x 5
0.
7Imagine the missed event as the “commit” opera-
tion of a transaction that is the prerequisite of the
state where x 5 3.

Figure 8. Results of fault actions to a nonredun-
dant program.

12 • F. C. Gärtner

ACM Computing Surveys, Vol. 31, No. 1, March 1999

code. Hence, the liveness condition is
violated.

In general, fault actions can result in
a degraded functionality of a system
(components fail partially or complete
processors may crash totally). If the sys-
tem is nonredundant, the missing func-
tionality may have been vital. Obvi-
ously, this may result in system failures
if faults happen at the wrong time.

This argument should be sufficient to
support Claim 1 (it could have been
formally stated as a theorem, but this
seemed unnecessary in a tutorial sur-
vey). The essential observation from
these findings is that redundancy is a
necessary prerequisite for fault toler-
ance.

5.3 Conclusions from the Necessity of
Redundancy

The results of investigating nonredun-
dant programs in the previous section
are fundamental: While redundancy is
not sufficient for fault tolerance, it is a
necessary condition and thus must be
applied intelligently. However, the ar-
gument also reveals another essential
problem within fault-tolerant comput-
ing: It must be possible for the system
to detect that a fault has occured and to
“know” about this fact (in the precise
sense of knowledge, as defined by e.g.,
Halpern and Moses [1990]). Detection
mechanisms need either state space
and/or program actions. As such mecha-
nisms are not really used in fault-free
executions, they form part of the sys-
tem’s redundancy.

As we see later in this text, detection
mechanisms alone may suffice to ensure
safety. But it should already have be-
come clear that on detection of a fault,
some action must be taken to correct it
if liveness is to be guaranteed. Correc-
tion hereby implies detection, and thus
is a hint that detection (and thus safety)
is easier to achieve than correction
(which in effect means liveness). This is
promising, since in Section 4 we noted
that in practical settings safety is more

important than liveness. However, add-
ing detection and correction mecha-
nisms is a complicated matter, because
these mechanisms must themselves
withstand the faults against which they
should protect (the problem of faults
occuring in a fault-exception mode). To
state it more clearly: detection and cor-
rection mechanisms must themselves be
fault tolerant.8

In practical fault-tolerant systems, re-
dundancy in space is very widespread.
It is normally achieved by supplying a
component more than once. Practical
examples are pervasive in the literature
and comprise systems that multiply the
software space (e.g. a parity bit in data
transmission) or increase the hardware
space (e.g. the concept of process pairs
residing on different processor boards in
the Tandem non-stop kernel [Bartlett
1978]). Of course, the border between
hardware and software redundancy is
not very sharp [Avižienis 1976]. In fact,
hardware redundancy nearly always
employs software redundancy because
identical components usually run iden-
tical programs with identical states (see
for example the process group concept of
Isis [Birman 1993]). However, hardware
redundancy is applied nearly always in
fixed multiples of a certain base unit
(processor, disk, etc.), whereas software
redundancy can also employ fractions
(as in error detection codes or the popu-
lar RAID systems [Patterson et al.
1988]).

On the other hand, redundancy in
time can be thought of as repeating the

8A technical note: The safety property of the exam-
ple program of Claim 1 is not expressible as an
invariant (i.e., predicate over the system state).
However, by adding a variable i that keeps track
of the execution, a safety violation can be detected
[Lynch 1996]. But now the program may be ex-
posed to faults manipulating i and, by the same
argument, there are (new) safety properties (in-
volving i) that are again not expressible as state
sets. So if a safety property p is expressible as a
set of configurations, “always safe” programs ex-
ist. If p is of other forms, we must rely on the fault
tolerance of the detection mechanism to ensure
safety.

Fundamentals of Fault-Tolerant Distributed Computing • 13

ACM Computing Surveys, Vol. 31, No. 1, March 1999

same computation again and again
within the same system. Practical ex-
amples of this behavior are exhibited by
systems that roll back to a consistent
state once a fault becomes visible (roll-
back recovery) or that calculate a result
a given number of times to detect tran-
sient hardware faults.

Another point of importance in the
next section is the distinction between
changes in the program’s state and
changes in the error variables. If a fault
changes normal program variables, re-
dundancy makes it possible to detect
this change and often also to correct the
change. In such cases, redundancy can
be seen as a form of “immediate repair.”
On the other hand, if only error vari-
ables change, the fault is somewhat
more difficult to detect, since knowledge
must be derived from something that is
in the worst case not present (inhibited
actions). This is a serious restriction in
some of the widely used system models
of distributed computation and is inves-
tigated in the next section.

6. MODELS OF COMPUTATION AND
THEIR RELEVANCE

To be able to reason formally about
properties of distributed systems and to
refine our intuition about them, we
must abstract those aspects that are
unnecessary for investigating a specific
phenomenon. We then normally design
a set of attributes and associated rules
that define how the object in question is
supposed to behave. By doing this, we
build a model of the object, and the
difficulty in doing so is to define a model
which is both accurate and tractable
[Schneider 1993a].

Because building a model divides im-
portant from unimportant issues, there
is clearly no single correct model for
distributed systems. Even the basic def-
initions in Section 2 are only one way to
model the subject (albeit a widely ac-
cepted one). Lamport and Lynch [1990]
compare different models with different
personal views. But despite this fact,
certain aspects of models appear repeat-

edly in the literature. For example, pro-
cesses are usually modeled as state ma-
chines (or transition systems) that in
turn are used to model the execution of
larger distributed systems. Other as-
pects comprise assumptions about the
network topology, the atomicity of ac-
tions, or the communication primitives
available (some key words in this con-
text are shared variables, point-to-point
vs. broadcast/multicast transmission,
and synchronous vs. aysnchronous com-
munication [Charron-Bost et al. 1996]).

Existing models of distributed sys-
tems differ in one particularly impor-
tant aspect, their inherent notion of real
time. This is usually expressed in cer-
tain assumptions about process execu-
tion speeds and message delivery de-
lays. In synchronous systems, there are
real-time bounds on message transmis-
sion and process response times. If no
such assumptions are made, the system
is called asynchronous [Schneider
1993a; Lamport and Lynch 1990]. Inter-
mediate models that have such bounds
to a varying degree are often found
[Lynch 1996; Dolev et al. 1987; Dwork
et al. 1988]; these are often called par-
tially synchronous.

It is well known that the asynchro-
nous model is the weakest one, meaning
that every system is asynchronous (thus
Schneider [1993a] calls asynchrony a
“non-assumption”). Another result of
this observation is that every algorithm
that works in the asynchronous model
also works in all other models. On the
other hand, algorithms for synchronous
systems are prone to incorrect behavior
if the implementation violates even a
single timing constraint. This is why
the asynchronous model is so attractive
and has attained so much interest in
distributed systems theory.

Apart from its theoretical attractions,
it has been argued [Chandra and Toueg
1996; Babaoğlu et al. 1994; Le Lann
1995; Guerraoui and Schiper 1997] that
the asynchronous model is also very re-
alistic in many practical applications. In
today’s large-scale systems, network
congestion and bandwidth shortage, in

14 • F. C. Gärtner

ACM Computing Surveys, Vol. 31, No. 1, March 1999

addition to unreliable components, have
contributed to a significant failure rate
in reliable message delivery [Golding
1991; Long et al. 1991]. Highly variable
workloads on network nodes also make
reasoning based on time and timeouts a
delicate and error-prone undertaking.
All these facts are sources of asyn-
chrony and contribute to the practical
appeal of having few or, better, no syn-
chrony assumptions.

However, as mentioned earlier, this
model has severe drawbacks, especially
for fault-tolerance applications: For ex-
ample, it can be shown [Chandy and
Misra 1986] that in such models it is
impossible to detect whether a process
has crashed or not. Intuitively, this is a
result of allowing processes to be arbi-
trarily slow [Chandra and Toueg 1996].
This fact is important because we saw
in the previous section that detection is
the first step towards achieving fault
tolerance. As a consequence, solutions
to many problems that require all pro-
cesses to participate in a nontrivial way
are impossible [Fischer et al. 1985;
Chandra et al. 1996; Fischer et al. 1986;
Sabel and Marzullo 1995]. But in a pos-
itive light, it is commonly said that such
impossibility is a blessing to the formal
sciences because a lot of work can be
done at the fringes [Dolev et al. 1987] of
the problem, pushing the edge of the
possible further towards the impossible.
There are achievable cases [Attiya et al.
1987] in such environments too. We out-
line the two basic approaches now and
consider them in detail in the following
two sections.

The two approaches can be character-
ized as either restricting the system or
extending the model. The former way
considers only systems and problems in
which the existence of solutions is
proven [Attiya et al. 1987; Hadzilacos
and Toueg 1994; Dolev et al. 1986]. This
includes standard methods for tradi-
tional (nondistributed) uniprocessor
fault tolerance because, as explained
earlier, faults that manifest themselves
as perturbations of local state variables
are usually easily detectable, especially

if they occur regularly, and thus can be
anticipated.

The second approach deals with ex-
tending the model. This means that
some synchrony assumptions are added
to the model, e.g., a maximum message-
delivery delay.9 This is a sensible ap-
proach when the system in question ac-
tually guarantees certain timing
constraints. This is the case, for exam-
ple, in real-time operating systems con-
cerned with process response times. An-
other example is networks of processors
that share a common bus for which a
maximum message latency can be guar-
anteed. However, in this approach it is
obviously desirable to add as few syn-
chrony requirements as possible and
also to add them only to those parts of
the system whose correctness depends
on them. We meet such modular ap-
proaches in the following two sections,
which discuss the two essential proper-
ties that must be achieved in order to
guarantee fault tolerance.

7. ACHIEVING SAFETY

In Section 4 we saw the four distinct
forms of fault tolerance based on the
presence or absence of the system’s
safety and liveness properties when
faults are allowed to occur. It was also
noted that a program’s safety property
was usually related to the invariant P
and the fault span T of Definition 1
(recall Figure 5). In particular, T can
contain unsafe configurations, i.e., glo-
bal states that violate safety. A result of
the considerations in Section 5, and es-
pecially the argument accompanying
Claim 1, is that the first step towards

9The original work on partial synchrony [Dwork et
al. 1988] assumes that upper bounds to message-
delivery delay or relative processor speeds exist,
but they are either unknown or only hold eventu-
ally. Other prominent models are the timed asyn-
chronous model by Cristian and Fetzer [1998] and
the quasi-synchronous model of Almeida et al.
[1998] and Almeida and Veríssimo [1998]. The
former mainly assumes a bounded drift rate of
local hardware clocks while the latter postulates
that only part of the network is truly synchronous.

Fundamentals of Fault-Tolerant Distributed Computing • 15

ACM Computing Surveys, Vol. 31, No. 1, March 1999

fault tolerance is to acquire knowledge
about the fact that a fault has occurred.
In this section, we consider basic meth-
ods for fault detection and see that in
most cases they suffice to ensure safety.
Detection mechanisms can therefore be
used to implement fail-safe fault toler-
ance or as a first step towards masking
fault tolerance.

7.1 Detection as the Basis for Safety

Confronted with the need to build safe
applications, system designers who
have read Section 5 may opt for a (at
first glance) trivial method to ensure
the usual safety properties: The pro-
gram should not employ redundancy in
space. If T [P [true, there are no
illegal configurations the program can
be in, and safety (and thus fail-safe
fault tolerance) is trivially always satis-
fied, no matter what kind of faults oc-
cur. This is, however, not so trivial in a
distributed setting.

Recall that a system configuration is
defined as the collection of all the local
states of the processes plus the state of
the communication subsystem. Thus,
even for small systems, the number of
different states that a system can be in
is enormous. In fact, if there is no bound
on the number of messages that the
communication subsystem can buffer,
there are infinitely many configura-
tions. This finding, together with the
observation from Section 5 that all pro-
grams that do some form of arithmetic
are redundant in space, contributes to
the fact that systems almost always
contain configurations that lie outside
of P or T, and thus may not satisfy
safety. However, T characterizes the set
of states reachable by faults from the
fault class we want to tolerate, and so
we can restrict our attention to states
within T.

To continuously ensure safety, we
should employ detection and subse-
quently inhibit “dangerous actions”
[Arora and Kulkarni 1998c]. For exam-
ple, single-bit errors over a transmis-

sion line can be detected by a parity bit
that is sent along with the message. If
we want to tolerate single-bit errors
safely, parity is computed and checked
against the parity bit. If the fault is
detected, the system must be inhibited
from doing anything important with the
transferred data, e.g., updating a local
database or printing the message to the
screen. Inhibiting such a dangerous ac-
tion can be modeled by adding the re-
sult of the detection to its guard. An
instructive application of this method is
known as fail-stop processors [Schlich-
ting and Schneider 1983] in which
nodes that detect internal faults simply
stop working in a way detectable from
the outside. Arora and Kulkarni [1998c]
view this as eliminating unsafe states
from the fault span 1, thus moving T
closer to P.

Detection mechanisms such as parity
are common in practical systems: prom-
inent generalizations of parity checking
are the well-known error detection
codes or cryptographic checksums and
fingerprints used to guard data integ-
rity. Modules that compare the results
of repeated executions of a computation
(comparators, voters) are also good ex-
amples. Other, broader, notions are ex-
ception conditions and acceptance or
plausibility tests of computed values.

Taken formally, detection always in-
cludes checking whether a certain pred-
icate Q holds over the extended system
state. If the type and effect of faults
from F are known, it is in general easy
to specify Q. Detection is also easy as
long as the fault classes are not too
severe (because the detection mecha-
nism itself must be fault tolerant) and
as long as nondistributed settings are
considered. In distributed settings, the
detectability of Q depends on different
factors and is constrained by system
properties, especially if the asynchro-
nous model is chosen (see Section 6).

16 • F. C. Gärtner

ACM Computing Surveys, Vol. 31, No. 1, March 1999

7.2 Detection in Distributed Settings

In distributed systems without a com-
mon time frame, deciding whether a
predicate over the global state does or
does not hold is in general not easy. One
would usually assume a central ob-
server that would watch the execution
of a distributed algorithm and instanta-
neously take action if a given predicate
were to hold. But because there is no
central lookout point from which to ob-
serve the entire system at once, observ-
ing distributed computations in a con-
sistent and truthful way is a key issue
[Babaoğlu and Marzullo 1993]. In fact,
settings can easily be constructed in
which two nodes observe the same com-
putation but arrive at different deci-
sions on whether a global predicate held
or not [Schwarz and Mattern 1994;
Babaoğlu and Marzullo 1993]. This
means that in general it makes no sense
to ask about the validity of a global
predicate without referring to a specific
observer or (more generally) to a spe-
cific set of observations.

To simplify this matter, Cooper and
Marzullo [1991] introduced two predi-
cate transformers called possibly and
definitely.10

Definition 3. Let Q be an arbitrary
predicate over the system state. The
predicate possibly(Q) is true iff there
exists a continuous observation of the
computation for which Q holds at some
point. The predicate definitely(Q) is true
iff for all possible continuous observa-
tions of the computation Q holds at
some point.

Recall that in a nondistributed set-
ting, one can eliminate an unsafe point
from the fault span by adding a detec-
tion term to a possibly dangerous ac-

tion. To ensure safety in a distributed
setting, the analogy is that all processes
watch out for an unwanted situation
specified by Q that may lead to an un-
safe state. In terms of the predicate
transformers of Definition 3, the system
must take action if possibly(Q) is de-
tected [Garg 1997].

Algorithms that detect possibly(Q)
usually take the following approach: Ev-
ery time a node within the network
undergoes a state transition that might
affect the validity of Q, it sends a mes-
sage to a central observer process. The
observer process assembles the incom-
ing information in such a way that it
has an overview over all possible obser-
vations. Because it is not known which
of these observations is true, this
scheme still doesn’t suffice to check if a
predicate Q actually holds. However,
there is now enough information to con-
clude whether the predicate possibly
holds or not. Note that this scheme
must be implemented in a fault-tolerant
manner if it is to be of any use in fault
detection. In addition, it must be possi-
ble to inhibit some process from doing
something bad if possibly(Q) is detected.
This usually requires all processes to
wait for an acknowledgment from the
observer process.

There are some algorithms that can
be used to detect possibly(Q) for general
predicates [Stoller 1997; Stoller and
Schneider 1995; Cooper and Marzullo
1991; Marzullo and Neiger 1991] or re-
stricted ones [Garg and Waldecker
1994; Garg and Waldecker 1996] that
consist of a conjunction of so-called local
predicates. (A predicate q is called local
to process p iff the truth value of q
depends only on the local state of p
[Charron-Bost et al. 1995]. See the pa-
pers by Schwarz and Mattern [1994]
and Chase and Garg [1998] for introduc-
tory surveys.) Garg and Mitchell [1998]
were the first to consider fault-tolerance
issues along with possibility detection.
Interestingly, there is a large body of
literature on algorithms that have a

10The definitions used here are rather informal,
but should be sufficient for clarity. Interested
readers are referred to background work by
Babaoğlu and Marzullo [1993] and Schwarz and
Mattern [1994], as well as the initial papers by
Cooper and Marzullo [1991] and Marzullo and
Neiger [1991].

Fundamentals of Fault-Tolerant Distributed Computing • 17

ACM Computing Surveys, Vol. 31, No. 1, March 1999

close resemblance to possibility detec-
tion, whose fault-tolerance properties
have been studied in great detail. These
algorithms usually appear under the
heading of “consensus” [Turek and
Shasha 1992].

7.3 Adapting Consensus Algorithms for
Fault-Tolerant Possibility Detection

The problem of consensus can be viewed
as a general form of agreement
[Guerraoui and Schiper 1997]. Here, a
set of processes (each posesses an initial
value) must all decide on a common
value. Again, this is trivial in fault-free
scenarios, but becomes interesting if
processes are faulty and if the asynchro-
nous system model is used.

The similarity between detection of
predicates and consensus is visible
when a very weak form of consensus is
considered in which only one process
must eventually decide [Fischer et al.
1985]. Algorithms for this task must
diffuse the initial values within the sys-
tem and collect the information at a
single node. Now assume that the ini-
tial value of every process is a specific
step it wants to take next. Then the
central node that collects these values
acquires knowledge about the state of
all processes and what they want to do
next. In effect, the central process acts
as an observer that (as in possibility
detection schemes) can construct all
possible observations. If the other pro-
cesses are willing to wait for an ac-
knowledgment from the observer before
taking their anticipated action, the pro-
cess can subsequently influence the sys-
tem.

Of course, this scheme is not very
fault tolerant. For example, if the cen-
tral observer crashes before sending ac-
knowledgments, the system can be
blocked forever. Or even worse: if the
observer goes haywire by sending arbi-
trary messages to the other nodes, any-
thing can happen to the system.

The idea of making consensus algo-
rithms fault tolerant is to diffuse infor-
mation to all nodes. If a certain subset

of processes is also allowed to behave
malevolently, then even more compli-
cated mechanisms are used [Lamport et
al. 1982]. However, it should be clear
that consensus algorithms need a diffu-
sion phase to be able to work correctly:
Information must be received from all
correct nodes by all correct nodes in
order to arrive at a common decision
[Bracha and Toueg 1985; Barborak et
al. 1993; Chandra and Toueg 1996].
Thus, in algorithms for stronger ver-
sions of the problem, where all correct
nodes must eventually decide, every
process acts as an observer indepen-
dently. If the scheme is repeated every
time a process step may influence the
validity of a predicate Q, a consensus
algorithm can be used to detect possi-
bly(Q).

An important result states that con-
sensus is impossible in asynchronous
systems where at least one process may
crash [Fischer et al. 1985]. However,
the problem becomes solvable if some
weak forms of synchrony are introduced
[Dolev et al. 1987; Fischer et al. 1986;
Dwork et al. 1988; Chandra and Toueg
1996]. As we remarked previously,
there even exist solutions to the consen-
sus problem if a limited number of
nodes behave maliciously and follow the
very unfavorable Byzantine fault model
[Lamport et al. 1982]. Using such algo-
rithms, detection can be achieved in a
very fault-tolerant manner.

7.4 Detecting Process Crashes

Up to now we have implicitly considered
predicates that are formed over the sys-
tem state without virtual error vari-
ables. How can predicates that include
the latter items be detected in asynchro-
nous systems? We have already noted
that in the fully asynchronous model it
is impossible to detect a process crash
[Chandy and Misra 1986] and have at-
tributed this to the absence of time in
this model. Chandra and Toueg [1996]
proposed a modular way of extending
the asynchronous model to detect pro-
cess crashes.

18 • F. C. Gärtner

ACM Computing Surveys, Vol. 31, No. 1, March 1999

In their theory of unreliable failure
detectors, they propose a program mod-
ule that acts as an unreliable oracle on
the functional states of neighboring pro-
cesses. The main property of failure de-
tectors is their accuracy: In its weakest
form, a failure detector will never sus-
pect at least one correct process of hav-
ing crashed. This property is called
weak accuracy. Because weak accuracy
is often difficult to achieve, it is often
required only that the property eventu-
ally holds. Thus, an eventually weak
failure detector may suspect every pro-
cess at one time or another, but there is
a time after which some correct process
is no longer suspected. In effect, an
eventually weak failure detector may
make infinitely many mistakes in pre-
dicting the functional states of pro-
cesses, but it is guaranteed to stop mak-
ing mistakes when referring to at least
one process.

Requiring weak accuracy alone, how-
ever, doesn’t ensure that a crashed node
is suspected at all — it merely prohibits
the detection mechanism from wrongly
suspecting a correct node. So a second
property of failure detectors is neces-
sary. Chandra and Toueg call it com-
pleteness. Informally, completeness re-
quires that every process that crashes is
eventually suspected by some correct
process.

It can be shown that different forms
of unreliable failure detectors (some-
times simply called failure suspectors
[Schiper and Riccardi 1993]) are suffi-
cient to solve important problems in
asynchronous systems [Chandra and
Toueg 1996; Schiper 1997; Schiper and
Riccardi 1993]. While there are still un-
resolved implementation issues [Agu-
ilera et al. 1997a; Chandra and Toueg
1996; Guerraoui and Schiper 1997],
these failure detectors simplify the task
of designing algorithms for asynchro-
nous systems at large, because they en-
capsulate the notion of time neatly
within a program module.11 So failure

detectors can be used to detect inhibited
actions, and thus the change of virtual
error variables.

7.5 Summary

We have seen that detection is the key
to safety: faults must be detected and
actions must be inhibited to remain
safe. Detection is easy locally, but in
distributed settings it is generally diffi-
cult and requires intrinisic fault-toler-
ant mechanisms (like consensus algo-
rithms and failure detectors) to be
achieved.

8. ACHIEVING LIVENESS

As explained in Section 4, safety is more
important than liveness in many practi-
cal situations. But to be truly (i.e.,
masking) fault tolerant, liveness must
be achieved also, and it was noted that
though liveness is less important, it is
often more difficult to achieve. Detec-
tion is sufficient for safety. However, to
be live, a fault must not only be de-
tected but also corrected.

8.1 Correction as the Basis for Achieving
Liveness

Liveness is tied to the notion of correc-
tion as safety is bound to detection. The
term correction refers to turning a bad
state into a good one, and thus implies a
notion of recovery. The hope is that
while liveness may be inhibited by
faults, subsequent recovery will eventu-
ally establish a good state from which
liveness will eventually be resumed.

Again, correction is easy in local situ-
ations: for example, once a single-bit
error over a communication line is de-
tected via parity check, the situation
can be corrected by requesting a re-
transmission of the data. Retransmis-
sion is the correction that will lead to a
state where the data is received cor-
rectly. Broader notions of parity (analo-
gous to error-detection codes) are the

11Obviously, models using unreliable failure de-
tectors are no longer truly asynchronous; they

merely produce the illusion of an asynchronous
system by encapsulating all references to time.

Fundamentals of Fault-Tolerant Distributed Computing • 19

ACM Computing Surveys, Vol. 31, No. 1, March 1999

well-known error-correction codes. No-
tions of a local reset also exist and are
often called rollback recovery. Dually,
there also exist methods called rollfor-
ward recovery by which the system state
is forcefully advanced to some future
good state. All these methods are exam-
ples of actions of correction.

While these methods are easy to de-
sign and add in centralized settings, the
distributed case is again a little more
complicated. In general, on detecting a
bad state via a detection predicate Q,
the system must try to impose a new
target predicate R onto the system. This
can be seen as a general form of con-
straint satisfaction [Arora et al. 1996] or
distributed reset [Arora and Gouda
1994].

The choice of the target predicate R
depends on the current situation within
the system. In general, it is not easy to
decide which predicate to choose, since
the view of individual processes is re-
stricted and a good choice for one pro-
cess could be a bad choice for others.
The most frequently used method in
distributed settings arises from democ-
racy: processes take a majority vote and
impose the result of the vote onto them-
selves. Common examples of voting sys-
tems can be found in algorithms that
manage multiple copies of a single data
item in a distributed system. General
methods to keep the copies consistent
and to guarantee progress are known as
data replication schemes [Bernstein et
al. 1987]. In systems that enforce strong
consistency constraints on data items
(replicas), a process must often obtain a
majority vote from the other processes
to be able to update the data item mu-
tually exclusively. Note that the neces-
sity for obtaining a majority ensures
safety (here, consistency) and the fact
that a process will eventually win a
majority guarantees liveness (here, up-
dating progress).

8.2 Correction via Consensus

The notion of correction also corre-
sponds to the decision phase of consen-

sus algorithms (see Section 7). When
initial values are received from all func-
tional processes, a node must irrevoca-
bly make a decision. This is sometimes
done on the first nontrivial value re-
ceived (for example, if processes can
merely crash), or on a majority vote of
all processes (if, for example, it is as-
sumed that a certain fraction of pro-
cesses may run haywire and upset oth-
ers by sending arbitrary messages). In
any case, the decision value is the same
in all participating functional processes,
and thus can be used as a clue to the
next action they wish to take.

An obvious approach to ensuring live-
ness in distributed systems, which
arises from the considerations above,
was proposed by Schneider [1990], and
is called the state machine approach. In
it, servers are made fault tolerant by
replicating them and coordinating their
behavior via consensus algorithms. The
idea is that servers act in a coordinated
fashion: the servers diffuse their next
move and agree on it using consensus.
Next moves can be internal actions (for
example, updating local data struc-
tures) or answers to requests by clients.
The fault-tolerance properties of this
approach depend on the type of consen-
sus algorithm used.

Other methods that implement fault-
tolerant services are based on several
forms of fault-tolerant broadcasts
[Hadzilacos and Toueg 1994]. It is inter-
esting that a refined version of such
communication primitives, called
atomic broadcast, is closely related to
consensus [Hadzilacos and Toueg 1994;
Chandra and Toueg 1996]. This is an-
other clue of the importance and omni-
presence of consensus, often underesti-
mated in practice, in fault-tolerant
distributed computing [Guerraoui and
Schiper 1997].

In this section, we briefly surveyed
the basic methodologies for achieving
liveness in distributed systems. While
ensuring safety requires merely inhibit-
ing dangerous actions, guaranteeing
liveness requires coordinated correction
actions, which are more liable to faults

20 • F. C. Gärtner

ACM Computing Surveys, Vol. 31, No. 1, March 1999

than mere detection. Again, consensus
protocols play an important role in
asynchronous systems.

8.3 Summary

This section describes fundamental
methods for achieving liveness in dis-
tributed systems. The basic idea is to
impose a state predicate on the system
in cases where possibly illegal or unsafe
states are detected. Detection is thus a
prerequisite to correction. However, to
prevent misunderstanding, it should be
remarked that the methods presented
in the previous two sections do not im-
ply that masking fault tolerance is al-
ways possible [Arora and Kulkarni
1998c]. Depending on the fault class in
question, there can be faults that lead a
system directly into a state where
safety is violated. Methods that ensure
safety depend on detecting a fault be-
fore it can cause transition to an unsafe
state. This is obviously not possible for
all fault classes. However, it may still
be possible to guarantee liveness in
such cases [Gärtner and Pagnia 1998;
Schneider 1993b]. Thus, safety and live-
ness in the presence of faults may be
achieved both at the same time or one
without the other, supporting the utility
of the four forms of fault tolerance in-
troduced in Section 4.

9. RELATED AND CURRENT RESEARCH

The idea of dividing fault-tolerance ac-
tions into detection and correction
phases goes back as far as 1976 to a
basic survey by Avižienis [1976]. It is
notable that relevant surveys of the
area of fault-tolerant distributed com-
puting [Jalote 1994; Siewiorek and
Swarz 1992] contain this structure im-
plicitly, without explicitly mentioning
it. Lately, Arora and Kulkarni [1998a]
have incorporated the idea of detection
and correction into a methodology to
add fault-tolerance properties to intoler-
ant programs in a stepwise and nonin-
terfering manner (the concept of multi-
tolerance [Arora and Kulkarni 1998b]).

The four forms of fault tolerance dis-
cussed in Section 4 result from their
continuing efforts to find adequate for-
malizations of fault tolerance and re-
lated terms [Arora 1992; Arora and
Gouda 1993; Arora et al. 1996; Kulkarni
and Arora 1997; Arora and Kulkarni
1998b; 1998c; 1998a]. However, their
model of computation is based on locally
shared variables (i.e., processes have
read access to variables of neighboring
nodes) and so has rather tight syn-
chrony assumptions that result in ele-
gant solutions to difficult problems
[Kulkarni and Arora 1997]. The author
is unaware of any attempt to generalize
their observations. The present paper is
a first step in this direction.

Interest in the topic of consensus in
asynchronous distributed systems was
very strong during the 1980s [Barborak
et al. 1993] and seemed to fade away
after Fischer et al. [1985] published
their famous impossibility theorem.
However, the concept of unreliable fail-
ure detectors [Chandra and Toueg 1996]
has made practical solutions to this
problem a little more feasible, and has
also led to a flurry of research on which
problems can now be solved with which
kind of failure detector [Aguilera et al.
1997b; Sabel and Marzullo 1995; Chan-
dra et al. 1996; Guerraoui et al. 1995;
Schiper and Sandoz 1994]. There is
strong evidence [Chandra and Toueg
1996] that the various classes of failure
detectors capture the notion of time
more adequately than the different lev-
els of synchrony that were the subjects
of previous research [Dolev et al. 1987;
Dwork et al. 1988]. Current work fo-
cuses on extending failure suspectors to
deal with node behavior other than the
crash model [Doudou and Schiper 1997;
Oliveira et al. 1997; Aguilera et al.
1998; Dolev et al. 1996; Hurfin et al.
1997]. The ideas in Section 5, dealing
with the formalization of redundancy
and its consequences have, to the best of
our knowledge, not appeared in the lit-
erature.

Fundamentals of Fault-Tolerant Distributed Computing • 21

ACM Computing Surveys, Vol. 31, No. 1, March 1999

10. CONCLUSIONS AND FUTURE WORK

Despite substantial research effort, the
design and implementation of distrib-
uted software remains a complex and
intriguing endeavor [Schwarz and Mat-
tern 1994; Hadzilacos and Toueg 1994].
However, although distributed systems
have many inherent limitations (such
as the lack of a global view or common
time frame), many problems are easy to
solve in ideal and fault-free environ-
ments. The possibility of faults compli-
cates the matter substantially, but
faults must be handled in order to
achieve the dependability and reliabil-
ity necessary in many practical applica-
tions. Therefore, aspects of fault toler-
ance are of considerable importance
today.

In this paper, we have tried to use a
formal approach to structure the area of
fault-tolerant distributed computing,
survey fundamental methodologies, and
discuss their relations. We are con-
vinced that continuing attempts to for-
malize important concepts in this area
can reveal many aspects of its underly-
ing structure. This should lead to a bet-
ter understanding of the subject, and
naturally to better, more reliable, and
more dependable systems in practice.
The advantages of a formal approach,
however, also lie in the fact that it
reveals the inherent limitations of fault-
tolerance methodologies and their inter-
actions with system models. Stating the
impossibility of unconditional depend-
ability is as important as trying to build
systems that are increasingly reliable.

It is clear that this paper could not
integrate the entire area of fault-toler-
ant distributed computing. Many topics
still need further attention, such as as-
pects of fault diagnosis [Barborak et al.
1993], reliable communication [Hadzila-
cos and Toueg 1994; Basu et al. 1996b;
Basu et al. 1996a], network topology
and partitions [Ricciardi et al. 1993;
Babaoğlu et al. 1997; Aguilera et al.
1997c; Dolev et al. 1996] and software
design faults [Jalote 1994]. We spared
the reader probabilistic definitions of

central terms like reliability and avail-
ability [Jalote 1994] and detailed dis-
cussions of implementation issues, test
methods (such as fault injection [Hsueh
et al. 1997]), and practical example sys-
tems [Siewiorek and Swarz 1992; Spec-
tor and Gifford 1984; Dega 1996]. All
these issues need to be dealt with to see
if the structures proposed in this paper
can actually coherently organize most of
the aspects of the field. The inherent
interrelations that this paper reveals
(e.g., between consensus and fault-toler-
ant possibility detection) also need to be
pursued further.

Work can continue along other lines
as well. For example, it is extremely
important to characterize current infor-
mation technology in terms of models
and fault classes (i.e., to know which
fault models to follow in which situa-
tions). Here, evaluation and simulation
of practical systems is a key area
[Chandra and Chen 1998; Kuhn 1997].
The effect of such considerations may be
to embed practical systems into theoret-
ical models more adequately (and thus
more reliably). To this end, the benefits
of a formal treatment of the subject can
be directly transferred to practical set-
tings, thus easing the task of designing,
implementing, and maintaining fault-
tolerant distributed systems.

ACKNOWLEDGMENTS

I am indebted to Friedemann Mattern
and Henning Pagnia for reading a first
draft of this paper and for their sugges-
tions that substantially improved the
presentation. Hagen Völzer helped me
clarify my understanding of safety and
liveness during the final revision phase.
I also wish to thank the anonymous
referees for their encouraging comments
and the Deutsche Forschungsgemein-
schaft for making this work possible.

REFERENCES

AGUILERA, M. K., CHEN, W., AND TOUEG,
S. 1997. Heartbeat: A timeout-free failure
detector for quiescent reliable communica-
tion. In Proceedings of the 11th Interna-

22 • F. C. Gärtner

ACM Computing Surveys, Vol. 31, No. 1, March 1999

tional Workshop on Distributed Algorithms
(WDAG97, Sept. 1997). 126–140.

AGUILERA, M. K., CHEN, W., AND TOUEG,
S. 1997. On the weakest failure detector
for quiescent reliable communication. Techni-
cal Report TR97-1640. Department of Com-
puter Science, Cornell University, Ithaca, NY.

AGUILERA, M. K., CHEN, W., AND TOUEG,
S. 1997. Quiescent reliable communication
and quiescent consensus in partitionable net-
works. Technical Report TR97-1632. De-
partment of Computer Science, Cornell Uni-
versity, Ithaca, NY.

AGUILERA, M. K., CHEN, W., AND TOUEG,
S. 1998. Failure detection and consensus
in the crash-recovery model. In Proceedings
of the 12th International Symposium on Dis-
tributed Computing (DISC, Sept.
1998). 231–245.

ALMEIDA, C. AND VERÍSSIMO, P. 1998. Using
light-weight groups to handle timing failures
in quasi-synchronous systems. In Proceed-
ings of the 19th IEEE Symposium on Real-
Time Systems (Madrid, Spain, Dec.). IEEE
Computer Society Press, Los Alamitos, CA.

ALMEIDA, C., VERÍSSIMO, P., AND CASIMIRO,
A. 1998. The quasi-synchronous approach
to fault-tolerant and real-time communication
and processing. Technical Report CTI RT-
98-04. Instituto Superior Técnico, Lisboa,
Portugal.

ALPERN, B. AND SCHNEIDER, F. B. 1985. Defining
liveness. Inf. Process. Lett. 21, 4 (Oct.), 181–
185.

ARORA, A. AND GOUDA, M. 1993. Closure and
convergence: a foundation of fault-tolerant
computing. IEEE Trans. Softw. Eng. 19, 11
(Nov. 1993), 1015–1027.

ARORA, A. AND GOUDA, M. G. 1994. Distributed
reset. IEEE Trans. Comput. 43, 9 (Sept.),
1026–1038.

ARORA, A., GOUDA, M., AND VARGHESE,
G. 1996. Constraint satisfaction as a basis
for designing nonmasking fault-tolerance. J.
High Speed Netw. 5, 3, 293–306.

ARORA, A. AND KULKARNI, S. 1998. Detectors
and correctors: A theory of fault-tolerance
components. In Proceedings of the 18th
IEEE International Conference on Distributed
Computing Systems (ICDCS98, May).

ARORA, A. AND KULKARNI, S. S. 1998. Component
based design of multitolerant systems. IEEE
Trans. Softw. Eng. 24, 1 (Jan.), 63–78.

ARORA, A. AND KULKARNI, S. S. 1998. Designing
masking fault tolerance via nonmasking fault
tolerance. IEEE Trans. Softw. Eng. 24, 6
(June).

ARORA, A. K. 1992. A foundation of fault-toler-
ant computing. Ph.D. Dissertation. Univer-
sity of Texas at Austin, Austin, TX.

ATTIYA, H., BAR-NOY, A., DOLEV, D., KOLLER, D.,
PELEG, D., AND REISCHUK, R. 1987. Achiev-
able cases in an asynchronous environmen-
t. In Proceedings of the 28th Annual Sympo-

sium on Foundations of Computer Science
(Oct. 1987). IEEE Computer Society Press,
Los Alamitos, CA, 337–346.

AVIŽIENIS, A. 1976. Fault-tolerant systems.
IEEE Trans. Comput. 25, 12 (Dec.), 1304–
1312.

BABAOǦLU, Ö., BARTOLI, A., AND DINI, G. 1994.
Replicated file management in large-scale dis-
tributed systems. In Proceedings of the 8th
International Workshop on Distributed Algo-
rithms (WDAG94). Springer-Verlag, Berlin,
Germany, 1–16.

BABAOǦLU, Ö., DAVOLI, R., AND MONTRESOR,
A. 1997. Partitionable group membership:
specification and algorithms. Technical Re-
port UBLCS-97-1. Department of Computer
Science, University of Bologna, Bologna, Italy.

BABAOǦLU, Ö. AND MARZULLO, K. 1993. Consis-
tent global states of distributed systems: fun-
damental concepts and mechanisms. In Dis-
tributed Systems (2nd ed.), S. Mullender,
Ed. Addison-Wesley Longman Publ. Co.,
Inc., Reading, MA, 55–96.

BARBORAK, M., DAHBURA, A., AND MALEK,
M. 1993. The consensus problem in fault-
tolerant computing. ACM Comput. Surv. 25,
2 (June 1993), 171–220.

BARTLETT, J. F. 1978. A “NonStop” operating
system. In Proceedings of the 11th Hawaii
International Conference on System Scienc-
es. IEEE Computer Society Press, Los
Alamitos, CA.

BASU, A., CHARRON-BOST, B., AND TOUEG,
S. 1996. Simulating reliable links with un-
reliable links in the presence of process crash-
es. In Proceedings of the 10th International
Workshop on Distributed Algorithms
(WDAG96). 105–122.

BASU, A., CHARRON-BOST, B., AND TOUEG,
S. 1996. Solving problems in the presence
of process crashes and lossy links. Technical
Report TR96-1609. Department of Computer
Science, Cornell University, Ithaca, NY.

BERNSTEIN, P. A., HADZILACOS, V., AND GOODMAN,
N. 1987. Concurrency Control and Recov-
ery in Database Systems. Addison-Wesley
Longman Publ. Co., Inc., Reading, MA.

BIRMAN, K. P. 1993. The process group ap-
proach to reliable distributed computing.
Commun. ACM 36, 12 (Dec. 1993), 37–53.

BRACHA, G. AND TOUEG, S. 1985. Asynchronous
consensus and broadcast protocols. J. ACM
32, 4 (Oct. 1985), 824–840.

CHANDRA, S. AND CHEN, P. 1998. How fail-stop
are faulty programs?. In Proceedings of the
28th IEEE Symposium on Fault Tolerant
Computing Systems (FTCS-28, June). IEEE
Computer Society Press, Los Alamitos, CA,
240–249.

CHANDRA, T. D., HADZILACOS, V., AND TOUEG,
S. 1996. The weakest failure detector for
solving consensus. J. ACM 43, 4, 685–722.

CHANDRA, T. D., HADZILACOS, V., TOUEG, S., AND
CHARRON-BOST, B. 1996. On the impossibil-

Fundamentals of Fault-Tolerant Distributed Computing • 23

ACM Computing Surveys, Vol. 31, No. 1, March 1999

ity of group membership. In Proceedings of
the fifteenth annual ACM symposium on Prin-
ciples of distributed computing (PODC ’96,
Philadelphia, PA, May 23–26, 1996), J. E.
Burns and Y. Moses, Eds. ACM Press, New
York, NY, 322–330.

CHANDRA, J. AND TOUEG, S. 1996. Unreliable
failure detectors for reliable distributed sys-
tems. J. ACM 43, 2 (Mar.), 225–267.

CHANDY, K. M. AND MISRA, J. 1986. How pro-
cesses learn. Distrib. Comput. 1, 1 (Jan.
1986), 40–52.

CHARRON-BOST, B., DELPORTE-GALLET, C., AND FAU-
CONNIER, H. 1995. Local and temporal
predicates in distributed systems. ACM
Trans. Program. Lang. Syst. 17, 1 (Jan. 1995),
157–179.

CHARRON-BOST, B., MATTERN, F., AND TEL,
G. 1996. Synchronous, asynchronous, and
causally ordered communication. Distrib.
Comput. 9, 173–191.

CHASE, C. M. AND GARG, V. K. 1998. Detection
of global predicates: Techniques and their
limitations. Distrib. Comput. 11, 4, 191–201.

COOPER, R. AND MARZULLO, K. 1991. Consistent
detection of global predicates. SIGPLAN
Not. 26, 12 (Dec. 1991), 167–174.

CRISTIAN, F. 1985. A rigorous approach to fault-
tolerant programming. IEEE Trans. Softw.
Eng. 11, 1 (Jan.), 23–31.

CRISTIAN, F. 1991. Understanding fault-toler-
ant distributed systems. Commun. ACM 34,
2 (Feb. 1991), 56–78.

CRISTIAN, F. AND FETZER, C. 1998. The timed
asynchronous distributed system model. In
Proceedings of the 28th IEEE Symposium on
Fault Tolerant Computing Systems (FTCS-28,
June). IEEE Computer Society Press, Los
Alamitos, CA, 140–149.

DEGA, J.-L. 1996. The redundancy mechanisms
of the Ariane 5 operational control center. In
Proceedings of the 26th IEEE Symposium on
Fault Tolerant Computing Systems (FTCS-
26). IEEE Computer Society, New York, NY,
382–386.

DIJKSTRA, E. W. 1974. Self-stabilizing systems
in spite of distributed control. Commun.
ACM 17, 11, 643–644.

DIJKSTRA, E. W. 1975. Guarded commands,
nondeterminacy, and formal derivation of pro-
grams. Commun. ACM 18, 8 (Aug.), 453–
457.

DOLEV, D., DWORK, C., AND STOCKMEYER,
L. 1987. On the minimal synchronism
needed for distributed consensus. J. ACM
34, 1 (Jan. 1987), 77–97.

DOLEV, D., FRIEDMAN, R., KEIDAR, I., AND MALKHI,
D. 1996. Failure detectors in omission fail-
ure environments. Technical Report TR96-
1608. Department of Computer Science, Cor-
nell University, Ithaca, NY.

DOLEV, D., LYNCH, N. A., PINTER, S. S., STARK, E.
W., AND WEIHL, W. E. 1986. Reaching ap-

proximate agreement in the presence of
faults. J. ACM 33, 3 (July 1986), 499–516.

DOUDOU, A. AND SCHIPER, A. 1997. Muteness
detectors for consensus with Byzantine pro-
cesses. Technical report, EPFL. Ecole Poly-
technique Federale de Lausanne, Lausanne,
Switzerland.

DWORK, C., LYNCH, N., AND STOCKMEYER,
L. 1988. Consensus in the presence of par-
tial synchrony. J. ACM 35, 2 (Apr. 1988),
288–323.

FISCHER, M., LYNCH, N., AND PATERSON,
M. 1985. Impossibility of distributed con-
sensus with one faulty process. J. ACM 32, 2
(Apr. 1985), 374–382.

FISCHER, M. J., LYNCH, N. A., AND MERRITT,
M. 1986. Easy impossibility proofs for dis-
tributed consensus problems. Distrib. Com-
put. 1, 1 (Jan. 1986), 26–39.

GARG, V. K. 1997. Observation and control for
debugging distributed computations. In 3rd
Int. Workshop on Automated Debugging
(AADEBUG 97, Linköping, Sweden,
May). 1–12.

GARG, V. K. AND MITCHELL, J. R. 1998. Distribut-
ed predicate detection in a faulty environmen-
t. In Proceedings of the 18th IEEE Interna-
tional Conference on Distributed Computing
Systems (ICDCS98, May).

GARG, V. K. AND WALDECKER, B. 1994. Detection
of weak unstable predicates in distributed
programs. IEEE Trans. Parallel Distrib.
Syst. 5, 3, 299–307.

GARG, V. K. AND WALDECKER, B. 1996. Detection
of strong unstable predicates in distributed
programs. IEEE Trans. Parallel Distrib.
Syst. 7, 12, 1323–1333.

GÄRTNER, F. C. 1998. Specifications for fault
tolerance: A comedy of failures. Technical
Report TUD-BS-1998-03. Darmstadt Uni-
versity of Technology, Darmstadt, Germany.

GÄRTNER, F. C. AND PAGNIA, H. 1998. Enhancing
the fault tolerance of replication: another ex-
cercise in constrained convergence. In Digest
of Fast Abstracts of the 28th IEEE Symposium
on Fault Tolerant Computing Systems (FTCS-
28, June). IEEE Computer Society Press,
Los Alamitos, CA.

GOLDING, R. A. 1991. Accessing replicated data
in a large-scale distributed system. Techni-
cal Report UCSC-CRL-91-18. Computer Re-
search Laboratory, University of California,
Santa Cruz, CA.

GUERRAOUI, R., LARREA, M., AND SCHIPER,
A. 1995. Non blocking atomic commitment
with an unreliable failure detector. In Pro-
ceedings of the 14th IEEE Symposium on Re-
liable Distributed Systems (SRDS95, Bad
Neuenahr, Germany, Sept. 1995). IEEE
Press, Piscataway, NJ.

GUERRAOUI, R. AND SCHIPER,
A. 1997. Consensus: the big misunder-
standing. In Proceedings of the 6th Work-

24 • F. C. Gärtner

ACM Computing Surveys, Vol. 31, No. 1, March 1999

shop on Future Trends of Distributed Comput-
ing Systems (FTDCS-6, Oct. 1997).

HADZILACOS, V. AND TOUEG, S. 1994. A modular
approach to fault-tolerant broadcasts and re-
lated problems. Technical Report TR94-
1425. Department of Computer Science, Cor-
nell University, Ithaca, NY.

HALPERN, J. Y. AND MOSES, Y. 1990. Knowledge
and common knowledge in a distributed envi-
ronment. J. ACM 37, 3 (July 1990), 549–
587.

HERLIHY, M. P. AND WING, J. M. 1991. Specifying
graceful degradation. IEEE Trans. Parallel
Distrib. Syst. 2, 1, 93–104.

HSUEH, M.-C., TSAI, T. K., AND IYER, R.
K. 1997. Fault injection techniques and
tools. IEEE Computer 30, 4, 75–82.

HURFIN, M., MOSTEFAOUI, A., AND RAYNAL,
M. 1997. Consensus in asynchronous sys-
tems where processes can crash and reco-
ver. Technical Report 1144. IRISA, Rennes
Cedex, France.

JALOTE, P. 1994. Fault tolerance in distributed
systems. Prentice-Hall, Inc., Upper Saddle
River, NJ.

KUHN, D. R. 1997. Sources of failure in the
public switched telephone network. IEEE
Computer 30, 4, 31–36.

KULKARNI, S. S. AND ARORA, A. 1997. Composi-
tional design of multitolerant repetitive Byz-
antine agreement. In Proceedings of the 18th
International Conference on the Foundations
of Software Technology and Theoretical Com-
puter Science (Kharagpur, India).

LAMPORT, L. 1977. Proving the correctness of
multiprocess programs. IEEE Trans. Softw.
Eng. 3, 2 (Mar.), 125–143.

LAMPORT, L. 1978. Time, clocks, and the order-
ing of events in a distributed system. Com-
mun. ACM 21, 7, 558–565.

LAMPORT, L. AND LYNCH, N. 1990. Distributed
computing: models and methods. In Hand-
book of Theoretical Computer Science (vol. B):
Formal Models and Semantics, J. van Leeu-
wen, Ed. MIT Press, Cambridge, MA, 1157–
1199.

LAMPORT, L., SHOSTAK, R., AND PEASE,
M. 1982. The Byzantine generals prob-
lem. ACM Trans. Program. Lang. Syst. 4, 3
(July), 382–401.

LAPRIE, J. C. 1985. Dependable computing and
fault tolerance: concepts and terminology. In
Proceedings of the 15th IEEE Symposium on
Fault Tolerant Computing Systems (FTCS-15,
June 1985). IEEE Computer Society Press,
Los Alamitos, CA, 2–11.

LE LANN, G. 1995. On real-time and non real-
time distributed computing. In Proceedings
of the 9th International Workshop on Distrib-
uted Algorithms (WDAG95, Sept.). Springer-
Verlag, Berlin, Germany, 51–70.

LONG, D. D. E., CARROLL, J. L., AND PARK, C.
J. 1991. A study of the reliability of Inter-
net sites. In Proceedings of the 10th IEEE

Symposium on Reliable Distributed Systems
(Pisa, Italy, Sept.). IEEE Press, Piscataway,
NJ, 177–186.

LYNCH, N. 1996. Distributed Algorithms. Mor-
gan Kaufmann, San Mateo, California.

MARZULLO, K. AND NEIGER, G. 1991. Detection
of global state predicates. In Proceedings of
the 5th International Workshop on Distributed
Algorithms (WDAG91). 254–272.

MULLENDER, S., Ed. 1993. Distributed Systems
(2nd ed.). Addison-Wesley Longman Publ.
Co., Inc., Reading, MA.

NELSON, V. P. 1990. Fault-tolerant computing:
fundamental concepts. IEEE Computer 23, 7
(July), 19–25.

OLIVEIRA, R., GUERRAOUI, R., AND SCHIPER,
A. 1997. Consensus in the crash-recover
model. Ecole Polytechnique Federale de
Lausanne, Lausanne, Switzerland. Techni-
cal Report TR-97/239

PATTERSON, D. A., GIBSON, G., AND KATZ, R.
H. 1988. A case for redundant arrays of
inexpensive disks (RAID). In Proceedings of
the Conference on Management of Data (SIG-
MOD ’88, Chicago, IL, June 1-3, 1988), H.
Boral and P.-A. Larson, Eds. ACM Press,
New York, NY, 109–116.

RICCIARDI, A., SCHIPER, A., AND BIRMAN,
K. 1993. Understanding partitions and the
“no partition” assumption. In Proceedings of
the 4th Workshop on Future Trends of Distrib-
uted Computing Systems (FTDCS-4).

SABEL, L. S. AND MARZULLO, K. 1995. Election
vs. consensus in asynchronous systems. Tech-
nical Report TR95-1488. Department of
Computer Science, Cornell University, Ithaca,
NY.

SCHIPER, A. 1997. Early consensus in an asyn-
chronous system with a weak failure detec-
tor. Distrib. Comput. 10, 3, 149–157.

SCHIPER, A. AND RICCARDI, A. 1993. Virtually-
synchronous communication based on a weak
failure suspector. In Proceedings of the 23rd
IEEE Symposium on Fault Tolerant Comput-
ing Systems (FTCS-23). IEEE Computer So-
ciety Press, Los Alamitos, CA, 534–543.

SCHIPER, A. AND SANDOZ, A. 1994. Primary par-
tition “virtually-synchronous communication”
harder than consensus. In Proceedings of the
8th International Workshop on Distributed Al-
gorithms (WDAG94). Springer-Verlag, New
York, 39–52.

SCHLICHTING, R. D. AND SCHNEIDER, F.
B. 1983. Fail stop processors: An approach
to designing fault-tolerant computing sys-
tems. ACM Trans. Comput. Syst. 1, 3 (Aug.),
222–238.

SCHNEIDER, F. B. 1990. Implementing fault-tol-
erant services using the state machine ap-
proach: A tutorial. ACM Comput. Surv. 22, 4
(Dec. 1990), 299–319.

SCHNEIDER, F. B. 1993. What good are models
and what models are good? In Distributed
Systems (2nd ed.), S. Mullender, Ed. Addi-

Fundamentals of Fault-Tolerant Distributed Computing • 25

ACM Computing Surveys, Vol. 31, No. 1, March 1999

son-Wesley Longman Publ. Co., Inc., Reading,
MA, 17–26.

SCHNEIDER, M. 1993. Self-stabilization. ACM
Comput. Surv. 25, 1 (Mar. 1993), 45–67.

SCHWARZ, R. AND MATTERN, F. 1994. Detecting
causal relationships in distributed computa-
tions: in search of the holy grail. Distrib.
Comput. 7, 149–174.

SIEWIOREK, D. P. AND SWARZ, R.
S. 1992. Reliable computer systems (2nd
ed.): design and evaluation. Digital Press,
Newton, MA.

SINGHAI, A., LIM, S.-B., AND RADIA, S.
R. 1998. The SunSCALR framework for in-
ternet servers. In Proceedings of the 28th
IEEE Symposium on Fault Tolerant Comput-
ing Systems (FTCS-28, June). IEEE Com-
puter Society Press, Los Alamitos, CA, 108–
117.

SPECTOR, A. AND GIFFORD, D. 1984. The space
shuttle primary computer system. Commun.
ACM 27, 9, 874–900.

STOLLER, S. D. 1997. Detecting global predi-
cates in distributed systems with clocks. In
Proceedings of the 11th International Work-
shop on Distributed Algorithms (WDAG ’97,
Sept. 1997), M. Mavronicolas and P. Tsigas,
Eds. Lecture Notes in Computer Science,

vol. 1320. Springer-Verlag, Berlin, Ger-
many, 185–199.

STOLLER, S. D. AND SCHNEIDER, F.
B. 1995. Faster possibility detection by
combining two approaches. In Proceedings of
the 9th International Workshop on Distributed
Algorithms (WDAG95, Sept.). Springer-Ver-
lag, Berlin, Germany, 318–332.

TEL, G. 1994. Introduction to distributed algo-
rithms. Cambridge University Press, New
York, NY.

THEEL, O. AND GÄRTNER, F. C. 1998. On proving
the stability of distributed algorithms: self-
stabilization vs. control theory. In Proceed-
ings of the International Computers Confer-
ence on Systems, Signals, Control (SSCC’98,
Durban, South Africa, Sept.), V. B. Bajic,
Ed. 58–66.

TUREK, J. AND SHASHA, D. 1992. The many faces
of consensus in distributed systems. IEEE
Computer 25, 6 (June), 8–17.

VÖLZER, H. 1998. Verifying fault tolerance of
distributed algorithms formally: An exam-
ple. In Proceedings of the International Con-
ference on Application of Concurrency to Sys-
tem Design (CSD98, Fukushima, Japan, Mar.
1998). IEEE Computer Society Press, Los
Alamitos, CA, 187–197.

Received: June 1998; revised: January 1999; accepted: January 1999

26 • F. C. Gärtner

ACM Computing Surveys, Vol. 31, No. 1, March 1999

