
Checkpointing and Rollback-Recovery for Distributed Systems*

Richard Koo*’
Sam Touegt

Department of Computer Science

Cornell University

Ithaca, New York 14853

ABSTRACT

We consider the problem of bringing a distributed system

to a consistent state after transient failures. We address

the two components of this problem by describing a distri-

buted algorithm to create consistent checkpoints, as well

as a rollback-recovery algorithm to recover the system to a

consistent state. In contrast to previous algorithms, they

tolerate failures that occur during their executions. Furth-

ermore, when a process takes a checkpoint, a minimal

number of additional processes are forced to take check-

points. Similarly, when a process rolls back and restarts

after a failure, a minimal number of additional processes

are forced to roll back with it. Our algorithms require

each process to store at most two checkpoints in stable

storage. This storage requirement is shown to be minimal

under general assumptions.

1. Introduction

Checkpointing and rollback-recovery are well-known

techniques that allow processes to make progress in spite

of failuresi2. The failures under consideration are tran-

sient problems such as hardware errors and transaction

aborts, i.e., those that are unlikely to recur when a process

restarts. With this scheme, a process takes a checkpoint

from time to time by saving its state on stable storage9

When a failure occurs, the process rolls back to its most

recent checkpoint, assumes the state saved in that check-

point, and resumes execution.

‘The views, opinions and findings conta~nrd III thl+ report are those
of the authors and should not be construed a+ an official Department of
Defence position, policy, or decision

‘*This author was supported h?, the Dpfeo~r Ad\anced Rex-arch
Projects Agency (DOD) undk ARPA-order .i3,6 (‘azotrdct MDA903.85.
C-0124. and by the National Science Fouwiataol~ uodfrr graoti DCR.
8412582 and tiCS 83-03135.

+This author was supported by the National Sc~ewe Fuundation
under grant MCS 83-03135.

We first identify consistency problems that arise in

applying this technique to a distributed system. We then

propose a checkpoint algorithm and a rollback-recovery

algorithm to restart the system from a consistent state

when failures occur. Our algorithms prevent the well-

known “domino effect” as well as livelock problems associ-

ated with rollback-recovery, In contrast to previous algo-

rithms, they are faulttolerant and involve a minimal

number of processes. With our approach, each process

stores at most two checkpoints in stable storage. This

storage requirement is shown to be minimal under general

assumptions.

The paper is organized as follows: We discuss the

notion of consistency in a distributed system in section 2,

and describe our system model in section 3. In section 4

we identify the problems to be solved. Sections 5 and 6

contain the checkpoint and rollback-recovery algorithms

respectively. The algorithms are extended for concurrent

executions in section 7. In section 8 we consider optimiza-

tions. Sections 9 and 10 contain a discussion and our con-

clusion.

2. Consistent Global States in Distributed Sys-
tems

The notion of a consistent global state is central to

reasoning about distributed systems. It was considered by

Randell”, Russell13, and Presottoi”, and formalized by

Chandy and Lamportz. In this section, we summarise

their ideas.

In a distributed computation, an HI*V/ can be a spon-

taneous state transition by a process, or the sending or

receipt of a message. Event n ~/IVVI. l/t hcr~~pits hv/im~’

event b if and only if

(1) a and b are events in the same process, and (I occurs

before b; or

(2) a is the sending of a message in by a process and h is

the receiving of m by another process.

1150

CH2345-7/86/0000/1150$01.00@1986 IEEE

The transitive closure of the directly ha~~pe~ts bcfitrv rela-

tion is the hq~pms before relation. If event n happens

before event b, b happens after a. (We abbreviate happrtw

before, “before” and happens after, “after”.)

A local state of a process, p is defined by p’s initial

state and the sequence of events that occurred at p. A glo-

bal state of a system is a set of local states, one from each

process. The state of the channels corresponding to a global

state s is the set of messages sent but not yet received in

s. We can depict the occurrences of events over time with

a time diagram, in which horizontal lines are time axes of

processes, points are events, and arrows represent mes-

sages from the sending process to the receiving process. In

this representation, a global state is a cut dividing the

time diagram into two halves. The state of the channels

comprises those arrows (messages) that cross the cut. Fig-

ure 1 is a time diagram for a system of four processes.

Informally, a cut (global state) in the time diagram is

consistent if no arrow starts on the right hand side and

ends on the left hand side of it. This notion of consistency

fits the observation that a message cannot be received

before it is sent in any temporal frame of reference. For

example, the cuts c and c’ in Figure 1 are consistent and

inconsistent cuts, respectively. The state of the channels

corresponding to cut c consists of one message from p to q,

and another message from s to r. Readers are referred to

the work of Chandy and Lamport” for a formal discussion

of consistent global states.

3. System Model

The distributed system considered in this paper has

the following characteristics:

(1) Processes do not share memory or clocks. They com-

municate via messages sent through reliable first-in-

first-out (FIFO) channels with variable nonzero

transmission time.

(2) Processes fail by stopping, and whenever a process

fails, all other processes are informed of the failure in

finite time. We assume that processes’ failures never

s:
FIG. 1. Consistent and inconsistent cutz

in a distributed system

partition the communication network.

We want to develop our algorithms under a weak set

of assumptions. In particular, we do not assume that the

underlying system is a database transaction system4V6.

This special case admits simpler solutions: the mechanisms

that ensure atomicity of transactions can hide inconsisten-

cies introduced by the failure of a transaction. Further-

more, we do not assume that processes are deterministic:

this simplifying assumption is made in previous results6,‘6.

4. Identification of Problems

A checkpoint is a saved local state of a process. A set

of checkpoints, one per process in the system, is consistent

if the saved states form a consistent global state. For

example, consider the system history in Figure 2. Process

p takes a checkpoint at time X and then sends a message

to q. After receiving this message, q takes a checkpoint at

time Y. Subsequently, p fails and restarts from the check-

point taken at X. The global state at p’s restart is incon-

sistent because p’s local state shows that- no message has

been sent to q, while q’s local state shows that a message

from p has been received. If p and q are processes

supervising a customer’s account at different banks, and

the message transfers funds from p to q, the customer will

have the funds at both banks when p restarts. This incon-

sistency persists even if Q is forced to roll back and restart

from its checkpoint taken at Y.

The problem of ensuring that the system recovers to a

consistent state after transient failures has two com-

ponents: checkpoint creation and rollback-recovery; we

examine each one in turn

4.1. Checkpoint Creation

There are two approaches to creating checkpoints.

With the first approach, processes take checkpoints

independently and save all checkpoints on stable storage.

Upon a failure, processes must find a consistent set of

checkpoints among the saved ones. The system is then

rolled back to and restarted from this set of check-
1,5,14.19 points .

X failure

P \/

i \

/\ b

FIG 2. Inconsistent checkpoints.

1151

X2 X.3 failure

yo Y/ YC> Yv
FIG. 3. “Domino effect” following a failure.

With the second approach, processes coordinate their

checkpointing actions such that each process saves only its

most recent checkpoint, and the set of checkpoints in the

system is guaranteed to be consistent. When a failure

occurs, the system restarts from these checkpoints17.

The main disadvantage of the first approach is the

“domino effect” as illustrated in Figure 310*“. In this

example, processes p and q have independently taken a

sequence of checkpoints. The interleaving of messages and

checkpoints leaves no consistent set of checkpoints for p

and q> except the initial one at {Xx0, Ye}. Consequently,

after p fails, both p and q must roll back to the beginning

of the computation. For time-critical applications that

require a guaranteed rate of progress, such as real time

process control, this behavior results in unacceptable

delays. An additional disadvantage of independent check-

points is the large amount of stable storage required to

save all checkpoints.

To avoid these. disadvantages, we pursue the second

approach. In contrast to Tamir”, our method ensures that

when a process takes a checkpoint, a minimal number of

additional processes are forced to take checkpoints.

4.2. Rollback-Recovery

Rollback-recovery from a consistent set of checkpoints

appears deceptively simple. The following scheme seems

to work: Whenever a process rolls back to its checkpoint, it

notifies all other processes to also roll back to their respec-

tive checkpoints. It then installs its checkpointed state and

resumes execution. Unfortunately, this simple recovery

method has a major flaw. In the absence of synchroniza-

tion, processes cannot all recover (from their respective

checkpoints) simultaneously. Recovering processes asyn-

chronously can introduce livelocks as shown below.

Figure 4 illustrates the histories of two processes, p

and Q, up to p’s failure. Process p fails before receiving

the message nr, rolls back to its checkpoint, and notifies (1

Then p recovers, sends ~12, and receives 111. After 1~‘s

recovery, p has no record of sending rnr, while q has a

record of its receipt. Therefore the global state is

I checkpoints ‘\ f’

FIG. 4. Histories of p and q up to p’s failure.

inconsistent. To restore consistency, Q must also roll back

(to “forget” the receipt of nor) and notify p. However, after

q rolls back, q has no record of sending rtr while p has a

record of its receipt. Hence, the global state is inconsistent

again, and upon notification of q’s rollback, p must roll

back a second time. After q recovers, q sends 17s and

receives m2. Suppose p rolls back before receiving)L~ as

shown in Figure 5. With the second rollback of p, the

sending of m2 is “forgotten”. To restore consistency, q must

roll back a second time. After p recovers it receives u%,

and upon notification of q’s rollback, it must roll back a

third time. It is now clear that p and q can be forced to

roll back forever, even though no additional failures occur.

Our rollback-recovery algorithm solves this livelock

problem. It tolerates failures that occur during its execu-

tion, and forces a minimal number of processes to roll back

after a failure. However, in Tamir17, a single failure forces

the system to roll back as a whole. Furthermore, the sys-

tem crashes (and does not recover) if a failure occurs while

it is rolling back.

5. Checkpoint Creation

5.1. Naive Algorithms

From Figure 2 it is obvious that if every process takes

a checkpoint after every sending of a message, and these

two actions are done atomically, the set of the most recent

checkpoints is always consistent. But creating a check-

point after every send is expensive. We may naively

reduce the cost of the above method with a strategy such

roll back
I e ndtime

P
\

/\ ,’ b
,’

FIG. 5. History of p and q up to p’s 2nd rollback

1152

as “every process takes a checkpoint after e\ery /c sends,

k >l” or ‘yevery process takes a checkpoint on the hour”.

However, the former can be shown to suffer domino effects

by a construction similar to the one in Figure 3, while the

latter is meaningless for a system that lacks perfectly syn-

chronized clocks.

5.2. Classes of Checkpoints

Our algorithm saves two kinds of checkpoints on

stable storage: permanent and tentative. A permanent

checkpoint cannot be undone. It guarantees that the com-

putation needed to reach the checkpointed state will not be

repeated. A tentative checkpoint, however, can be undone

or changed to be a permanent checkpoint. When the con-

text is clear, we call permanent checkpoints “checkpoints”.

Consider a system with a consistent set of permanent

checkpoints. A checkpoint algorithm is r.e.s~l~r/rt to failures

if the set of permanent checkpoints is still consistent after

the algorithm terminates, even if some processes fail dur-

ing its execution. To exclude the impractical “naive” algo-

rithm (in last section) from our consideration, henceforth,

we consider only those systems where processes either can-

not afford to take a checkpoint after every send, or cannot

combine the sending of a message and the taking of a

checkpoint into one atomic operation. The following

theorem shows that checkpoint algorithms for these sys-

tems must store at least two checkpoints in stable storage

to be resilient to failures. (The proofs of all lemmas and

theorems in this paper can be found in Koo and Toueg’.)

Theorem 1: No resilient checkpoint algorithms that take

only permanent checkpoints exist. 0

Theorem 1 shows that in those systems we consider, any

resilient checkpoint algorithm must store at least two

checkpoints on stable storage.

5.3. Our Checkpoint Algorithm

We assume the algorithm is invoked by a single pro-

cess that wants to take a permanent checkpoint. We also

assume that no failures occur in the system. In section

5.3.4 we extend the algorithm to handle failures, and in

section 7 we describe concurrent invocations of this algo-

rithm.

5.3.1. Motivation The algorithm is patterned on two-

phase-commit protocols. In the first phase, the initiator (1

takes a tentative checkpoint and requests all processes to

take tentative checkpoints. If ‘1 learns that all processes

have taken tentative checkpoints, (I decide> all tentative

checkpoints should be made permanent; otherwise, 11

decides tentative checkpoints should be discarded. In the

second phase, q’s decision is propagated and carried out by

all processes. Since all or none of the processes take per-

manent checkpoints, the most recent set of checkpoints is

always consistent.

However, our goal is to force a minimal number of

processes to take checkpoints. The above algorithm is

modified as follows: a process p takes a tentative check-

point after it receives a request from q only ifq’s tentative

checkpoint records the receipt of a message from p, and p’s

latest permanent checkpoint does not record the sending of

that message. Process p determines whether this condition

is true using the label appended to q’s request. This label-

ing scheme is described below.

Messages that are not sent by the checkpoint or

rollback-recovery algorithms are system messages. Every

system message m contains a label ml. Each process

appends outgoing system messages with monotonically

increasing labels. We define 1 and T to be the smallest

and largest labels, respectively. For any processes o and

p, let m be the last message that q received from p after q

took its last permanent or tentative checkpoint. Define:

1

m.l if m exists
last-rmsg,(p) = I otherwise

Also, let m be the first message that q sent to process p

after q took its last permanent or tentative checkpoint.

Define:

1

m.1 if m exists
fir~~L~msgq(p) = 1 otherwise .

When q requests p to take a tentative checkpoint, it

appends Zasl-rmsg4(p) to its request; p takes the check-

point only if last3msg&) t first-smsg,,(q) > 1.

5.3.2. Informal Description Process p is a
chp~cohort of q if q has taken a tentative checkpoint, and

Inst-rmsg&) >I before the tentative checkpoint is taken.

The set of ckpt-cohorts of q is denoted ckpt-cohort,. Every

process p keeps a variable ~clilli~~g_/o-(.fipl(, to denote its

willingness to take checkpoints. Whenever p cannot take a

checkpoint (for any reason), willing--to-chpt,, is “no”. The

initiator q starts the checkpoint algorithm by making a

tentative checkpoint and sending a request “take a tenta-

tive checkpoint and Inst~m.sg,,(p)” to all pCchpt-coltor?,. A

process p inherits this request if cuillirrg-lo-chpt, is “yes”

and last_rmsgJp) >first-.sm.sg,,(q) >1. If p inherits a

request, it takes a tentative checkpoint and sends “take a

tentative checkpoint and Errs/. rwgp(r)” requests to all

rfchpt-cohort,,. If p receives but does not inherit a request

from q, p replies tui/liry.-ro..c.hpI,. to (,

1153

After p sends out its requests, it waits for replies that

can be either “yes” or “no”, indicating a ckpt-cohort’s

acceptance or rejection of p’s request. If any reply is “no”,

willing-to-ckpt,, becomes “no”; otherwise will~ryfo-ckpt,,

is unchanged. Process p then sends rc’illiflg-fo-ckpt,, to the

process whose request p has inherited. From the time p

takes a tentative checkpoint to the time it receives the

decision from the initiator, p does not send any system

messages.

If all the replies from its ckpt-cohorts arrive and are

all “yes”, the initiator decides to make all tentative check-

points permanent. Otherwise the decision is to undo all

tentative checkpoints. This decision is propagated in the

same fashion as the request “take a tentative checkpoint”

is delivered. A process discards its previous checkpoints

after it takes a new permanent checkpoint.

The algorithm is presented in Figure 6. For simpli-

city, we create a fictitious process called daemon to assume

the initiation and decision tasks of the initiator. In prac-
tice, daemon is a part of the initiator process.

5.3.3. Proofs of Correctness We consider a single

invocation of the algorithm, and we assume no process

fails in the system.

Lemma 1: Every process inherits at most one request to

take a tentative checkpoint. q
Lemma 2: Every process terminates its execution of Algo-

rithm Cl. El

The next lemma shows that Cl takes a consistent set of

checkpoints.

Lemma 3: If the set of checkpoints in the system is con-

sistent before the execution of Algorithm Cl, the set of

checkpoints in the system is consistent after the termina-

tion of Cl. q
We now show the number of processes that take new

permanent checkpoints during the execution of Algorithm

Cl is minimal. Let P=ba,pl, . ,ph} be the set of

processes that take new permanent checkpoints in Cl,

where PO is the initiator of Cl. Let

c(t-‘)={C([J’o), ‘(PI), ’ , c(ph)) be the new permanent

checkpoints taken by processes in P. Define an alternate

set of checkpoints: C’(P)={c’(po), c’(p,), , c.‘fp,,~} where

r’(po) = c(p,J and for lS-i<k, c’(p,) is either J,(/J) or the

checkpoint p, had before executing Cl.

Theorem 2: C’(P) is consistent if and only if (“(!‘I = c-‘!P,

Daemon process:

send(initiator, “take a tentative checkpoint and T”);
await(initiator, wiLlingAo-ckpt ,,,,,, S,fc,,.);.:.+
if willing-to-ckptinlti,, == “yes” then

send(initiator, “make tentative checkpoint permanent”)
else

sendfinitiator, “undo tentative checkpoint”)
fi.

All processes P:

IN~IAL STATE:
first-smsg,(darmon) = T;

willing-to-ckpt, =
I

“yes” if p is willing to checkpoint
,,no,, otherwise ,

UPON RECEIPT OF “take a. tentative checkpoint and
last-rmsg,@)” from q DO

if willing-to-ckpt, and Zast-rmsgy(p)rfirsl_smsg,,(q) >I

then take a tentative checkpoint;
for all r6ckptrohort,, send(r, “take a tentative

checkpoint and last-rmsgp(r)“);
for all rfckpt-cohort, await(r, willing-torkpt,.);

if 3 r cckpt-cohort,,, willing-torkpt,. = “no”

then willing-to-ckpt,+ “no” fi;

fi;
send(q, willing-torkpt ,);

OD.

UPON FIRST RECEIPT OF nz =“undo tentative checkpoint” or
m =“make tentative checkpoint permanent” DO
if m =“make tentative checkpoint permanent” then

make tentative checkpoint permanent;
else

undo tentative checkpoint;

fi;
for all r Eckpt-cohort,,, sender, nz);

OD.

FIG. 6. Algorithm Cl: the Checkpoint Algorithm

_-- _ .-.-

Theorem 2 shows that if p. takes a checkpoint, then all

processes in P must take a checkpoint to ensure con-

sistency.

l

1154

5.3.4. Coping with Failures We now extend Algo-

rithm Cl to handle processes’ failures. We first consider

the effects of failures on nonfaulty processes. When

failures occur, a nonfaulty process may not receive some of

the following messages:

(1) “yes” or “no” from ckptcohorts,

(2) “make tentative checkpoint permanent” or “undo ten-

tative checkpoint” from the initiator.

Suppose that process p fails before replying “yes” or

“no” to process g’s request. By the assumption of section 3,

9 will know of p’s failure. After 4 knows that p has failed,

it sets wiZling_to_ckpt, to “no” and stops waiting for p’s

reply. Therefore, to take care of a missing “yes” or “no”, it

suffices to change the statement in Cl from

if 3 rcckpt-cohort,,, wiZZing_to-ckpt,. = “no”

then willinglorkptp+ “no” fi

to

if 3 rCckpt-cohort,,, willingAo_ckpt,. = “no” or r has failed

then willing-to-ckpt,+ “no” fi.

Suppose that process p does not receive the decision

regarding its tentative checkpoint. If p undoes its tentative

checkpoint or makes it permanent, it risks contradicting

the initiator. The tw+phase structure of Cl requires p to

block until it discovers the initiator’s decision15. We will

discuss ways to prevent blocking in section 8.

We now consider the recovery of faulty processes,

When a process restarts after a failure, its latest check-

point on stable storage may be tentative or permanent. If

this checkpoint is tentative, the restarting process must

decide whether to discard it or to make it permanent. The

decision is made as follows;

Suppose that the restarting process is the initiator.

The initiator knows that every process that has taken a

tentative checkpoint is still blocked waiting for its deci-

sion. Hence, it is safe for the initiator to decide to undo all

tentative checkpoints and send this decision to its

ckpt-cohorts. If the restarting process is not the initiator,

it must discover the initiator’s decision regarding tentative

checkpoints. It may contact either the initiator or those

processes of which it is a ckpt--cohort; it follows the deci-

sion accordingly to terminate Cl.

The restarting process is now left with one permanent

checkpoint on stable storage. It can recover from this

checkpoint by invoking the rollback-recovery algorithm of

section 6.

Let C2 be the Algorithm Cl as modified above. C2

terminates if all processes that fail during the execution of

C2 recover. At termination, the set of checkpoints in the

system is consistent, and the number of processes that took

new permanent checkpoints is minimal. The proofs for

these properties are similar to those of Cl and they are

omitted.

6. Rollback-Recovery

We assume that the algorithm is invoked by a single

process that wants to roll back and recover (henceforth

denoted restart). We also assume that the checkpoint algo-

rithm and the rollback-recovery algorithm are not invoked

concurrently. Concurrent invocations of these algorithms

are described in section 7.

6.1. Motivation

The rollback-recovery algorithm is patterned on two-

phase-commit protocols. In the first phase, the initiator q

requests all processes to restart from their checkpoints.

Process q decides to restart all the processes if and only if

they are all willing to restart. In the second phase, q’s

decision is propagated and carried out by all processes. We

will prove that the two-phase structure of this algorithm

prevents livelock as discussed in section 4.2. Since all

processes follow the initiator’s decision, the global state is

consistent when the rollback-recovery algorithm ter-

minates.

However, our goal is to force a minimal number of

processes to roll back. If a process p rolls back to a state

saved before an event e occurred, we say that e is undone

by p. The above algorithm is modified as follows: the roll-

back of a process q forces another process p to roll back

01ll.v if q’s rollback undoes the sending of a message to p.

Process p determines if it must restart using the label

appended to q’s “prepare to roll back” request. This label

is described below.

For any processes q and p, let nr be the last message

that q sent to p before q took its latest permanent check-

point. Define

1m.l if m exists
last-smsg$p) = T

I
otherwise .

When q requests p to restart, it appends lcrsl-~sg,,(p) to

its request. Process p restarts from its permanent check-

point only if Zast-rmsg,(q) >lasl-smsg,,(pJ.

11.55

6.2. Informal Description

Process p is a roll -cohort of q if q can send messages

to it. The set of roll-cohorts of q is ro/l -cohort,,. Every pro-

cess p keeps a variable willingJo-roll,, to denote its wil-

lingness to roll back. Whenever 11 cannot roll back tfor any

reason), willing-to-roll, is “no”. The initiator (I starts the

rollback-recovery algorithm by sending a request “prepare

to roll back and last-smsg,(p)” to all pCroZ/-c~hort,~. A

process p inherits this request if ~~~ilLir~g-to-rolll is ‘*yes”,

lastrmsg,(q) >Instsmsg&), and p has not already inher-

ited another request to roll back. After p inherits the

request, it sends “prepare to roll back and lastsmsg,,(r)”

to all rCrol1 -cohort,,; otherwise, it replies willing-to-roll,,

to q.

After p sends out its requests, it waits for replies from

each process in roll -cohort,. The reply can be an explicit

“yes” or “no” message, or an implicit “no” when p discovers

that F has failed. If any reply is “no”, willing_to-roll,,

becomes “no”, otherwise willing_to-roll, is unchanged.

Process p then sends willing~o-rollP to the process whose

request p inherits. From the time p inherits the rollback

request to the time it receives the decision from the initia-

tor, p does not send any system messages.

If all the replies from its roll-cohorts arrive and are

all “yes”, the initiator decides the rollbacks will proceed,

otherwise it decides no process will roll back. This deci-

sion is propagated to all processes in the same fashion as

the request “prepare to roll back” is delivered. If failures

prevent the decision from reaching a process p. p must

block until it discovers the initiator’s decision. We discuss

nonblocking algorithms in section 8.

The rollback-recovery algorithm is presented in Fig-

ure 7. Like the presentation of Algorithm Cl, we introduce

a fictitious process called duemon to perform functions that

are unique to the initiator of the algorithm.

6.3. Proofs of Correctness

We consider a single invocation of the rollback-

recovery algorithm. The variable readyJo-roll, ensures

that a process p inherits at most one request to roll back.

As a result, the variable also ensures that a process rolls

back at most once. To prove the termination of Algorithm

R, it suffices to show that Algorithm R is free of deadlocks.

Lemma 4: Algorithm R is deadlock free. 0

We show next that the global state of the system is con-

sistent after the termination of R

Daemon process:

send(initiator, “prepare to roll back and I”);
await(initmtor, willing_to-roll ,,,r,,Ci,C,r);

if willing-to-roll ,,,,t,ob,r =: “yes” then
send(initiator, “roll back”)

else
send(initiator, “do not roll back”)

Ii.

All processes p:

INITIAL STATE:

ready-toroll p = true;

last-rmsg,(daemon) = T;

willingAo~ollP =
1

“yes” if p is willing to roll back
,,no,, otherwise

UPON RECEIPT OF “prepare to roll back and
last-smsg,(p)” from q DO

if willing-torollp and last-msg,(q) Blast-smsg.,(p)

and ready-to-roll p then
ready-torollP +- false;

for alI r c roll -cohort ,,
send(r, “prepare to roll back and last-smsg,,(r)“);

for all r Croll -cohort, await(r, willing-toyoll r);
if 3 r Croll-cohort,, willing-toroll. = “no”

or r has failed then willing-todoll,+ “no” fi;

fi;
sendtq, willl ug-to-roll,,);

OD.

UPON RECEIPT OF no =“roll back” or
m =“do not roll back” and ready-torollp = false DO

if m = “roll back” then
restart from 11’s permanent checkpoint;

else
resume execution;

fi;
for all reroll -cohort,, send(r, m);

OD.

FIG. 7. Algorithm R: the Rollback Algorithm
_--~ - _. -___~

Lemma 5: If the system is consistent before the execution

of Algorithm R, the system is consistent after the termina-

tion of Algorithm R. 0

1156

Lemma 5 ensures that a single execution of Algorithm R

brings the system to a consistent state after a failure; since

processes roll back at most once in any execution of R, the

rollback algorithm prevents livelocks. Thus, Algorithm R

prevents livelocks.

Many existing rollback algorithms exhibit the follow-

ing undesirable property. If the initiator rolls back, it

forces an additional set of processes P to roll back with it,

even though the system will be consistent if some of the

processes in P omit to roll back. For instance, all

processes are required to roll back every time any process

wants to roll backr7. However, in some cases, the initiator

could roll back alone and the system would still be con-

sistent. With our algorithm, the number of processes that

are forced to roll back with the initiator is minimal.

Theorem 3: Let E be an execution of R in which the ini-

tiator, p,,, and an additional set of processes P roll back.

Consider an execution E’, identical to E except that a

non-empty subset of processes in P omit to roll back upon

receipt of the “roll back” decision. The execution E’ leaves

the system in an inconsistent state. cl

7. Interference

In this section, we consider concurrent invocations of

the checkpoint and rollback-recovery algorithms. An exe-

cution of these algorithms by process 11 is itt~rtf~rerl with if

any of the following events occur:

(1) Process p receives a rollback request from another

process q while executing the checkpoint algorithm.

(2) Process p receives a checkpoint request from q while

executing the rollback-recovery algorithm.

(3) Process p, while executing the checkpoint algorithm

for initiator i, receives a checkpoint request from q,

but q’s request originates from a different initiator

than i.

(4) Process p, while executing the rollback-recovery algo-

rithm for initiator i, receives a rollback request from

q, but q’s request originates from a different initiator

than i.

One single rule handles the four cases of interference:

once p starts the execution of a checkpoint [rollback] algo-

rithm, p is unwilling to take a tentative checkpoint [roll

back] for another initiator, or to roll back [take a tentative

checkpoint]. As a result, in all four cases, p replies “no” to

q. We can show this rule is sufficient to guarantee that all

previous lemmas and theorems hold despite concurrent

invocations of the algorithms. This rule can, however, be

modified to permit more concurrency in the system. The

modification is that in case (l), instead of sending “no” to

q, p can begin executing the rollback-recovery algorithm

after it finishes the checkpoint algorithm. We cannot

allow a similar modification in case (2) lest deadlocks may

occur.

8. Optimization

When the initiator of the checkpoint or of the

rollback-recovery algorithm fails before propagating its

decision to its cohorts, it is desirable for processes not to

block for its recovery. To prevent processes from blocking,

we can modify our algorithms by replacing the underlying

two-phase commit protocol with a nonblocking three-phase

commit protocol’5. However, nonblocking protocols are

inherently more expensive than blocking ones3.

We next address the following problem: after a

ckpt-cohort q of a process p fails, p cannot take a per-

manent checkpoint until q restarts (p cannot know if the

latest checkpoint of q records the sendings of all messages

it received from q). To avoid waiting for q’s restart, p can

remove q from chpt~~ohort,, by restarting from its check-

point (using the rollback-recovery algorithm). After its

restart, process p can take new checkpoints.

9. Message Loss

Rollback-recovery can cause message loss as illus-

trated in Figure 8. When p is rolled back to X following a

failure at F, the global state is consistent, but the message

m from q is lost. It is lost because the state of the chan-

nels corresponding to the global state {X, Y} contains m.

One method to circumvent message loss is to have

that processes use transmission protocols that transform

lossy channels to virtual error-free channels, e.g., sliding

window protocols18. Another method is to ensure that the

state of the channels corresponding to the most recent set

FIG. 8. Message loss following p’s rollback to X.

1157

We would like to thank Amr El Abbadi, Ken Birman,

Rance Cleaveland, and Jennifer Widom for commenting on

earlier drafts of this paper.

Bibliography

[ll

r21

131

[41

[51

[61

T. Anderson, P. A. Lee and S. K. Shrivastava, Sys-

tem fault toIerance, in Computing System Reliabil-

ity, T. Anderson, B. Randell (eds.) Cambridge

University Press, Cambridge, 1979, pp. 153-210.

K. M. Chandy and L. Lamport, Distributed

snapshots: Determining global states of distributed

systems, ACM Transactions on Computer Systems,

vol. 3, no. 1, pp. 63-75, February 1985.

C. Dwork and D. Skeen, The inherent cost of non-

blocking commitment, Proc. ACM Symposium on

Principles ofDatabase Systems, March 1983.

M. Fischer, N. Griffeth, and N. Lynch, Global states

of a distributed system, IEEE Transaction on

Softwnre Engineering, May 1982, pp. 198-202

V. Hadzilacos, An algorithm for minimizing rollback

cost, Proc. ACM Symposium on Principles of Data-

base Systems, March 1982.

T. Joseph and K. Birman, Low cost management of

replicated data in fault-tolerant distributed systems,

ACM ?‘nutsachns on Compr~ler S~sCrms, February

1986, pp. 54-70.

of checkpoints contains no messages. We can modify the

checkpoint and rollback-recovery algorithms to implement

this latter method, but such modification increases the

number of processes that are forced to take checkpoints

and roll back.

10. Conclusion

We have presented a checkpoint algorithm and a

rollback-recovery algorithm to solve the problem of bring-

ing a distributed system to a consistent state after tran-

sient failures. In contrast to previous algorithms, they

tolerate failures that occur during their executions. Furth-

ermore, when a process takes a checkpoint, a minimal

number of additional processes are forced to take check-

points. Similarly, a minimal number of additional

processes are forced to restart when a process restarts after

a failure. We also show that the stable storage require-

ment of our algorithms is minimal.

Acknowledgements

[71

[Sl

[91

[LOI

[ill

r121

[131

[141

t151

IL61

[171

[181

[191

R. KOO and S. Toueg, Checkpointing and Rollhack-

Recovery for Distributed Systems, To appear in a
special issue of IEEE-TSE.

L. Lamport, Time, clocks and the ordering of events

in a distributed system, Communications of the

ACM, vol. 21, no. 7, July 1978, pp. 558-565.

B. Lampson and H. Sturgis, Crash recovery in a dis-

tributed storage system, &ro.x PARC Tech. Rep.,

Xerox Palo Alto Research Center, April 1979.

D. L. Presotto, Publishing: A reliable broadcast com-

munication mechanism, Tech. Rep. CJC’BiCSD X3-

165, Computer Scie~ice Division. University of Cnli-

fornia, Berkeley, December 1983.

B. Randell, System structure for software fault toler-

ance, IEEE Transactions On Software Engineering,

vol. SE-l, no.2, June 1975, pp. 226-232.

B. Randell, P.A. Lee, and PC. Treleaven, Reliability

issues in computing system design, ACM Computing

Surueys, vol. LO, no. 2, June 1978, pp. 123-166.

D. L. Russell, Process backup in producer-consumer

systems, Proc. ACM Symposium on Operating Sys-

tems Principles, November, 1977.

D. L. Russell, State restoration in systems of com-

municating processes, IEEE Transactions - 011

Software Engineering, vol. SE-6, no. 2, March 1980,

pp. 183-194.

D. M. Skeen, Crash recovery in a distributed data-

base system, Ph.D. dissertation, Comptctrr Science

Division, University of California. Rerkeley, 1982.

R. Strom and S. Yemini, Optimistic recovery in dis-

tributed systems, Transactions on Computer Sys-

tems, August 1985, pp. 204-226.

Y. Tamir and C. H. Sequin, Error recovery in multi-

computers using global checkpoints, Proc. of 13th

International Conference on Parallel Processing,

August 1984.

A. S. Tanenbaum, Computer Networks, Prentice

Hall, New Jersey, 1981, pp. 148-164.

W. G. Wood, A decentralized recovery control proto-

col, Proc. of the 11th Annual lnturnational S+vmpo-

sium on Fault-Tolerant Comptcting~, June 1981.

1158

