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ABSTRACT 

We consider the problem of bringing a distributed system 

to a consistent state after transient failures. We address 

the two components of this problem by describing a distri- 

buted algorithm to create consistent checkpoints, as well 

as a rollback-recovery algorithm to recover the system to a 

consistent state. In contrast to previous algorithms, they 

tolerate failures that occur during their executions. Furth- 

ermore, when a process takes a checkpoint, a minimal 

number of additional processes are forced to take check- 

points. Similarly, when a process rolls back and restarts 

after a failure, a minimal number of additional processes 

are forced to roll back with it. Our algorithms require 

each process to store at most two checkpoints in stable 

storage. This storage requirement is shown to be minimal 

under general assumptions. 

1. Introduction 

Checkpointing and rollback-recovery are well-known 

techniques that allow processes to make progress in spite 

of failuresi2. The failures under consideration are tran- 

sient problems such as hardware errors and transaction 

aborts, i.e., those that are unlikely to recur when a process 

restarts. With this scheme, a process takes a checkpoint 

from time to time by saving its state on stable storage9 

When a failure occurs, the process rolls back to its most 

recent checkpoint, assumes the state saved in that check- 

point, and resumes execution. 
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We first identify consistency problems that arise in 

applying this technique to a distributed system. We then 

propose a checkpoint algorithm and a rollback-recovery 

algorithm to restart the system from a consistent state 

when failures occur. Our algorithms prevent the well- 

known “domino effect” as well as livelock problems associ- 

ated with rollback-recovery, In contrast to previous algo- 

rithms, they are faulttolerant and involve a minimal 

number of processes. With our approach, each process 

stores at most two checkpoints in stable storage. This 

storage requirement is shown to be minimal under general 

assumptions. 

The paper is organized as follows: We discuss the 

notion of consistency in a distributed system in section 2, 

and describe our system model in section 3. In section 4 

we identify the problems to be solved. Sections 5 and 6 

contain the checkpoint and rollback-recovery algorithms 

respectively. The algorithms are extended for concurrent 

executions in section 7. In section 8 we consider optimiza- 

tions. Sections 9 and 10 contain a discussion and our con- 

clusion. 

2. Consistent Global States in Distributed Sys- 
tems 

The notion of a consistent global state is central to 

reasoning about distributed systems. It was considered by 

Randell”, Russell13, and Presottoi”, and formalized by 

Chandy and Lamportz. In this section, we summarise 

their ideas. 

In a distributed computation, an HI*V/ can be a spon- 

taneous state transition by a process, or the sending or 

receipt of a message. Event n ~/IVVI. l/t hcr~~pits hv/im~’ 

event b if and only if 

(1) a and b are events in the same process, and (I occurs 

before b; or 

(2) a is the sending of a message in by a process and h is 

the receiving of m by another process. 
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The transitive closure of the directly ha~~pe~ts bcfitrv rela- 

tion is the hq~pms before relation. If event n happens 

before event b, b happens after a. (We abbreviate happrtw 

before, “before” and happens after, “after”.) 

A local state of a process, p is defined by p’s initial 

state and the sequence of events that occurred at p. A glo- 

bal state of a system is a set of local states, one from each 

process. The state of the channels corresponding to a global 

state s is the set of messages sent but not yet received in 

s. We can depict the occurrences of events over time with 

a time diagram, in which horizontal lines are time axes of 

processes, points are events, and arrows represent mes- 

sages from the sending process to the receiving process. In 

this representation, a global state is a cut dividing the 

time diagram into two halves. The state of the channels 

comprises those arrows (messages) that cross the cut. Fig- 

ure 1 is a time diagram for a system of four processes. 

Informally, a cut (global state) in the time diagram is 

consistent if no arrow starts on the right hand side and 

ends on the left hand side of it. This notion of consistency 

fits the observation that a message cannot be received 

before it is sent in any temporal frame of reference. For 

example, the cuts c and c’ in Figure 1 are consistent and 

inconsistent cuts, respectively. The state of the channels 

corresponding to cut c consists of one message from p to q, 

and another message from s to r. Readers are referred to 

the work of Chandy and Lamport” for a formal discussion 

of consistent global states. 

3. System Model 

The distributed system considered in this paper has 

the following characteristics: 

(1) Processes do not share memory or clocks. They com- 

municate via messages sent through reliable first-in- 

first-out (FIFO) channels with variable nonzero 

transmission time. 

(2) Processes fail by stopping, and whenever a process 

fails, all other processes are informed of the failure in 

finite time. We assume that processes’ failures never 

s: 
FIG. 1. Consistent and inconsistent cutz 

in a distributed system 

partition the communication network. 

We want to develop our algorithms under a weak set 

of assumptions. In particular, we do not assume that the 

underlying system is a database transaction system4V6. 

This special case admits simpler solutions: the mechanisms 

that ensure atomicity of transactions can hide inconsisten- 

cies introduced by the failure of a transaction. Further- 

more, we do not assume that processes are deterministic: 

this simplifying assumption is made in previous results6,‘6. 

4. Identification of Problems 

A checkpoint is a saved local state of a process. A set 

of checkpoints, one per process in the system, is consistent 

if the saved states form a consistent global state. For 

example, consider the system history in Figure 2. Process 

p takes a checkpoint at time X and then sends a message 

to q. After receiving this message, q takes a checkpoint at 

time Y. Subsequently, p fails and restarts from the check- 

point taken at X. The global state at p’s restart is incon- 

sistent because p’s local state shows that- no message has 

been sent to q, while q’s local state shows that a message 

from p has been received. If p and q are processes 

supervising a customer’s account at different banks, and 

the message transfers funds from p to q, the customer will 

have the funds at both banks when p restarts. This incon- 

sistency persists even if Q is forced to roll back and restart 

from its checkpoint taken at Y. 

The problem of ensuring that the system recovers to a 

consistent state after transient failures has two com- 

ponents: checkpoint creation and rollback-recovery; we 

examine each one in turn 

4.1. Checkpoint Creation 

There are two approaches to creating checkpoints. 

With the first approach, processes take checkpoints 

independently and save all checkpoints on stable storage. 

Upon a failure, processes must find a consistent set of 

checkpoints among the saved ones. The system is then 

rolled back to and restarted from this set of check- 
1,5,14.19 points . 

X failure 

P \/ 

i \ 

/\ b 

FIG 2. Inconsistent checkpoints. 
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X2 X.3 failure 

yo Y/ YC> Yv 
FIG. 3. “Domino effect” following a failure. 

With the second approach, processes coordinate their 

checkpointing actions such that each process saves only its 

most recent checkpoint, and the set of checkpoints in the 

system is guaranteed to be consistent. When a failure 

occurs, the system restarts from these checkpoints17. 

The main disadvantage of the first approach is the 

“domino effect” as illustrated in Figure 310*“. In this 

example, processes p and q have independently taken a 

sequence of checkpoints. The interleaving of messages and 

checkpoints leaves no consistent set of checkpoints for p 

and q> except the initial one at {Xx0, Ye}. Consequently, 

after p fails, both p and q must roll back to the beginning 

of the computation. For time-critical applications that 

require a guaranteed rate of progress, such as real time 

process control, this behavior results in unacceptable 

delays. An additional disadvantage of independent check- 

points is the large amount of stable storage required to 

save all checkpoints. 

To avoid these. disadvantages, we pursue the second 

approach. In contrast to Tamir”, our method ensures that 

when a process takes a checkpoint, a minimal number of 

additional processes are forced to take checkpoints. 

4.2. Rollback-Recovery 

Rollback-recovery from a consistent set of checkpoints 

appears deceptively simple. The following scheme seems 

to work: Whenever a process rolls back to its checkpoint, it 

notifies all other processes to also roll back to their respec- 

tive checkpoints. It then installs its checkpointed state and 

resumes execution. Unfortunately, this simple recovery 

method has a major flaw. In the absence of synchroniza- 

tion, processes cannot all recover (from their respective 

checkpoints) simultaneously. Recovering processes asyn- 

chronously can introduce livelocks as shown below. 

Figure 4 illustrates the histories of two processes, p 

and Q, up to p’s failure. Process p fails before receiving 

the message nr, rolls back to its checkpoint, and notifies (1 

Then p recovers, sends ~12, and receives 111. After 1~‘s 

recovery, p has no record of sending rnr, while q has a 

record of its receipt. Therefore the global state is 

I checkpoints ‘\ f’ 

FIG. 4. Histories of p and q up to p’s failure. 

inconsistent. To restore consistency, Q must also roll back 

(to “forget” the receipt of nor) and notify p. However, after 

q rolls back, q has no record of sending rtr while p has a 

record of its receipt. Hence, the global state is inconsistent 

again, and upon notification of q’s rollback, p must roll 

back a second time. After q recovers, q sends 17s and 

receives m2. Suppose p rolls back before receiving )L~ as 

shown in Figure 5. With the second rollback of p, the 

sending of m2 is “forgotten”. To restore consistency, q must 

roll back a second time. After p recovers it receives u%, 

and upon notification of q’s rollback, it must roll back a 

third time. It is now clear that p and q can be forced to 

roll back forever, even though no additional failures occur. 

Our rollback-recovery algorithm solves this livelock 

problem. It tolerates failures that occur during its execu- 

tion, and forces a minimal number of processes to roll back 

after a failure. However, in Tamir17, a single failure forces 

the system to roll back as a whole. Furthermore, the sys- 

tem crashes (and does not recover) if a failure occurs while 

it is rolling back. 

5. Checkpoint Creation 

5.1. Naive Algorithms 

From Figure 2 it is obvious that if every process takes 

a checkpoint after every sending of a message, and these 

two actions are done atomically, the set of the most recent 

checkpoints is always consistent. But creating a check- 

point after every send is expensive. We may naively 

reduce the cost of the above method with a strategy such 

roll back 
I e ndtime 

P 
\ 

/\ ,’ b 
,’ 

FIG. 5. History of p and q up to p’s 2nd rollback 
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as “every process takes a checkpoint after e\ery /c sends, 

k >l” or ‘yevery process takes a checkpoint on the hour”. 

However, the former can be shown to suffer domino effects 

by a construction similar to the one in Figure 3, while the 

latter is meaningless for a system that lacks perfectly syn- 

chronized clocks. 

5.2. Classes of Checkpoints 

Our algorithm saves two kinds of checkpoints on 

stable storage: permanent and tentative. A permanent 

checkpoint cannot be undone. It guarantees that the com- 

putation needed to reach the checkpointed state will not be 

repeated. A tentative checkpoint, however, can be undone 

or changed to be a permanent checkpoint. When the con- 

text is clear, we call permanent checkpoints “checkpoints”. 

Consider a system with a consistent set of permanent 

checkpoints. A checkpoint algorithm is r.e.s~l~r/rt to failures 

if the set of permanent checkpoints is still consistent after 

the algorithm terminates, even if some processes fail dur- 

ing its execution. To exclude the impractical “naive” algo- 

rithm (in last section) from our consideration, henceforth, 

we consider only those systems where processes either can- 

not afford to take a checkpoint after every send, or cannot 

combine the sending of a message and the taking of a 

checkpoint into one atomic operation. The following 

theorem shows that checkpoint algorithms for these sys- 

tems must store at least two checkpoints in stable storage 

to be resilient to failures. (The proofs of all lemmas and 

theorems in this paper can be found in Koo and Toueg’.) 

Theorem 1: No resilient checkpoint algorithms that take 

only permanent checkpoints exist. 0 

Theorem 1 shows that in those systems we consider, any 

resilient checkpoint algorithm must store at least two 

checkpoints on stable storage. 

5.3. Our Checkpoint Algorithm 

We assume the algorithm is invoked by a single pro- 

cess that wants to take a permanent checkpoint. We also 

assume that no failures occur in the system. In section 

5.3.4 we extend the algorithm to handle failures, and in 

section 7 we describe concurrent invocations of this algo- 

rithm. 

5.3.1. Motivation The algorithm is patterned on two- 

phase-commit protocols. In the first phase, the initiator (1 

takes a tentative checkpoint and requests all processes to 

take tentative checkpoints. If ‘1 learns that all processes 

have taken tentative checkpoints, (I decide> all tentative 

checkpoints should be made permanent; otherwise, 11 

decides tentative checkpoints should be discarded. In the 

second phase, q’s decision is propagated and carried out by 

all processes. Since all or none of the processes take per- 

manent checkpoints, the most recent set of checkpoints is 

always consistent. 

However, our goal is to force a minimal number of 

processes to take checkpoints. The above algorithm is 

modified as follows: a process p takes a tentative check- 

point after it receives a request from q only ifq’s tentative 

checkpoint records the receipt of a message from p, and p’s 

latest permanent checkpoint does not record the sending of 

that message. Process p determines whether this condition 

is true using the label appended to q’s request. This label- 

ing scheme is described below. 

Messages that are not sent by the checkpoint or 

rollback-recovery algorithms are system messages. Every 

system message m contains a label ml. Each process 

appends outgoing system messages with monotonically 

increasing labels. We define 1 and T to be the smallest 

and largest labels, respectively. For any processes o and 

p, let m be the last message that q received from p after q 

took its last permanent or tentative checkpoint. Define: 

1 

m.l if m exists 
last-rmsg,(p) = I otherwise 

Also, let m be the first message that q sent to process p 

after q took its last permanent or tentative checkpoint. 

Define: 

1 

m.1 if m exists 
fir~~L~msgq(p) = 1 otherwise . 

When q requests p to take a tentative checkpoint, it 

appends Zasl-rmsg4(p) to its request; p takes the check- 

point only if last3msg&) t first-smsg,,(q) > 1. 

5.3.2. Informal Description Process p is a 
chp~cohort of q if q has taken a tentative checkpoint, and 

Inst-rmsg&) >I before the tentative checkpoint is taken. 

The set of ckpt-cohorts of q is denoted ckpt-cohort,. Every 

process p keeps a variable ~clilli~~g_/o-(.fipl(, to denote its 

willingness to take checkpoints. Whenever p cannot take a 

checkpoint (for any reason), willing--to-chpt,, is “no”. The 

initiator q starts the checkpoint algorithm by making a 

tentative checkpoint and sending a request “take a tenta- 

tive checkpoint and Inst~m.sg,,(p)” to all pCchpt-coltor?,. A 

process p inherits this request if cuillirrg-lo-chpt, is “yes” 

and last_rmsgJp) >first-.sm.sg,,(q) >1. If p inherits a 

request, it takes a tentative checkpoint and sends “take a 

tentative checkpoint and Errs/. rwgp(r)” requests to all 

rfchpt-cohort,,. If p receives but does not inherit a request 

from q, p replies tui/liry.-ro..c.hpI,. to (, 
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After p sends out its requests, it waits for replies that 

can be either “yes” or “no”, indicating a ckpt-cohort’s 

acceptance or rejection of p’s request. If any reply is “no”, 

willing-to-ckpt,, becomes “no”; otherwise will~ryfo-ckpt,, 

is unchanged. Process p then sends rc’illiflg-fo-ckpt,, to the 

process whose request p has inherited. From the time p 

takes a tentative checkpoint to the time it receives the 

decision from the initiator, p does not send any system 

messages. 

If all the replies from its ckpt-cohorts arrive and are 

all “yes”, the initiator decides to make all tentative check- 

points permanent. Otherwise the decision is to undo all 

tentative checkpoints. This decision is propagated in the 

same fashion as the request “take a tentative checkpoint” 

is delivered. A process discards its previous checkpoints 

after it takes a new permanent checkpoint. 

The algorithm is presented in Figure 6. For simpli- 

city, we create a fictitious process called daemon to assume 

the initiation and decision tasks of the initiator. In prac- 
tice, daemon is a part of the initiator process. 

5.3.3. Proofs of Correctness We consider a single 

invocation of the algorithm, and we assume no process 

fails in the system. 

Lemma 1: Every process inherits at most one request to 

take a tentative checkpoint. q 
Lemma 2: Every process terminates its execution of Algo- 

rithm Cl. El 

The next lemma shows that Cl takes a consistent set of 

checkpoints. 

Lemma 3: If the set of checkpoints in the system is con- 

sistent before the execution of Algorithm Cl, the set of 

checkpoints in the system is consistent after the termina- 

tion of Cl. q 
We now show the number of processes that take new 

permanent checkpoints during the execution of Algorithm 

Cl is minimal. Let P=ba,pl, . ,ph} be the set of 

processes that take new permanent checkpoints in Cl, 

where PO is the initiator of Cl. Let 

c(t-‘)={C([J’o), ‘(PI), ’ , c(ph)) be the new permanent 

checkpoints taken by processes in P. Define an alternate 

set of checkpoints: C’(P)={c’(po), c’(p,), , c.‘fp,,~} where 

r’(po) = c(p,J and for lS-i<k, c’(p,) is either J,(/J ) or the 

checkpoint p, had before executing Cl. 

Theorem 2: C’(P) is consistent if and only if (“(!‘I = c-‘!P, 

Daemon process: 

send(initiator, “take a tentative checkpoint and T”); 
await(initiator, wiLlingAo-ckpt ,,,,,, S,fc,,.);.:.+ 
if willing-to-ckptinlti,, == “yes” then 

send(initiator, “make tentative checkpoint permanent”) 
else 

sendfinitiator, “undo tentative checkpoint”) 
fi. 

All processes P: 

IN~IAL STATE: 
first-smsg,(darmon) = T; 

willing-to-ckpt, = 
I 

“yes” if p is willing to checkpoint 
,,no,, otherwise , 

UPON RECEIPT OF “take a. tentative checkpoint and 
last-rmsg,@)” from q DO 

if willing-to-ckpt, and Zast-rmsgy(p)rfirsl_smsg,,(q) >I 

then take a tentative checkpoint; 
for all r6ckptrohort,, send(r, “take a tentative 

checkpoint and last-rmsgp(r)“); 
for all rfckpt-cohort, await(r, willing-torkpt,.); 

if 3 r cckpt-cohort,,, willing-torkpt,. = “no” 

then willing-to-ckpt,+ “no” fi; 

fi; 
send(q, willing-torkpt ,); 

OD. 

UPON FIRST RECEIPT OF nz =“undo tentative checkpoint” or 
m =“make tentative checkpoint permanent” DO 
if m =“make tentative checkpoint permanent” then 

make tentative checkpoint permanent; 
else 

undo tentative checkpoint; 

fi; 
for all r Eckpt-cohort,,, sender, nz); 

OD. 

FIG. 6. Algorithm Cl: the Checkpoint Algorithm 

_-- _ .-.- 

Theorem 2 shows that if p. takes a checkpoint, then all 

processes in P must take a checkpoint to ensure con- 

sistency. 

l 
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5.3.4. Coping with Failures We now extend Algo- 

rithm Cl to handle processes’ failures. We first consider 

the effects of failures on nonfaulty processes. When 

failures occur, a nonfaulty process may not receive some of 

the following messages: 

(1) “yes” or “no” from ckptcohorts, 

(2) “make tentative checkpoint permanent” or “undo ten- 

tative checkpoint” from the initiator. 

Suppose that process p fails before replying “yes” or 

“no” to process g’s request. By the assumption of section 3, 

9 will know of p’s failure. After 4 knows that p has failed, 

it sets wiZling_to_ckpt, to “no” and stops waiting for p’s 

reply. Therefore, to take care of a missing “yes” or “no”, it 

suffices to change the statement in Cl from 

if 3 rcckpt-cohort,,, wiZZing_to-ckpt,. = “no” 

then willinglorkptp+ “no” fi 

to 

if 3 rCckpt-cohort,,, willingAo_ckpt,. = “no” or r has failed 

then willing-to-ckpt,+ “no” fi. 

Suppose that process p does not receive the decision 

regarding its tentative checkpoint. If p undoes its tentative 

checkpoint or makes it permanent, it risks contradicting 

the initiator. The tw+phase structure of Cl requires p to 

block until it discovers the initiator’s decision15. We will 

discuss ways to prevent blocking in section 8. 

We now consider the recovery of faulty processes, 

When a process restarts after a failure, its latest check- 

point on stable storage may be tentative or permanent. If 

this checkpoint is tentative, the restarting process must 

decide whether to discard it or to make it permanent. The 

decision is made as follows; 

Suppose that the restarting process is the initiator. 

The initiator knows that every process that has taken a 

tentative checkpoint is still blocked waiting for its deci- 

sion. Hence, it is safe for the initiator to decide to undo all 

tentative checkpoints and send this decision to its 

ckpt-cohorts. If the restarting process is not the initiator, 

it must discover the initiator’s decision regarding tentative 

checkpoints. It may contact either the initiator or those 

processes of which it is a ckpt--cohort; it follows the deci- 

sion accordingly to terminate Cl. 

The restarting process is now left with one permanent 

checkpoint on stable storage. It can recover from this 

checkpoint by invoking the rollback-recovery algorithm of 

section 6. 

Let C2 be the Algorithm Cl as modified above. C2 

terminates if all processes that fail during the execution of 

C2 recover. At termination, the set of checkpoints in the 

system is consistent, and the number of processes that took 

new permanent checkpoints is minimal. The proofs for 

these properties are similar to those of Cl and they are 

omitted. 

6. Rollback-Recovery 

We assume that the algorithm is invoked by a single 

process that wants to roll back and recover (henceforth 

denoted restart). We also assume that the checkpoint algo- 

rithm and the rollback-recovery algorithm are not invoked 

concurrently. Concurrent invocations of these algorithms 

are described in section 7. 

6.1. Motivation 

The rollback-recovery algorithm is patterned on two- 

phase-commit protocols. In the first phase, the initiator q 

requests all processes to restart from their checkpoints. 

Process q decides to restart all the processes if and only if 

they are all willing to restart. In the second phase, q’s 

decision is propagated and carried out by all processes. We 

will prove that the two-phase structure of this algorithm 

prevents livelock as discussed in section 4.2. Since all 

processes follow the initiator’s decision, the global state is 

consistent when the rollback-recovery algorithm ter- 

minates. 

However, our goal is to force a minimal number of 

processes to roll back. If a process p rolls back to a state 

saved before an event e occurred, we say that e is undone 

by p. The above algorithm is modified as follows: the roll- 

back of a process q forces another process p to roll back 

01ll.v if q’s rollback undoes the sending of a message to p. 

Process p determines if it must restart using the label 

appended to q’s “prepare to roll back” request. This label 

is described below. 

For any processes q and p, let nr be the last message 

that q sent to p before q took its latest permanent check- 

point. Define 

1m.l if m exists 
last-smsg$p) = T 

I 
otherwise . 

When q requests p to restart, it appends lcrsl-~sg,,(p) to 

its request. Process p restarts from its permanent check- 

point only if Zast-rmsg,(q) >lasl-smsg,,(pJ. 
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6.2. Informal Description 

Process p is a roll -cohort of q if q can send messages 

to it. The set of roll-cohorts of q is ro/l -cohort,,. Every pro- 

cess p keeps a variable willingJo-roll,, to denote its wil- 

lingness to roll back. Whenever 11 cannot roll back tfor any 

reason), willing-to-roll, is “no”. The initiator (I starts the 

rollback-recovery algorithm by sending a request “prepare 

to roll back and last-smsg,(p)” to all pCroZ/-c~hort,~. A 

process p inherits this request if ~~~ilLir~g-to-rolll is ‘*yes”, 

lastrmsg,(q) >Instsmsg&), and p has not already inher- 

ited another request to roll back. After p inherits the 

request, it sends “prepare to roll back and lastsmsg,,(r)” 

to all rCrol1 -cohort,,; otherwise, it replies willing-to-roll,, 

to q. 

After p sends out its requests, it waits for replies from 

each process in roll -cohort,. The reply can be an explicit 

“yes” or “no” message, or an implicit “no” when p discovers 

that F has failed. If any reply is “no”, willing_to-roll,, 

becomes “no”, otherwise willing_to-roll, is unchanged. 

Process p then sends willing~o-rollP to the process whose 

request p inherits. From the time p inherits the rollback 

request to the time it receives the decision from the initia- 

tor, p does not send any system messages. 

If all the replies from its roll-cohorts arrive and are 

all “yes”, the initiator decides the rollbacks will proceed, 

otherwise it decides no process will roll back. This deci- 

sion is propagated to all processes in the same fashion as 

the request “prepare to roll back” is delivered. If failures 

prevent the decision from reaching a process p. p must 

block until it discovers the initiator’s decision. We discuss 

nonblocking algorithms in section 8. 

The rollback-recovery algorithm is presented in Fig- 

ure 7. Like the presentation of Algorithm Cl, we introduce 

a fictitious process called duemon to perform functions that 

are unique to the initiator of the algorithm. 

6.3. Proofs of Correctness 

We consider a single invocation of the rollback- 

recovery algorithm. The variable readyJo-roll, ensures 

that a process p inherits at most one request to roll back. 

As a result, the variable also ensures that a process rolls 

back at most once. To prove the termination of Algorithm 

R, it suffices to show that Algorithm R is free of deadlocks. 

Lemma 4: Algorithm R is deadlock free. 0 

We show next that the global state of the system is con- 

sistent after the termination of R 

Daemon process: 

send(initiator, “prepare to roll back and I”); 
await(initmtor, willing_to-roll ,,,r,,Ci,C,r); 

if willing-to-roll ,,,,t,ob,r =: “yes” then 
send(initiator, “roll back”) 

else 
send(initiator, “do not roll back”) 

Ii. 

All processes p: 

INITIAL STATE: 

ready-toroll p = true; 

last-rmsg,(daemon) = T; 

willingAo~ollP = 
1 

“yes” if p is willing to roll back 
,,no,, otherwise 

UPON RECEIPT OF “prepare to roll back and 
last-smsg,(p)” from q DO 

if willing-torollp and last-msg,(q) Blast-smsg.,(p) 

and ready-to-roll p then 
ready-torollP +- false; 

for alI r c roll -cohort ,, 
send(r, “prepare to roll back and last-smsg,,(r)“); 

for all r Croll -cohort, await(r, willing-toyoll r); 
if 3 r Croll-cohort,, willing-toroll. = “no” 

or r has failed then willing-todoll,+ “no” fi; 

fi; 
sendtq, willl ug-to-roll,,); 

OD. 

UPON RECEIPT OF no =“roll back” or 
m =“do not roll back” and ready-torollp = false DO 

if m = “roll back” then 
restart from 11’s permanent checkpoint; 

else 
resume execution; 

fi; 
for all reroll -cohort,, send(r, m); 

OD. 

FIG. 7. Algorithm R: the Rollback Algorithm 
_--~ - _. -___~ 

Lemma 5: If the system is consistent before the execution 

of Algorithm R, the system is consistent after the termina- 

tion of Algorithm R. 0 
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Lemma 5 ensures that a single execution of Algorithm R 

brings the system to a consistent state after a failure; since 

processes roll back at most once in any execution of R, the 

rollback algorithm prevents livelocks. Thus, Algorithm R 

prevents livelocks. 

Many existing rollback algorithms exhibit the follow- 

ing undesirable property. If the initiator rolls back, it 

forces an additional set of processes P to roll back with it, 

even though the system will be consistent if some of the 

processes in P omit to roll back. For instance, all 

processes are required to roll back every time any process 

wants to roll backr7. However, in some cases, the initiator 

could roll back alone and the system would still be con- 

sistent. With our algorithm, the number of processes that 

are forced to roll back with the initiator is minimal. 

Theorem 3: Let E be an execution of R in which the ini- 

tiator, p,,, and an additional set of processes P roll back. 

Consider an execution E’, identical to E except that a 

non-empty subset of processes in P omit to roll back upon 

receipt of the “roll back” decision. The execution E’ leaves 

the system in an inconsistent state. cl 

7. Interference 

In this section, we consider concurrent invocations of 

the checkpoint and rollback-recovery algorithms. An exe- 

cution of these algorithms by process 11 is itt~rtf~rerl with if 

any of the following events occur: 

(1) Process p receives a rollback request from another 

process q while executing the checkpoint algorithm. 

(2) Process p receives a checkpoint request from q while 

executing the rollback-recovery algorithm. 

(3) Process p, while executing the checkpoint algorithm 

for initiator i, receives a checkpoint request from q, 

but q’s request originates from a different initiator 

than i. 

(4) Process p, while executing the rollback-recovery algo- 

rithm for initiator i, receives a rollback request from 

q, but q’s request originates from a different initiator 

than i. 

One single rule handles the four cases of interference: 

once p starts the execution of a checkpoint [rollback] algo- 

rithm, p is unwilling to take a tentative checkpoint [roll 

back] for another initiator, or to roll back [take a tentative 

checkpoint]. As a result, in all four cases, p replies “no” to 

q. We can show this rule is sufficient to guarantee that all 

previous lemmas and theorems hold despite concurrent 

invocations of the algorithms. This rule can, however, be 

modified to permit more concurrency in the system. The 

modification is that in case (l), instead of sending “no” to 

q, p can begin executing the rollback-recovery algorithm 

after it finishes the checkpoint algorithm. We cannot 

allow a similar modification in case (2) lest deadlocks may 

occur. 

8. Optimization 

When the initiator of the checkpoint or of the 

rollback-recovery algorithm fails before propagating its 

decision to its cohorts, it is desirable for processes not to 

block for its recovery. To prevent processes from blocking, 

we can modify our algorithms by replacing the underlying 

two-phase commit protocol with a nonblocking three-phase 

commit protocol’5. However, nonblocking protocols are 

inherently more expensive than blocking ones3. 

We next address the following problem: after a 

ckpt-cohort q of a process p fails, p cannot take a per- 

manent checkpoint until q restarts (p cannot know if the 

latest checkpoint of q records the sendings of all messages 

it received from q). To avoid waiting for q’s restart, p can 

remove q from chpt~~ohort,, by restarting from its check- 

point (using the rollback-recovery algorithm). After its 

restart, process p can take new checkpoints. 

9. Message Loss 

Rollback-recovery can cause message loss as illus- 

trated in Figure 8. When p is rolled back to X following a 

failure at F, the global state is consistent, but the message 

m from q is lost. It is lost because the state of the chan- 

nels corresponding to the global state {X, Y} contains m. 

One method to circumvent message loss is to have 

that processes use transmission protocols that transform 

lossy channels to virtual error-free channels, e.g., sliding 

window protocols18. Another method is to ensure that the 

state of the channels corresponding to the most recent set 

FIG. 8. Message loss following p’s rollback to X. 
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